Metadata
Key | Value |
---|---|
engine | transformers |
prompt | default |
temp | 0.2 |
top_p | 0.95 |
max_new_tokens | 1024 |
n_completions | 10 |
Solutions
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true<end_of_turn>
<start_of_turn>model
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]<end_of_turn>
<start_of_turn>model
```swift
func separateParenGroups(parenString: String) -> [String] {
var groups = [String]()
var currentGroup = ""
var balance = 0
for char in parenString {
if char == "(" {
balance += 1
currentGroup.append(char)
} else if char == ")" {
balance -= 1
currentGroup.append(char)
if balance == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
func truncateNumber(number: Double) -> Double {
let decimal = number - Double(Int(number))
return decimal
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
let decimal = number - Double(Int(number))
return decimal
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = floor(number)
let decimalPart = number - integerPart
return decimalPart
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
let integerPart = floor(number)
let decimalPart = number - integerPart
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
let decimal = number.truncatingRemainder(dividingBy: 1)
return decimal
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
let decimal = number.truncatingRemainder(dividingBy: 1)
return decimal
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5<end_of_turn>
<start_of_turn>model
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true<end_of_turn>
<start_of_turn>model
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
// Calculate the mean of the dataset
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0.0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
// Calculate the mean of the dataset
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0.0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard !numbers.isEmpty else {
return 0.0
}
// Calculate the mean of the dataset
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0.0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard !numbers.isEmpty else {
return 0.0
}
// Calculate the mean of the dataset
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0.0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
// Calculate the mean of the dataset
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0.0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
// Calculate the mean of the dataset
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0.0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
// Calculate the mean of the dataset
let mean = numbers.reduce(0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
// Calculate the mean of the dataset
let mean = numbers.reduce(0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard !numbers.isEmpty else {
return 0.0
}
// Calculate the mean of the dataset
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0.0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard !numbers.isEmpty else {
return 0.0
}
// Calculate the mean of the dataset
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average absolute difference
return absoluteDifferences.reduce(0.0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
// Calculate the mean of the dataset
let mean = numbers.reduce(0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average of the absolute differences
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
// Calculate the mean of the dataset
let mean = numbers.reduce(0, +) / Double(numbers.count)
// Calculate the absolute difference between each element and the mean
let absoluteDifferences = numbers.map { abs($0 - mean) }
// Calculate the average of the absolute differences
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0<end_of_turn>
<start_of_turn>model
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]<end_of_turn>
<start_of_turn>model
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
switch char {
case "(":
currentLevel += 1
levels[index] = currentLevel
case ")":
currentLevel -= 1
default:
break
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
switch char {
case "(":
currentLevel += 1
levels[index] = currentLevel
case ")":
currentLevel -= 1
default:
break
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
if char == "(" {
currentLevel += 1
levels[index] = currentLevel
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
if char == "(" {
currentLevel += 1
levels[index] = currentLevel
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
switch char {
case "(":
currentLevel += 1
levels[index] = currentLevel
case ")":
currentLevel -= 1
default:
break
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
switch char {
case "(":
currentLevel += 1
levels[index] = currentLevel
case ")":
currentLevel -= 1
default:
break
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
if char == "(" {
currentLevel += 1
levels[index] = currentLevel
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
if char == "(" {
currentLevel += 1
levels[index] = currentLevel
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
switch char {
case "(":
currentLevel += 1
levels[index] = currentLevel
case ")":
currentLevel -= 1
default:
break
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int](repeating: 0, count: parenString.count)
var currentLevel = 0
for (index, char) in parenString.enumerated() {
switch char {
case "(":
currentLevel += 1
levels[index] = currentLevel
case ")":
currentLevel -= 1
default:
break
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]<end_of_turn>
<start_of_turn>model
```swift
func parseNestedParens(parenString: String) -> [Int] {
var levels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
levels.append(currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
return levels
}
```
// XCTAssertTrue failed
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)<end_of_turn>
<start_of_turn>model
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var max = Int.min
for i in 0..<numbers.count {
max = max(max, numbers[i])
result[i] = max
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var max = Int.min
for i in 0..<numbers.count {
max = max(max, numbers[i])
result[i] = max
}
return result
}
```
max = max(max, numbers[i]) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var max = Int.min
for i in 0..<numbers.count {
max = max(max, numbers[i])
result[i] = max
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var max = Int.min
for i in 0..<numbers.count {
max = max(max, numbers[i])
result[i] = max
}
return result
}
```
max = max(max, numbers[i]) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var maximum = Int.min
for i in 0..<numbers.count {
maximum = max(maximum, numbers[i])
result[i] = maximum
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var maximum = Int.min
for i in 0..<numbers.count {
maximum = max(maximum, numbers[i])
result[i] = maximum
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var max = Int.min
for (index, number) in numbers.enumerated() {
max = max > number ? max : number
result[index] = max
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var max = Int.min
for (index, number) in numbers.enumerated() {
max = max > number ? max : number
result[index] = max
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var maximum = Int.min
for number in numbers {
maximum = max(maximum, number)
result.append(maximum)
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var maximum = Int.min
for number in numbers {
maximum = max(maximum, number)
result.append(maximum)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var maximum = Int.min
for number in numbers {
maximum = max(maximum, number)
result.append(maximum)
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var maximum = Int.min
for number in numbers {
maximum = max(maximum, number)
result.append(maximum)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var max = Int.min
for (index, number) in numbers.enumerated() {
max = max > number ? max : number
result[index] = max
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int](repeating: 0, count: numbers.count)
var max = Int.min
for (index, number) in numbers.enumerated() {
max = max > number ? max : number
result[index] = max
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var maximum = Int.min
for number in numbers {
maximum = max(maximum, number)
result.append(maximum)
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var maximum = Int.min
for number in numbers {
maximum = max(maximum, number)
result.append(maximum)
}
return result
}
```
func makePalindrome(string: String) -> String {
let count = string.count
if count < 2 { return string }
var left = 0
var right = count - 1
// Find the longest palindrome suffix
while left < right && string[left] != string[right] {
right -= 1
}
let suffixLength = right - left + 1
// Find the prefix before the palindrome suffix
var prefix = ""
for i in stride(from: left - 1, through: 0, by: -1) {
prefix.append(string[i])
}
// Reverse the prefix and append it to the suffix
return string + prefix.reversed().joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
let count = string.count
if count < 2 { return string }
var left = 0
var right = count - 1
// Find the longest palindrome suffix
while left < right && string[left] != string[right] {
right -= 1
}
let suffixLength = right - left + 1
// Find the prefix before the palindrome suffix
var prefix = ""
for i in stride(from: left - 1, through: 0, by: -1) {
prefix.append(string[i])
}
// Reverse the prefix and append it to the suffix
return string + prefix.reversed().joined()
}
```
while left < right && string[left] != string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
while left < right && string[left] != string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
prefix.append(string[i]) // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
return string + prefix.reversed().joined() // no exact matches in call to instance method 'joined'
func makePalindrome(string: String) -> String {
guard !string.isEmpty else { return "" }
var left = 0
var right = string.count - 1
while left < right && string[left] == string[right] {
left += 1
right -= 1
}
let prefix = String(string[..<left])
let suffix = String(string[left...right].reversed())
return prefix + suffix
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
guard !string.isEmpty else { return "" }
var left = 0
var right = string.count - 1
while left < right && string[left] == string[right] {
left += 1
right -= 1
}
let prefix = String(string[..<left])
let suffix = String(string[left...right].reversed())
return prefix + suffix
}
```
while left < right && string[left] == string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
while left < right && string[left] == string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let prefix = String(string[..<left]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let suffix = String(string[left...right].reversed()) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func makePalindrome(string: String) -> String {
let count = string.count
guard count > 1 else { return string }
var left = 0
var right = count - 1
while left < right && string[left] == string[right] {
left += 1
right -= 1
}
let prefix = String(string[..<left])
let suffix = String(string[left...right].reversed())
return prefix + suffix
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
let count = string.count
guard count > 1 else { return string }
var left = 0
var right = count - 1
while left < right && string[left] == string[right] {
left += 1
right -= 1
}
let prefix = String(string[..<left])
let suffix = String(string[left...right].reversed())
return prefix + suffix
}
```
while left < right && string[left] == string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
while left < right && string[left] == string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let prefix = String(string[..<left]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let suffix = String(string[left...right].reversed()) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func makePalindrome(string: String) -> String {
func isPalindrome(_ string: String) -> Bool {
return string == String(string.reversed())
}
guard !string.isEmpty else {
return ""
}
var left = string.startIndex
var right = string.endIndex
while left < right && !isPalindrome(String(string[left...right])) {
right -= 1
}
return string + String(string[string.startIndex..<right].reversed())
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
func isPalindrome(_ string: String) -> Bool {
return string == String(string.reversed())
}
guard !string.isEmpty else {
return ""
}
var left = string.startIndex
var right = string.endIndex
while left < right && !isPalindrome(String(string[left...right])) {
right -= 1
}
return string + String(string[string.startIndex..<right].reversed())
}
```
right -= 1 // binary operator '-=' cannot be applied to operands of type 'String.Index' and 'Int'
func makePalindrome(string: String) -> String {
let characters = Array(string)
var left = 0
var right = characters.count - 1
while left < right && characters[left] != characters[right] {
right -= 1
}
let palindromeSuffix = String(characters[left...right].reversed())
return string + palindromeSuffix
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
let characters = Array(string)
var left = 0
var right = characters.count - 1
while left < right && characters[left] != characters[right] {
right -= 1
}
let palindromeSuffix = String(characters[left...right].reversed())
return string + palindromeSuffix
}
```
var left = 0 // variable 'left' was never mutated; consider changing to 'let' constant
// Fatal error: Range requires lowerBound <= upperBound
func makePalindrome(string: String) -> String {
let count = string.count
guard count > 1 else { return string }
var left = 0
var right = count - 1
while left < right && string[left] == string[right] {
left += 1
right -= 1
}
let prefix = string[..<left]
let suffix = string[left...right]
let reversedSuffix = String(suffix.reversed())
return prefix + reversedSuffix
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
let count = string.count
guard count > 1 else { return string }
var left = 0
var right = count - 1
while left < right && string[left] == string[right] {
left += 1
right -= 1
}
let prefix = string[..<left]
let suffix = string[left...right]
let reversedSuffix = String(suffix.reversed())
return prefix + reversedSuffix
}
```
while left < right && string[left] == string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
while left < right && string[left] == string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let prefix = string[..<left] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let suffix = string[left...right] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func makePalindrome(string: String) -> String {
func isPalindrome(_ string: String) -> Bool {
let characters = Array(string)
for i in 0..<characters.count / 2 {
if characters[i] != characters[characters.count - i - 1] {
return false
}
}
return true
}
if string.isEmpty {
return ""
}
var longestPalindromeSuffix = ""
for i in stride(from: string.count - 1, through: 0, by: -1) {
let suffix = string[String.Index(string.startIndex, offsetBy: i)..<string.endIndex]
if isPalindrome(suffix) {
longestPalindromeSuffix = suffix
break
}
}
let prefixEndIndex = string.index(string.startIndex, offsetBy: string.count - longestPalindromeSuffix.count)
let prefix = string[string.startIndex..<prefixEndIndex]
let reversedPrefix = String(prefix.reversed())
return string + reversedPrefix + longestPalindromeSuffix
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
func isPalindrome(_ string: String) -> Bool {
let characters = Array(string)
for i in 0..<characters.count / 2 {
if characters[i] != characters[characters.count - i - 1] {
return false
}
}
return true
}
if string.isEmpty {
return ""
}
var longestPalindromeSuffix = ""
for i in stride(from: string.count - 1, through: 0, by: -1) {
let suffix = string[String.Index(string.startIndex, offsetBy: i)..<string.endIndex]
if isPalindrome(suffix) {
longestPalindromeSuffix = suffix
break
}
}
let prefixEndIndex = string.index(string.startIndex, offsetBy: string.count - longestPalindromeSuffix.count)
let prefix = string[string.startIndex..<prefixEndIndex]
let reversedPrefix = String(prefix.reversed())
return string + reversedPrefix + longestPalindromeSuffix
}
```
let suffix = string[String.Index(string.startIndex, offsetBy: i)..<string.endIndex] // no exact matches in call to initializer
let suffix = string[String.Index(string.startIndex, offsetBy: i)..<string.endIndex] // value of optional type 'String.Index?' must be unwrapped to a value of type 'String.Index'
func makePalindrome(string: String) -> String {
func isPalindrome(_ string: String) -> Bool {
return string == String(string.reversed())
}
guard !string.isEmpty else { return "" }
var left = 0
var right = string.count - 1
while left < right && !isPalindrome(String(string[left...right])) {
left += 1
right -= 1
}
let prefix = String(string[..<left])
let suffix = String(string[left...right].reversed())
return prefix + suffix
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
func isPalindrome(_ string: String) -> Bool {
return string == String(string.reversed())
}
guard !string.isEmpty else { return "" }
var left = 0
var right = string.count - 1
while left < right && !isPalindrome(String(string[left...right])) {
left += 1
right -= 1
}
let prefix = String(string[..<left])
let suffix = String(string[left...right].reversed())
return prefix + suffix
}
```
while left < right && !isPalindrome(String(string[left...right])) { // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let prefix = String(string[..<left]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let suffix = String(string[left...right].reversed()) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func makePalindrome(string: String) -> String {
guard !string.isEmpty else { return "" }
var left = 0
var right = string.count - 1
while left < right && string[left] == string[right] {
left += 1
right -= 1
}
let prefix = String(string[..<left])
let suffix = String(string[left...right].reversed())
return prefix + suffix
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
guard !string.isEmpty else { return "" }
var left = 0
var right = string.count - 1
while left < right && string[left] == string[right] {
left += 1
right -= 1
}
let prefix = String(string[..<left])
let suffix = String(string[left...right].reversed())
return prefix + suffix
}
```
while left < right && string[left] == string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
while left < right && string[left] == string[right] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let prefix = String(string[..<left]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let suffix = String(string[left...right].reversed()) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func makePalindrome(string: String) -> String {
let characters = Array(string)
var left = 0
var right = characters.count - 1
// Find the longest postfix that is a palindrome
while left < right && characters[left] == characters[right] {
left += 1
right -= 1
}
// Append the reverse of the prefix to the end of the string
let prefix = String(characters[left...right].reversed())
return string + prefix
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"<end_of_turn>
<start_of_turn>model
```swift
func makePalindrome(string: String) -> String {
let characters = Array(string)
var left = 0
var right = characters.count - 1
// Find the longest postfix that is a palindrome
while left < right && characters[left] == characters[right] {
left += 1
right -= 1
}
// Append the reverse of the prefix to the end of the string
let prefix = String(characters[left...right].reversed())
return string + prefix
}
```
// Fatal error: Range requires lowerBound <= upperBound
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = a[a.index(a.startIndex, offsetBy: i)]
let bBit = b[b.index(b.startIndex, offsetBy: i)]
result.append(aBit == bBit ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = a[a.index(a.startIndex, offsetBy: i)]
let bBit = b[b.index(b.startIndex, offsetBy: i)]
result.append(aBit == bBit ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = a[a.index(a.startIndex, offsetBy: i)]
let bBit = b[b.index(b.startIndex, offsetBy: i)]
result.append(aBit == bBit ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let aBit = a[a.index(a.startIndex, offsetBy: i)]
let bBit = b[b.index(b.startIndex, offsetBy: i)]
result.append(aBit == bBit ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"<end_of_turn>
<start_of_turn>model
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<aChars.count {
result.append(aChars[i] == bChars[i] ? "0" : "1")
}
return result
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
var maxLength = strings[0].count
for string in strings {
if string.count > maxLength {
longestString = string
maxLength = string.count
}
}
return longestString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
var maxLength = strings[0].count
for string in strings {
if string.count > maxLength {
longestString = string
maxLength = string.count
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings[0]
var maxLength = longestString.count
for string in strings {
if string.count > maxLength {
longestString = string
maxLength = string.count
}
}
return longestString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings[0]
var maxLength = longestString.count
for string in strings {
if string.count > maxLength {
longestString = string
maxLength = string.count
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longest = strings[0]
for string in strings[1..<strings.count] {
if string.count > longest.count {
longest = string
}
}
return longest
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longest = strings[0]
for string in strings[1..<strings.count] {
if string.count > longest.count {
longest = string
}
}
return longest
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longest = strings[0]
for string in strings {
if string.count > longest.count {
longest = string
}
}
return longest
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longest = strings[0]
for string in strings {
if string.count > longest.count {
longest = string
}
}
return longest
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings[0]
var maxLength = longestString.count
for string in strings[1...] {
if string.count > maxLength {
longestString = string
maxLength = string.count
}
}
return longestString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings[0]
var maxLength = longestString.count
for string in strings[1...] {
if string.count > maxLength {
longestString = string
maxLength = string.count
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longest = strings[0]
for string in strings[1..<strings.count] {
if string.count > longest.count {
longest = string
}
}
return longest
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longest = strings[0]
for string in strings[1..<strings.count] {
if string.count > longest.count {
longest = string
}
}
return longest
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longest = strings[0]
for string in strings {
if string.count > longest.count {
longest = string
}
}
return longest
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longest = strings[0]
for string in strings {
if string.count > longest.count {
longest = string
}
}
return longest
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longest = strings[0]
for string in strings {
if string.count > longest.count {
longest = string
}
}
return longest
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"<end_of_turn>
<start_of_turn>model
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longest = strings[0]
for string in strings {
if string.count > longest.count {
longest = string
}
}
return longest
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
var i = 2
while i <= a && i <= b {
if a % i == 0 && b % i == 0 {
divisor = i
temp = a / i
a = temp
temp = b / i
b = temp
}
i += 1
}
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
var i = 2
while i <= a && i <= b {
if a % i == 0 && b % i == 0 {
divisor = i
temp = a / i
a = temp
temp = b / i
b = temp
}
i += 1
}
return divisor
}
```
a = temp // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
if a > b {
temp = b
b = a % b
a = temp
} else {
temp = a
a = b % a
b = temp
}
}
divisor = a + b
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
if a > b {
temp = b
b = a % b
a = temp
} else {
temp = a
a = b % a
b = temp
}
}
divisor = a + b
return divisor
}
```
b = a % b // cannot assign to value: 'b' is a 'let' constant
a = temp // cannot assign to value: 'a' is a 'let' constant
a = b % a // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
while a % 2 == 0 && b % 2 == 0 {
divisor *= 2
a /= 2
b /= 2
}
while a % 3 == 0 && b % 3 == 0 {
divisor *= 3
a /= 3
b /= 3
}
while a != b {
if a > b {
temp = a
a = b
b = temp
}
b -= a
}
divisor *= a
}
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
while a % 2 == 0 && b % 2 == 0 {
divisor *= 2
a /= 2
b /= 2
}
while a % 3 == 0 && b % 3 == 0 {
divisor *= 3
a /= 3
b /= 3
}
while a != b {
if a > b {
temp = a
a = b
b = temp
}
b -= a
}
divisor *= a
}
return divisor
}
```
a /= 2 // left side of mutating operator isn't mutable: 'a' is a 'let' constant
b /= 2 // left side of mutating operator isn't mutable: 'b' is a 'let' constant
a /= 3 // left side of mutating operator isn't mutable: 'a' is a 'let' constant
b /= 3 // left side of mutating operator isn't mutable: 'b' is a 'let' constant
a = b // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
b -= a // left side of mutating operator isn't mutable: 'b' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
if a > b {
temp = a % b
a = b
b = temp
} else {
temp = b % a
b = a
a = temp
}
}
divisor = a + b
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
if a > b {
temp = a % b
a = b
b = temp
} else {
temp = b % a
b = a
a = temp
}
}
divisor = a + b
return divisor
}
```
a = b // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
b = a // cannot assign to value: 'b' is a 'let' constant
a = temp // cannot assign to value: 'a' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
if a > b {
temp = b
b = a % b
a = temp
} else {
temp = a
a = b % a
b = temp
}
}
divisor = a + b
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
if a > b {
temp = b
b = a % b
a = temp
} else {
temp = a
a = b % a
b = temp
}
}
divisor = a + b
return divisor
}
```
b = a % b // cannot assign to value: 'b' is a 'let' constant
a = temp // cannot assign to value: 'a' is a 'let' constant
a = b % a // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
if a > b {
temp = b
b = a % b
a = temp
} else {
temp = a
a = b % a
b = temp
}
}
divisor = a == 0 ? b : a
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
if a > b {
temp = b
b = a % b
a = temp
} else {
temp = a
a = b % a
b = temp
}
}
divisor = a == 0 ? b : a
return divisor
}
```
b = a % b // cannot assign to value: 'b' is a 'let' constant
a = temp // cannot assign to value: 'a' is a 'let' constant
a = b % a // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
while a % 2 == 0 && b % 2 == 0 {
divisor *= 2
a /= 2
b /= 2
}
while a % 3 == 0 && b % 3 == 0 {
divisor *= 3
a /= 3
b /= 3
}
temp = a
a = b
b = temp % b
}
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
while a != 0 && b != 0 {
while a % 2 == 0 && b % 2 == 0 {
divisor *= 2
a /= 2
b /= 2
}
while a % 3 == 0 && b % 3 == 0 {
divisor *= 3
a /= 3
b /= 3
}
temp = a
a = b
b = temp % b
}
return divisor
}
```
a /= 2 // left side of mutating operator isn't mutable: 'a' is a 'let' constant
b /= 2 // left side of mutating operator isn't mutable: 'b' is a 'let' constant
a /= 3 // left side of mutating operator isn't mutable: 'a' is a 'let' constant
b /= 3 // left side of mutating operator isn't mutable: 'b' is a 'let' constant
a = b // cannot assign to value: 'a' is a 'let' constant
b = temp % b // cannot assign to value: 'b' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
var i = 2
while i <= a && i <= b {
if a % i == 0 && b % i == 0 {
divisor = i
temp = a / i
a = temp
temp = b / i
b = temp
} else {
i += 1
}
}
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
var i = 2
while i <= a && i <= b {
if a % i == 0 && b % i == 0 {
divisor = i
temp = a / i
a = temp
temp = b / i
b = temp
} else {
i += 1
}
}
return divisor
}
```
a = temp // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
var i = 2
while i <= a && i <= b {
if a % i == 0 && b % i == 0 {
divisor = i
temp = a / i
a = temp
temp = b / i
b = temp
} else {
i += 1
}
}
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
var i = 2
while i <= a && i <= b {
if a % i == 0 && b % i == 0 {
divisor = i
temp = a / i
a = temp
temp = b / i
b = temp
} else {
i += 1
}
}
return divisor
}
```
a = temp // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
var i = 2
while i <= a && i <= b {
if a % i == 0 && b % i == 0 {
divisor = i
temp = a / i
a = temp
temp = b / i
b = temp
}
i += 1
}
return divisor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var temp: Int
var divisor = 1
var i = 2
while i <= a && i <= b {
if a % i == 0 && b % i == 0 {
divisor = i
temp = a / i
a = temp
temp = b / i
b = temp
}
i += 1
}
return divisor
}
```
a = temp // cannot assign to value: 'a' is a 'let' constant
b = temp // cannot assign to value: 'b' is a 'let' constant
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<i+1]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<i+1]))
}
return prefixes
}
```
prefixes.append(String(string[..<i+1])) // cannot convert value of type 'PartialRangeUpTo<Int>' to expected argument type 'Int'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<i+1]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<i+1]))
}
return prefixes
}
```
prefixes.append(String(string[..<i+1])) // cannot convert value of type 'PartialRangeUpTo<Int>' to expected argument type 'Int'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<i+1]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<i+1]))
}
return prefixes
}
```
prefixes.append(String(string[..<i+1])) // cannot convert value of type 'PartialRangeUpTo<Int>' to expected argument type 'Int'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<i+1]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<i+1]))
}
return prefixes
}
```
prefixes.append(String(string[..<i+1])) // cannot convert value of type 'PartialRangeUpTo<Int>' to expected argument type 'Int'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]<end_of_turn>
<start_of_turn>model
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string[..<string.index(string.startIndex, offsetBy: i + 1)]))
}
return prefixes
}
```
func stringSequence(n: Int) -> String {
return (0...n).map(String.init).joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map(String.init).joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map(String.init).joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map(String.init).joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map(String.init).joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map(String.init).joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map(String.init).joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map(String.init).joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"<end_of_turn>
<start_of_turn>model
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func countDistinctCharacters(string: String) -> Int {
var seenCharacters = Set<Character>()
for character in string.lowercased() {
seenCharacters.insert(character)
}
return seenCharacters.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
var seenCharacters = Set<Character>()
for character in string.lowercased() {
seenCharacters.insert(character)
}
return seenCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
```
func countDistinctCharacters(string: String) -> Int {
var seenCharacters = Set<Character>()
for character in string.lowercased() {
seenCharacters.insert(character)
}
return seenCharacters.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
var seenCharacters = Set<Character>()
for character in string.lowercased() {
seenCharacters.insert(character)
}
return seenCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
```
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
```
func countDistinctCharacters(string: String) -> Int {
var seenCharacters = Set<Character>()
for character in string.lowercased() {
seenCharacters.insert(character)
}
return seenCharacters.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
var seenCharacters = Set<Character>()
for character in string.lowercased() {
seenCharacters.insert(character)
}
return seenCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
return Array(string.lowercased()).uniq().count
}
extension Array where Element: Equatable {
func uniq() -> [Element] {
var seen = [Element]()
return filter {
if seen.contains($0) {
return false
} else {
seen.append($0)
return true
}
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
return Array(string.lowercased()).uniq().count
}
extension Array where Element: Equatable {
func uniq() -> [Element] {
var seen = [Element]()
return filter {
if seen.contains($0) {
return false
} else {
seen.append($0)
return true
}
}
}
}
```
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
```
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
return Set(string.lowercased()).count
}
```
func countDistinctCharacters(string: String) -> Int {
var seenCharacters = Set<Character>()
for character in string.lowercased() {
seenCharacters.insert(character)
}
return seenCharacters.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4<end_of_turn>
<start_of_turn>model
```swift
func countDistinctCharacters(string: String) -> Int {
var seenCharacters = Set<Character>()
for character in string.lowercased() {
seenCharacters.insert(character)
}
return seenCharacters.count
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]<end_of_turn>
<start_of_turn>model
```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i..<i+substring.count] == substring {
count += 1
}
i += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i..<i+substring.count] == substring {
count += 1
}
i += 1
}
return count
}
```
if string[i..<i+substring.count] == substring { // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i..<i + substring.count] == substring {
count += 1
}
i += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i..<i + substring.count] == substring {
count += 1
}
i += 1
}
return count
}
```
if string[i..<i + substring.count] == substring { // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = string.index(range.upperBound, offsetBy: 1)
} else {
index = string.index(index, offsetBy: 1)
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = string.index(range.upperBound, offsetBy: 1)
} else {
index = string.index(index, offsetBy: 1)
}
}
return count
}
```
// Fatal error: String index is out of bounds
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i...i + substring.count - 1] == substring {
count += 1
}
i += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i...i + substring.count - 1] == substring {
count += 1
}
i += 1
}
return count
}
```
if string[i...i + substring.count - 1] == substring { // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = string.index(range.upperBound, offsetBy: 1)
} else {
index = string.index(index, offsetBy: 1)
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if let range = string[index...].range(of: substring) {
count += 1
index = string.index(range.upperBound, offsetBy: 1)
} else {
index = string.index(index, offsetBy: 1)
}
}
return count
}
```
// Fatal error: String index is out of bounds
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i...i+substring.count-1] == substring {
count += 1
}
i += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i...i+substring.count-1] == substring {
count += 1
}
i += 1
}
return count
}
```
if string[i...i+substring.count-1] == substring { // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i...(i + substring.count - 1)] == substring {
count += 1
}
i += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i...(i + substring.count - 1)] == substring {
count += 1
}
i += 1
}
return count
}
```
if string[i...(i + substring.count - 1)] == substring { // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i...i+substring.count-1] == substring {
count += 1
}
i += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i <= string.count - substring.count {
if string[i...i+substring.count-1] == substring {
count += 1
}
i += 1
}
return count
}
```
if string[i...i+substring.count-1] == substring { // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
let range = string.range(of: substring, options: .caseInsensitive, range: index..<string.endIndex)
if let range = range {
count += 1
index = range.upperBound
} else {
index = string.endIndex
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
let range = string.range(of: substring, options: .caseInsensitive, range: index..<string.endIndex)
if let range = range {
count += 1
index = range.upperBound
} else {
index = string.endIndex
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3<end_of_turn>
<start_of_turn>model
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while let range = string[index...].range(of: substring) {
count += 1
index = range.upperBound
}
return count
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0.trimmingCharacters(in: .whitespaces) }
let numberValues = numberWords.map {
switch $0 {
case "zero": return 0
case "one": return 1
case "two": return 2
case "three": return 3
case "four": return 4
case "five": return 5
case "six": return 6
case "seven": return 7
case "eight": return 8
case "nine": return 9
default: fatalError("Invalid numeral: \($0)")
}
}
numberValues.sort()
return numberValues.map {
switch $0 {
case 0: return "zero"
case 1: return "one"
case 2: return "two"
case 3: return "three"
case 4: return "four"
case 5: return "five"
case 6: return "six"
case 7: return "seven"
case 8: return "eight"
case 9: return "nine"
default: fatalError("Invalid numeral: \($0)")
}
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0.trimmingCharacters(in: .whitespaces) }
let numberValues = numberWords.map {
switch $0 {
case "zero": return 0
case "one": return 1
case "two": return 2
case "three": return 3
case "four": return 4
case "five": return 5
case "six": return 6
case "seven": return 7
case "eight": return 8
case "nine": return 9
default: fatalError("Invalid numeral: \($0)")
}
}
numberValues.sort()
return numberValues.map {
switch $0 {
case 0: return "zero"
case 1: return "one"
case 2: return "two"
case 3: return "three"
case 4: return "four"
case 5: return "five"
case 6: return "six"
case 7: return "seven"
case 8: return "eight"
case 9: return "nine"
default: fatalError("Invalid numeral: \($0)")
}
}.joined(separator: " ")
}
```
numberValues.sort() // cannot use mutating member on immutable value: 'numberValues' is a 'let' constant
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0 }
let numbersAsInts = numberWords.map {
switch $0 {
case "zero": return 0
case "one": return 1
case "two": return 2
case "three": return 3
case "four": return 4
case "five": return 5
case "six": return 6
case "seven": return 7
case "eight": return 8
case "nine": return 9
default: return 0
}
}
numbersAsInts.sort()
return numbersAsInts.map {
switch $0 {
case 0: return "zero"
case 1: return "one"
case 2: return "two"
case 3: return "three"
case 4: return "four"
case 5: return "five"
case 6: return "six"
case 7: return "seven"
case 8: return "eight"
case 9: return "nine"
default: return ""
}
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0 }
let numbersAsInts = numberWords.map {
switch $0 {
case "zero": return 0
case "one": return 1
case "two": return 2
case "three": return 3
case "four": return 4
case "five": return 5
case "six": return 6
case "seven": return 7
case "eight": return 8
case "nine": return 9
default: return 0
}
}
numbersAsInts.sort()
return numbersAsInts.map {
switch $0 {
case 0: return "zero"
case 1: return "one"
case 2: return "two"
case 3: return "three"
case 4: return "four"
case 5: return "five"
case 6: return "six"
case 7: return "seven"
case 8: return "eight"
case 9: return "nine"
default: return ""
}
}.joined(separator: " ")
}
```
numbersAsInts.sort() // cannot use mutating member on immutable value: 'numbersAsInts' is a 'let' constant
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0 }
let numbersAsInts = numberWords.map {
switch $0 {
case "zero": return 0
case "one": return 1
case "two": return 2
case "three": return 3
case "four": return 4
case "five": return 5
case "six": return 6
case "seven": return 7
case "eight": return 8
case "nine": return 9
default: return 0
}
}
numbersAsInts.sort()
return numbersAsInts.map {
switch $0 {
case 0: return "zero"
case 1: return "one"
case 2: return "two"
case 3: return "three"
case 4: return "four"
case 5: return "five"
case 6: return "six"
case 7: return "seven"
case 8: return "eight"
case 9: return "nine"
default: return ""
}
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0 }
let numbersAsInts = numberWords.map {
switch $0 {
case "zero": return 0
case "one": return 1
case "two": return 2
case "three": return 3
case "four": return 4
case "five": return 5
case "six": return 6
case "seven": return 7
case "eight": return 8
case "nine": return 9
default: return 0
}
}
numbersAsInts.sort()
return numbersAsInts.map {
switch $0 {
case 0: return "zero"
case 1: return "one"
case 2: return "two"
case 3: return "three"
case 4: return "four"
case 5: return "five"
case 6: return "six"
case 7: return "seven"
case 8: return "eight"
case 9: return "nine"
default: return ""
}
}.joined(separator: " ")
}
```
numbersAsInts.sort() // cannot use mutating member on immutable value: 'numbersAsInts' is a 'let' constant
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
numberWords.sort { $0 < $1 }
return numberWords.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
numberWords.sort { $0 < $1 }
return numberWords.joined(separator: " ")
}
```
numberWords.sort { $0 < $1 } // cannot use mutating member on immutable value: 'numberWords' is a 'let' constant
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
numberWords.sort { $0 < $1 }
return numberWords.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
numberWords.sort { $0 < $1 }
return numberWords.joined(separator: " ")
}
```
numberWords.sort { $0 < $1 } // cannot use mutating member on immutable value: 'numberWords' is a 'let' constant
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
numberWords.sort { $0 < $1 }
return numberWords.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
numberWords.sort { $0 < $1 }
return numberWords.joined(separator: " ")
}
```
numberWords.sort { $0 < $1 } // cannot use mutating member on immutable value: 'numberWords' is a 'let' constant
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
numberWords.sort()
return numberWords.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
numberWords.sort()
return numberWords.joined(separator: " ")
}
```
numberWords.sort() // cannot use mutating member on immutable value: 'numberWords' is a 'let' constant
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
let sortedWords = numberWords.sorted { (word1, word2) -> Bool in
let number1 = Number(rawValue: word1)!
let number2 = Number(rawValue: word2)!
return number1.rawValue < number2.rawValue
}
return sortedWords.joined(separator: " ")
}
enum Number: String {
case zero = "zero"
case one = "one"
case two = "two"
case three = "three"
case four = "four"
case five = "five"
case six = "six"
case seven = "seven"
case eight = "eight"
case nine = "nine"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { String($0) }
let sortedWords = numberWords.sorted { (word1, word2) -> Bool in
let number1 = Number(rawValue: word1)!
let number2 = Number(rawValue: word2)!
return number1.rawValue < number2.rawValue
}
return sortedWords.joined(separator: " ")
}
enum Number: String {
case zero = "zero"
case one = "one"
case two = "two"
case three = "three"
case four = "four"
case five = "five"
case six = "six"
case seven = "seven"
case eight = "eight"
case nine = "nine"
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0 }
let numbersAsInts = numberWords.map { Int($0)! }
let sortedNumbers = numbersAsInts.sorted()
return sortedNumbers.map { String($0) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0 }
let numbersAsInts = numberWords.map { Int($0)! }
let sortedNumbers = numbersAsInts.sorted()
return sortedNumbers.map { String($0) }.joined(separator: " ")
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0 }
let sortedNumbers = numberWords.sorted { (word1, word2) -> Bool in
let number1 = Int(word1)!
let number2 = Int(word2)!
return number1 < number2
}
return sortedNumbers.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"<end_of_turn>
<start_of_turn>model
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ").map { $0 }
let sortedNumbers = numberWords.sorted { (word1, word2) -> Bool in
let number1 = Int(word1)!
let number2 = Int(word2)!
return number1 < number2
}
return sortedNumbers.joined(separator: " ")
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[1] - numbers[0])
for i in 2..<numbers.count {
let difference = abs(numbers[i] - numbers[i - 1])
if difference < smallestDifference {
closestPair = (numbers[i - 1], numbers[i])
smallestDifference = difference
}
}
return closestPair
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[1] - numbers[0])
for i in 2..<numbers.count {
let difference = abs(numbers[i] - numbers[i - 1])
if difference < smallestDifference {
closestPair = (numbers[i - 1], numbers[i])
smallestDifference = difference
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[1] - numbers[0])
for i in 2..<numbers.count {
let difference = abs(numbers[i] - numbers[i - 1])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (numbers[i - 1], numbers[i])
}
}
return closestPair
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[1] - numbers[0])
for i in 2..<numbers.count {
let difference = abs(numbers[i] - numbers[i - 1])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (numbers[i - 1], numbers[i])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var minDistance = abs(numbers[0] - numbers[1])
for i in 2..<numbers.count {
let distance = abs(numbers[i] - numbers[i - 1])
if distance < minDistance {
minDistance = distance
closestPair = (numbers[i - 1], numbers[i])
}
}
return closestPair
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var minDistance = abs(numbers[0] - numbers[1])
for i in 2..<numbers.count {
let distance = abs(numbers[i] - numbers[i - 1])
if distance < minDistance {
minDistance = distance
closestPair = (numbers[i - 1], numbers[i])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = numbers[1] - numbers[0]
for i in 2..<numbers.count {
let distance = numbers[i] - numbers[i - 1]
if distance < closestDistance {
closestDistance = distance
closestElements = (numbers[i - 1], numbers[i])
}
}
return closestElements
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements = (numbers[0], numbers[1])
var closestDistance = numbers[1] - numbers[0]
for i in 2..<numbers.count {
let distance = numbers[i] - numbers[i - 1]
if distance < closestDistance {
closestDistance = distance
closestElements = (numbers[i - 1], numbers[i])
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements = (numbers[0], numbers[1])
var closestDistance = numbers[1] - numbers[0]
for i in 2..<numbers.count {
let distance = numbers[i] - numbers[i - 1]
if distance < closestDistance {
closestDistance = distance
closestElements = (numbers[i - 1], numbers[i])
}
}
return closestElements
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements = (numbers[0], numbers[1])
var closestDistance = numbers[1] - numbers[0]
for i in 2..<numbers.count {
let distance = numbers[i] - numbers[i - 1]
if distance < closestDistance {
closestDistance = distance
closestElements = (numbers[i - 1], numbers[i])
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements = (numbers[0], numbers[1])
var closestDistance = numbers[1] - numbers[0]
for i in 2..<numbers.count {
let distance = numbers[i] - numbers[i - 1]
if distance < closestDistance {
closestDistance = distance
closestElements = (numbers[i - 1], numbers[i])
}
}
return closestElements
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements = (numbers[0], numbers[1])
var closestDistance = numbers[1] - numbers[0]
for i in 2..<numbers.count {
let distance = numbers[i] - numbers[i - 1]
if distance < closestDistance {
closestDistance = distance
closestElements = (numbers[i - 1], numbers[i])
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closest = (numbers[0], numbers[1])
var minDistance = abs(closest.0 - closest.1)
for i in 2..<numbers.count {
let distance = abs(numbers[i] - numbers[i - 1])
if distance < minDistance {
minDistance = distance
closest = (numbers[i - 1], numbers[i])
}
}
return closest
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closest = (numbers[0], numbers[1])
var minDistance = abs(closest.0 - closest.1)
for i in 2..<numbers.count {
let distance = abs(numbers[i] - numbers[i - 1])
if distance < minDistance {
minDistance = distance
closest = (numbers[i - 1], numbers[i])
}
}
return closest
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestPair = (numbers[0], numbers[1])
var closestDistance = numbers[1] - numbers[0]
for i in 2..<numbers.count {
let distance = numbers[i] - numbers[i - 1]
if distance < closestDistance {
closestDistance = distance
closestPair = (numbers[i - 1], numbers[i])
}
}
return closestPair
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestPair = (numbers[0], numbers[1])
var closestDistance = numbers[1] - numbers[0]
for i in 2..<numbers.count {
let distance = numbers[i] - numbers[i - 1]
if distance < closestDistance {
closestDistance = distance
closestPair = (numbers[i - 1], numbers[i])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements.")
}
var closestPair = (numbers[0], numbers[1])
var minDistance = abs(numbers[0] - numbers[1])
for i in 2..<numbers.count {
let distance = abs(numbers[i] - numbers[i - 1])
if distance < minDistance {
closestPair = (numbers[i - 1], numbers[i])
minDistance = distance
}
}
return closestPair
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements.")
}
var closestPair = (numbers[0], numbers[1])
var minDistance = abs(numbers[0] - numbers[1])
for i in 2..<numbers.count {
let distance = abs(numbers[i] - numbers[i - 1])
if distance < minDistance {
closestPair = (numbers[i - 1], numbers[i])
minDistance = distance
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements = (numbers[0], numbers[1])
var minDistance = abs(numbers[0] - numbers[1])
for i in 2..<numbers.count {
let distance = abs(numbers[i] - numbers[i - 1])
if distance < minDistance {
minDistance = distance
closestElements = (numbers[i - 1], numbers[i])
}
}
return closestElements
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)<end_of_turn>
<start_of_turn>model
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements = (numbers[0], numbers[1])
var minDistance = abs(numbers[0] - numbers[1])
for i in 2..<numbers.count {
let distance = abs(numbers[i] - numbers[i - 1])
if distance < minDistance {
minDistance = distance
closestElements = (numbers[i - 1], numbers[i])
}
}
return closestElements
}
```
// XCTAssertTrue failed
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return []
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return []
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (value: Double) -> Double in
return (value - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (value: Double) -> Double in
return (value - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (value) -> Double in
return (value - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (value) -> Double in
return (value - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return []
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return []
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return []
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (value) -> Double in
return (value - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return []
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (value) -> Double in
return (value - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return []
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return []
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]<end_of_turn>
<start_of_turn>model
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else {
return numbers
}
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { (number) -> Double in
return (number - min) / (max - min)
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.compactMap { $0 as? Int }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
guard let integer = value as? Int else { return nil }
return integer
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
guard let integer = value as? Int else { return nil }
return integer
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
guard let integer = value as? Int else { return nil }
return integer
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
guard let integer = value as? Int else { return nil }
return integer
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.map { $0 as! Int }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.map { $0 as! Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.map { $0 as! Int }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.map { $0 as! Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
guard let integer = value as? Int else { return nil }
return integer
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { value in
guard let integer = value as? Int else { return nil }
return integer
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.map { $0 as! Int }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.map { $0 as! Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.compactMap { $0 as? Int }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.compactMap { $0 as? Int }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.compactMap { $0 as? Int }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]<end_of_turn>
<start_of_turn>model
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.filter { $0 is Int }.compactMap { $0 as? Int }
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3<end_of_turn>
<start_of_turn>model
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n
while divisor > 1 {
divisor -= 1
if n % divisor == 0 {
return divisor
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5<end_of_turn>
<start_of_turn>model
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n / 2
while divisor > 1 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
```
func factorize(n: Int) -> [Int] {
var number = n
var factors = [Int]()
var divisor = 2
while number > 1 {
var power = 0
while number % divisor == 0 {
power += 1
number /= divisor
}
if power > 0 {
factors.append(divisor)
}
divisor += 1
}
return factors
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factors = [Int]()
var divisor = 2
while number > 1 {
var power = 0
while number % divisor == 0 {
power += 1
number /= divisor
}
if power > 0 {
factors.append(divisor)
}
divisor += 1
}
return factors
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var number = n
var factor = 2
var factors: [Int] = []
while factor * factor <= number {
while number % factor == 0 {
factors.append(factor)
number /= factor
}
factor += 1
}
if number > 1 {
factors.append(number)
}
return factors
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factor = 2
var factors: [Int] = []
while factor * factor <= number {
while number % factor == 0 {
factors.append(factor)
number /= factor
}
factor += 1
}
if number > 1 {
factors.append(number)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var number = n
var factors: [Int] = []
var divisor = 2
while number > 1 {
var exponent = 0
while number % divisor == 0 {
exponent += 1
number /= divisor
}
if exponent > 0 {
factors.append(divisor)
}
divisor = (divisor == 2) ? 3 : divisor + 2
}
return factors
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factors: [Int] = []
var divisor = 2
while number > 1 {
var exponent = 0
while number % divisor == 0 {
exponent += 1
number /= divisor
}
if exponent > 0 {
factors.append(divisor)
}
divisor = (divisor == 2) ? 3 : divisor + 2
}
return factors
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var number = n
var factor = 2
var result: [Int] = []
while number > 1 {
var count = 0
while number % factor == 0 {
count += 1
number /= factor
}
if count > 0 {
result.append(factor)
}
factor += 1
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factor = 2
var result: [Int] = []
while number > 1 {
var count = 0
while number % factor == 0 {
count += 1
number /= factor
}
if count > 0 {
result.append(factor)
}
factor += 1
}
return result
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var number = n
var factors: [Int] = []
var divisor = 2
while number > 1 {
var exponent = 0
while number % divisor == 0 {
exponent += 1
number /= divisor
}
if exponent > 0 {
factors.append(divisor)
}
divisor += 1
}
return factors
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factors: [Int] = []
var divisor = 2
while number > 1 {
var exponent = 0
while number % divisor == 0 {
exponent += 1
number /= divisor
}
if exponent > 0 {
factors.append(divisor)
}
divisor += 1
}
return factors
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var number = n
var factor = 2
var factors: [Int] = []
while factor * factor <= number {
var count = 0
while number % factor == 0 {
count += 1
number /= factor
}
if count > 0 {
factors.append(factor)
}
factor += 1
}
if number > 1 {
factors.append(number)
}
return factors
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factor = 2
var factors: [Int] = []
while factor * factor <= number {
var count = 0
while number % factor == 0 {
count += 1
number /= factor
}
if count > 0 {
factors.append(factor)
}
factor += 1
}
if number > 1 {
factors.append(number)
}
return factors
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var number = n
var factors: [Int] = []
var divisor = 2
while number > 1 {
var exponent = 0
while number % divisor == 0 {
exponent += 1
number /= divisor
}
if exponent > 0 {
factors.append(divisor)
}
divisor += 1
}
return factors
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factors: [Int] = []
var divisor = 2
while number > 1 {
var exponent = 0
while number % divisor == 0 {
exponent += 1
number /= divisor
}
if exponent > 0 {
factors.append(divisor)
}
divisor += 1
}
return factors
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var number = n
var factors = [Int]()
var divisor = 2
while divisor * divisor <= number {
while number % divisor == 0 {
factors.append(divisor)
number /= divisor
}
divisor += 1
}
if number > 1 {
factors.append(number)
}
return factors
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factors = [Int]()
var divisor = 2
while divisor * divisor <= number {
while number % divisor == 0 {
factors.append(divisor)
number /= divisor
}
divisor += 1
}
if number > 1 {
factors.append(number)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var number = n
var factors: [Int] = []
var divisor = 2
while number > 1 {
var exponent = 0
while number % divisor == 0 {
exponent += 1
number /= divisor
}
if exponent > 0 {
factors.append(divisor)
}
divisor += 1
}
return factors
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factors: [Int] = []
var divisor = 2
while number > 1 {
var exponent = 0
while number % divisor == 0 {
exponent += 1
number /= divisor
}
if exponent > 0 {
factors.append(divisor)
}
divisor += 1
}
return factors
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var number = n
var factor = 2
var result: [Int] = []
while number > 1 {
var count = 0
while number % factor == 0 {
count += 1
number /= factor
}
if count > 0 {
result.append(factor)
}
factor += 1
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func factorize(n: Int) -> [Int] {
var number = n
var factor = 2
var result: [Int] = []
while number > 1 {
var count = 0
while number % factor == 0 {
count += 1
number /= factor
}
if count > 0 {
result.append(factor)
}
factor += 1
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
return numbers.filter {
if seen.contains($0) {
return false
} else {
seen.insert($0)
return true
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
return numbers.filter {
if seen.contains($0) {
return false
} else {
seen.insert($0)
return true
}
}
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
return numbers.filter { seen.insert($0).inserted }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
return numbers.filter { seen.insert($0).inserted }
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var seen = Set<Int>()
var result = [Int]()
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func flipCase(string: String) -> String {
return string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
}.joined()
}
```
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased()) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? $0.uppercased() : $0.lowercased()
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? $0.uppercased() : $0.lowercased()
})
}
```
return String(string.map { // no exact matches in call to initializer
func flipCase(string: String) -> String {
return string.map { char in
if char.isLowercase {
return char.uppercased()
} else if char.isUppercase {
return char.lowercased()
} else {
return String(char)
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return string.map { char in
if char.isLowercase {
return char.uppercased()
} else if char.isUppercase {
return char.lowercased()
} else {
return String(char)
}
}.joined()
}
```
func flipCase(string: String) -> String {
return string.map { char in
if char.isLowercase {
return char.uppercased()
} else if char.isUppercase {
return char.lowercased()
} else {
return char
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return string.map { char in
if char.isLowercase {
return char.uppercased()
} else if char.isUppercase {
return char.lowercased()
} else {
return char
}
}.joined()
}
```
return char // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? $0.uppercased() : $0.lowercased()
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? $0.uppercased() : $0.lowercased()
})
}
```
return String(string.map { // no exact matches in call to initializer
func flipCase(string: String) -> String {
return string.map {
switch $0 {
case let c where c.isLowercase:
return c.uppercased()
case let c where c.isUppercase:
return c.lowercased()
default:
return String($0)
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return string.map {
switch $0 {
case let c where c.isLowercase:
return c.uppercased()
case let c where c.isUppercase:
return c.lowercased()
default:
return String($0)
}
}.joined()
}
```
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
})
}
```
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
})
}
```
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
})
}
```
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"<end_of_turn>
<start_of_turn>model
```swift
func flipCase(string: String) -> String {
return String(string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
})
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"<end_of_turn>
<start_of_turn>model
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]<end_of_turn>
<start_of_turn>model
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]<end_of_turn>
<start_of_turn>model
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false<end_of_turn>
<start_of_turn>model
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func sortThird(l: [Int]) -> [Int] {
var l1 = l
var l2 = l
l2.sort()
for i in 0..<l.count {
if i % 3 == 0 {
l1[i] = l2[i]
}
}
return l1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
var l2 = l
l2.sort()
for i in 0..<l.count {
if i % 3 == 0 {
l1[i] = l2[i]
}
}
return l1
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort()
var l2 = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 3 == 0 {
l2[i] = l1[i]
} else {
l2[i] = l[i]
}
}
return l2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort()
var l2 = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 3 == 0 {
l2[i] = l1[i]
} else {
l2[i] = l[i]
}
}
return l2
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l1 = l
for i in 0..<l.count {
if i % 3 == 0 {
l1.sort(at: i, with: { $0 < $1 })
}
}
return l1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
for i in 0..<l.count {
if i % 3 == 0 {
l1.sort(at: i, with: { $0 < $1 })
}
}
return l1
}
```
l1.sort(at: i, with: { $0 < $1 }) // argument passed to call that takes no arguments
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort { $0 % 3 == 0 && $1 % 3 != 0 }
return l1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort { $0 % 3 == 0 && $1 % 3 != 0 }
return l1
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort()
return l.enumerated().map { i, x in
i % 3 == 0 ? l1[i] : x
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort()
return l.enumerated().map { i, x in
i % 3 == 0 ? l1[i] : x
}
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l1 = l
for i in 0..<l.count {
if i % 3 == 0 {
l1.sort(by: <)
}
}
return l1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
for i in 0..<l.count {
if i % 3 == 0 {
l1.sort(by: <)
}
}
return l1
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort(by: <)
var l2 = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 3 == 0 {
l2[i] = l1[i]
} else {
l2[i] = l[i]
}
}
return l2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort(by: <)
var l2 = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 3 == 0 {
l2[i] = l1[i]
} else {
l2[i] = l[i]
}
}
return l2
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort(by: <)
var l2 = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 3 == 0 {
l2[i] = l1[i]
} else {
l2[i] = l[i]
}
}
return l2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort(by: <)
var l2 = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 3 == 0 {
l2[i] = l1[i]
} else {
l2[i] = l[i]
}
}
return l2
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l1 = l
for i in 0..<l.count {
if i % 3 == 0 {
l1.remove(at: i)
}
}
l1.sort()
var l2 = l
for i in 0..<l.count {
if i % 3 == 0 {
l2[i] = l1.removeFirst()
}
}
return l2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
for i in 0..<l.count {
if i % 3 == 0 {
l1.remove(at: i)
}
}
l1.sort()
var l2 = l
for i in 0..<l.count {
if i % 3 == 0 {
l2[i] = l1.removeFirst()
}
}
return l2
}
```
// Fatal error: Index out of range
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort { $0 % 3 == 0 && $1 % 3 != 0 }
for i in 0..<l.count {
if i % 3 == 0 {
l1[i] = l[i]
}
}
return l1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]<end_of_turn>
<start_of_turn>model
```swift
func sortThird(l: [Int]) -> [Int] {
var l1 = l
l1.sort { $0 % 3 == 0 && $1 % 3 != 0 }
for i in 0..<l.count {
if i % 3 == 0 {
l1[i] = l[i]
}
}
return l1
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]<end_of_turn>
<start_of_turn>model
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
var max = Int.min
for num in l {
if num > max {
max = num
}
}
return max
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
var max = Int.min
for num in l {
if num > max {
max = num
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123<end_of_turn>
<start_of_turn>model
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in stride(from: 0, to: n, by: 11) {
while i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
if digits.contains(7) {
count += 1
}
i += 11
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in stride(from: 0, to: n, by: 11) {
while i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
if digits.contains(7) {
count += 1
}
i += 11
}
}
return count
}
```
i += 11 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in stride(from: 0, through: n - 1, by: 11) {
while i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
if digits.contains(7) {
count += 1
}
i += 11
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in stride(from: 0, through: n - 1, by: 11) {
while i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
if digits.contains(7) {
count += 1
}
i += 11
}
}
return count
}
```
i += 11 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if (i % 11 == 0 || i % 13 == 0) && String(i).contains("7") {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if (i % 11 == 0 || i % 13 == 0) && String(i).contains("7") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { String($0) }
count += digits.filter { $0 == "7" }.count
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { String($0) }
count += digits.filter { $0 == "7" }.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
count += digits.filter { $0 == 7 }.count
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
count += digits.filter { $0 == 7 }.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { String($0) }
count += digits.filter { $0 == "7" }.count
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { String($0) }
count += digits.filter { $0 == "7" }.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let string = String(i)
count += string.filter { $0 == "7" }.count
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let string = String(i)
count += string.filter { $0 == "7" }.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
for digit in digits {
if digit == 7 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
for digit in digits {
if digit == 7 {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in stride(from: 0, through: n - 1, by: 11) {
let digit = String(i).filter { $0 == "7" }.count
count += digit
}
for i in stride(from: 0, through: n - 1, by: 13) {
let digit = String(i).filter { $0 == "7" }.count
count += digit
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in stride(from: 0, through: n - 1, by: 11) {
let digit = String(i).filter { $0 == "7" }.count
count += digit
}
for i in stride(from: 0, through: n - 1, by: 13) {
let digit = String(i).filter { $0 == "7" }.count
count += digit
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
count += digits.filter { $0 == 7 }.count
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3<end_of_turn>
<start_of_turn>model
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i).map { Int(String($0))! }
count += digits.filter { $0 == 7 }.count
}
}
return count
}
```
func sortEven(l: [Int]) -> [Int] {
var l1 = l
l1.sort { $0 % 2 == 0 && $1 % 2 == 1 }
return l1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var l1 = l
l1.sort { $0 % 2 == 0 && $1 % 2 == 1 }
return l1
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var result = l
for i in stride(from: 0, to: l.count, by: 2) {
result[i] = lEven.removeFirst()
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var result = l
for i in stride(from: 0, to: l.count, by: 2) {
result[i] = lEven.removeFirst()
}
return result
}
```
// Fatal error: Can't remove first element from an empty collection
func sortEven(l: [Int]) -> [Int] {
var l1 = l
var l2 = l
l2.sort(by: >)
for i in stride(from: 0, to: l.count, by: 2) {
l1[i] = l2[i/2]
}
return l1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var l1 = l
var l2 = l
l2.sort(by: >)
for i in stride(from: 0, to: l.count, by: 2) {
l1[i] = l2[i/2]
}
return l1
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var lOdd = l.filter { $0 % 2 != 0 }
var result = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 2 == 0 {
result[i] = lEven.removeFirst()
} else {
result[i] = lOdd.removeFirst()
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var lOdd = l.filter { $0 % 2 != 0 }
var result = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 2 == 0 {
result[i] = lEven.removeFirst()
} else {
result[i] = lOdd.removeFirst()
}
}
return result
}
```
// Fatal error: Can't remove first element from an empty collection
func sortEven(l: [Int]) -> [Int] {
var l1 = l
var l2 = l.sorted()
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l2[i])
} else {
result.append(l1[i])
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var l1 = l
var l2 = l.sorted()
var result = [Int]()
for i in 0..<l.count {
if i % 2 == 0 {
result.append(l2[i])
} else {
result.append(l1[i])
}
}
return result
}
```
var l1 = l // variable 'l1' was never mutated; consider changing to 'let' constant
var l2 = l.sorted() // variable 'l2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var lOdd = l.filter { $0 % 2 != 0 }
return lOdd + lEven
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var lOdd = l.filter { $0 % 2 != 0 }
return lOdd + lEven
}
```
var lEven = l.filter { $0 % 2 == 0 }.sorted() // variable 'lEven' was never mutated; consider changing to 'let' constant
var lOdd = l.filter { $0 % 2 != 0 } // variable 'lOdd' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var result = l
for i in stride(from: 0, to: l.count, by: 2) {
result[i] = lEven.removeFirst()
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var result = l
for i in stride(from: 0, to: l.count, by: 2) {
result[i] = lEven.removeFirst()
}
return result
}
```
// Fatal error: Can't remove first element from an empty collection
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var lOdd = l.filter { $0 % 2 != 0 }
var result = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 2 == 0 {
result[i] = lEven.removeFirst()
} else {
result[i] = lOdd.removeFirst()
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var lOdd = l.filter { $0 % 2 != 0 }
var result = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 2 == 0 {
result[i] = lEven.removeFirst()
} else {
result[i] = lOdd.removeFirst()
}
}
return result
}
```
// Fatal error: Can't remove first element from an empty collection
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var lOdd = l.filter { $0 % 2 != 0 }
var result = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 2 == 0 {
result[i] = lEven.removeFirst()
} else {
result[i] = lOdd.removeFirst()
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var lOdd = l.filter { $0 % 2 != 0 }
var result = [Int](repeating: 0, count: l.count)
for i in 0..<l.count {
if i % 2 == 0 {
result[i] = lEven.removeFirst()
} else {
result[i] = lOdd.removeFirst()
}
}
return result
}
```
// Fatal error: Can't remove first element from an empty collection
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var result = l
for i in 0..<l.count {
if l[i] % 2 == 0 {
result[i] = lEven.removeFirst()
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortEven(l: [Int]) -> [Int] {
var lEven = l.filter { $0 % 2 == 0 }.sorted()
var result = l
for i in 0..<l.count {
if l[i] % 2 == 0 {
result[i] = lEven.removeFirst()
}
}
return result
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var count = 3
while count <= n {
if isPrime(number: b) {
if count == n {
return b
}
count += 1
}
(a, b) = (b, a + b)
}
return -1
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var count = 3
while count <= n {
if isPrime(number: b) {
if count == n {
return b
}
count += 1
}
(a, b) = (b, a + b)
}
return -1
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
var i = 2
while i * i <= number {
if number % i == 0 {
return false
}
i += 1
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = [Int]()
fib.append(0)
fib.append(1)
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
while !isPrime(fib[n - 1]) {
fib.removeLast()
}
return fib[n - 1]
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
return false
}
divisor += 1
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var fib = [Int]()
fib.append(0)
fib.append(1)
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
while !isPrime(fib[n - 1]) {
fib.removeLast()
}
return fib[n - 1]
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
return false
}
divisor += 1
}
return true
}
```
// Fatal error: Index out of range
func primeFib(n: Int) -> Int {
var fib = [Int: Int]()
fib[1] = 0
fib[2] = 1
var i = 3
var result = 0
while fib.count < n {
fib[i] = fib[i - 1]! + fib[i - 2]!
let number = fib[i]!
var isPrime = true
for j in 2..<number {
if number % j == 0 {
isPrime = false
break
}
}
if isPrime {
result = number
}
i += 1
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var fib = [Int: Int]()
fib[1] = 0
fib[2] = 1
var i = 3
var result = 0
while fib.count < n {
fib[i] = fib[i - 1]! + fib[i - 2]!
let number = fib[i]!
var isPrime = true
for j in 2..<number {
if number % j == 0 {
isPrime = false
break
}
}
if isPrime {
result = number
}
i += 1
}
return result
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var c = 3
var count = 2
while count < n {
if isPrime(c) {
(a, b) = (b, c)
count += 1
}
c = a + b
}
return b
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var c = 3
var count = 2
while count < n {
if isPrime(c) {
(a, b) = (b, c)
count += 1
}
c = a + b
}
return b
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var count = 2
while count < n {
let c = a + b
a = b
b = c
if isPrime(c) {
count += 1
}
}
return b
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var count = 2
while count < n {
let c = a + b
a = b
b = c
if isPrime(c) {
count += 1
}
}
return b
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = [Int]()
fib.append(0)
fib.append(1)
for i in 2..<n {
fib.append(fib[i - 1] + fib[i - 2])
}
var result = 0
var count = 0
while count < n {
var isPrime = true
for j in 2..<fib[count] {
if fib[count] % j == 0 {
isPrime = false
break
}
}
if isPrime {
result = fib[count]
}
count += 1
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var fib = [Int]()
fib.append(0)
fib.append(1)
for i in 2..<n {
fib.append(fib[i - 1] + fib[i - 2])
}
var result = 0
var count = 0
while count < n {
var isPrime = true
for j in 2..<fib[count] {
if fib[count] % j == 0 {
isPrime = false
break
}
}
if isPrime {
result = fib[count]
}
count += 1
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeFib(n: Int) -> Int {
var fib = [Int]()
fib.append(0)
fib.append(1)
for i in 2..<n {
fib.append(fib[i - 1] + fib[i - 2])
while !isPrime(fib[i]) {
fib.append(fib[i] + fib[i - 1])
}
}
return fib[n - 1]
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var fib = [Int]()
fib.append(0)
fib.append(1)
for i in 2..<n {
fib.append(fib[i - 1] + fib[i - 2])
while !isPrime(fib[i]) {
fib.append(fib[i] + fib[i - 1])
}
}
return fib[n - 1]
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var c = 3
var count = 2
while count < n {
if isPrime(c) {
(a, b) = (b, c)
count += 1
}
c = a + b
}
return c
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var c = 3
var count = 2
while count < n {
if isPrime(c) {
(a, b) = (b, c)
count += 1
}
c = a + b
}
return c
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var c = 3
var count = 3
while count <= n {
if isPrime(c) {
if count == n {
return c
}
a = b
b = c
c = a + b
count += 1
} else {
c = a + b
a = b
b = c
count += 1
}
}
return c
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var a = 1
var b = 2
var c = 3
var count = 3
while count <= n {
if isPrime(c) {
if count == n {
return c
}
a = b
b = c
c = a + b
count += 1
} else {
c = a + b
a = b
b = c
count += 1
}
}
return c
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = [Int](repeating: 0, count: n + 1)
fib[1] = 2
var i = 2
var j = 2
var count = 1
while count < n {
if isPrime(fib[i]) {
fib[i + 1] = fib[i] + fib[i - 1]
i += 1
count += 1
} else {
j += 1
fib[i + 1] = fib[i] + fib[i - 1]
i += 1
}
}
return fib[n]
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89<end_of_turn>
<start_of_turn>model
```swift
func primeFib(n: Int) -> Int {
var fib = [Int](repeating: 0, count: n + 1)
fib[1] = 2
var i = 2
var j = 2
var count = 1
while count < n {
if isPrime(fib[i]) {
fib[i + 1] = fib[i] + fib[i - 1]
i += 1
count += 1
} else {
j += 1
fib[i + 1] = fib[i] + fib[i - 1]
i += 1
}
}
return fib[n]
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Index out of range
func triplesSumToZero(l: [Int]) -> Bool {
guard l.count >= 3 else { return false }
l.sort()
for i in 0..<l.count - 2 {
var j = i + 1
var k = l.count - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
guard l.count >= 3 else { return false }
l.sort()
for i in 0..<l.count - 2 {
var j = i + 1
var k = l.count - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
```
l.sort() // cannot use mutating member on immutable value: 'l' is a 'let' constant
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
l.sort()
for i in 0..<n-2 {
var j = i + 1
var k = n - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
l.sort()
for i in 0..<n-2 {
var j = i + 1
var k = n - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
```
l.sort() // cannot use mutating member on immutable value: 'l' is a 'let' constant
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
l.sort()
for i in 0..<n-2 {
var j = i + 1
var k = n - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
l.sort()
for i in 0..<n-2 {
var j = i + 1
var k = n - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
```
l.sort() // cannot use mutating member on immutable value: 'l' is a 'let' constant
func triplesSumToZero(l: [Int]) -> Bool {
guard l.count >= 3 else { return false }
let mut seen = Set<Int>()
for i in 0..<l.count - 2 {
for j in i + 1..<l.count - 1 {
let target = -l[i] - l[j]
if seen.contains(target) {
return true
}
seen.insert(l[j])
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
guard l.count >= 3 else { return false }
let mut seen = Set<Int>()
for i in 0..<l.count - 2 {
for j in i + 1..<l.count - 1 {
let target = -l[i] - l[j]
if seen.contains(target) {
return true
}
seen.insert(l[j])
}
}
return false
}
```
let mut seen = Set<Int>() // found an unexpected second identifier in constant declaration; is there an accidental break?
if seen.contains(target) { // cannot find 'seen' in scope
seen.insert(l[j]) // cannot find 'seen' in scope
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
l.sort()
for i in 0..<n - 2 {
var j = i + 1
var k = n - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
l.sort()
for i in 0..<n - 2 {
var j = i + 1
var k = n - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
```
l.sort() // cannot use mutating member on immutable value: 'l' is a 'let' constant
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
l.sort()
for i in 0..<n - 2 {
var j = i + 1
var k = n - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
let n = l.count
if n < 3 {
return false
}
l.sort()
for i in 0..<n - 2 {
var j = i + 1
var k = n - 1
while j < k {
let sum = l[i] + l[j] + l[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
```
l.sort() // cannot use mutating member on immutable value: 'l' is a 'let' constant
func triplesSumToZero(l: [Int]) -> Bool {
guard l.count >= 3 else { return false }
let sortedL = l.sorted()
for i in 0..<sortedL.count - 2 {
var j = i + 1
var k = sortedL.count - 1
while j < k {
let sum = sortedL[i] + sortedL[j] + sortedL[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
guard l.count >= 3 else { return false }
let sortedL = l.sorted()
for i in 0..<sortedL.count - 2 {
var j = i + 1
var k = sortedL.count - 1
while j < k {
let sum = sortedL[i] + sortedL[j] + sortedL[k]
if sum == 0 {
return true
} else if sum < 0 {
j += 1
} else {
k -= 1
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
let set = Set(l)
if set.count < 3 {
return false
}
for i in 0..<l.count {
for j in i+1..<l.count {
let target = -l[i] - l[j]
if set.contains(target) && target != l[i] && target != l[j] {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
let set = Set(l)
if set.count < 3 {
return false
}
for i in 0..<l.count {
for j in i+1..<l.count {
let target = -l[i] - l[j]
if set.contains(target) && target != l[i] && target != l[j] {
return true
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
let sorted = l.sorted()
for i in 0..<sorted.count - 2 {
var left = i + 1
var right = sorted.count - 1
while left < right {
let sum = sorted[i] + sorted[left] + sorted[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
let sorted = l.sorted()
for i in 0..<sorted.count - 2 {
var left = i + 1
var right = sorted.count - 1
while left < right {
let sum = sorted[i] + sorted[left] + sorted[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
let set = Set(l)
if set.count < 3 {
return false
}
for i in 0..<l.count {
for j in i+1..<l.count {
let target = -l[i] - l[j]
if set.contains(target) && target != l[i] && target != l[j] {
return true
}
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func triplesSumToZero(l: [Int]) -> Bool {
let set = Set(l)
if set.count < 3 {
return false
}
for i in 0..<l.count {
for j in i+1..<l.count {
let target = -l[i] - l[j]
if set.contains(target) && target != l[i] && target != l[j] {
return true
}
}
}
return false
}
```
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: n - 1, count: n)
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftMostCar = leftCars.removeFirst()
let rightMostCar = rightCars.removeLast()
if leftMostCar == rightMostCar {
collisions += 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: n - 1, count: n)
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftMostCar = leftCars.removeFirst()
let rightMostCar = rightCars.removeLast()
if leftMostCar == rightMostCar {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: n - 1, count: n)
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: n - 1, count: n)
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: n - 1, count: n)
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: n - 1, count: n)
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var leftIndex = 0
var rightIndex = n - 1
while leftIndex < n && rightIndex >= 0 {
if leftCars[leftIndex] == rightCars[rightIndex] {
collisions += 1
leftIndex += 1
rightIndex -= 1
} else if leftCars[leftIndex] < rightCars[rightIndex] {
leftIndex += 1
} else {
rightIndex -= 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var leftIndex = 0
var rightIndex = n - 1
while leftIndex < n && rightIndex >= 0 {
if leftCars[leftIndex] == rightCars[rightIndex] {
collisions += 1
leftIndex += 1
rightIndex -= 1
} else if leftCars[leftIndex] < rightCars[rightIndex] {
leftIndex += 1
} else {
rightIndex -= 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftCars[i] = i + 1
rightCars[i] = n - i
}
var leftIndex = 0
var rightIndex = n - 1
while leftIndex < n && rightIndex >= 0 {
if leftCars[leftIndex] == rightCars[rightIndex] {
collisions += 1
leftIndex += 1
rightIndex -= 1
} else if leftCars[leftIndex] < rightCars[rightIndex] {
leftIndex += 1
} else {
rightIndex -= 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftCars[i] = i + 1
rightCars[i] = n - i
}
var leftIndex = 0
var rightIndex = n - 1
while leftIndex < n && rightIndex >= 0 {
if leftCars[leftIndex] == rightCars[rightIndex] {
collisions += 1
leftIndex += 1
rightIndex -= 1
} else if leftCars[leftIndex] < rightCars[rightIndex] {
leftIndex += 1
} else {
rightIndex -= 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: n - 1, count: n)
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: n - 1, count: n)
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.<end_of_turn>
<start_of_turn>model
```swift
func carRaceCollision(n: Int) -> Int {
var leftCars = Array(repeating: 0, count: n)
var rightCars = Array(repeating: 0, count: n)
for i in 0..<n {
leftCars[i] = i
rightCars[i] = n - i - 1
}
var collisions = 0
while leftCars.count > 0 && rightCars.count > 0 {
let leftCar = leftCars.removeFirst()
let rightCar = rightCars.removeLast()
if leftCar == rightCar {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]<end_of_turn>
<start_of_turn>model
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false<end_of_turn>
<start_of_turn>model
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = "\(remainder)" + result
number /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = "\(remainder)" + result
number /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = "\(remainder)" + result
number /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = "\(remainder)" + result
number /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = "\(remainder)" + result
number /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = "\(remainder)" + result
number /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = "\(remainder)" + result
number /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
let remainder = number % base
result = "\(remainder)" + result
number /= base
}
return result.isEmpty ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"<end_of_turn>
<start_of_turn>model
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
let remainder = num % base
result = "\(remainder)" + result
num /= base
}
return result.isEmpty ? "0" : result
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
let e = a + b + c + d
a = b
b = c
c = d
d = e
}
return d
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
let e = a + b + c + d
a = b
b = c
c = d
d = e
}
return d
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
if n <= 1 {
return 0
} else if n <= 3 {
return 2
}
var a = 0
var b = 2
var c = 0
var d = 0
for _ in 4...n {
c = b + a + d
d = c - a
a = b
b = c
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
if n <= 1 {
return 0
} else if n <= 3 {
return 2
}
var a = 0
var b = 2
var c = 0
var d = 0
for _ in 4...n {
c = b + a + d
d = c - a
a = b
b = c
}
return c
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
let next = a + b + c + d
d = c
c = b
b = a
a = next
}
return a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
let next = a + b + c + d
d = c
c = b
b = a
a = next
}
return a
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
guard n > 3 else {
return [0, 0, 2, 0][n]
}
var fib = [0, 0, 2, 0]
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
guard n > 3 else {
return [0, 0, 2, 0][n]
}
var fib = [0, 0, 2, 0]
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
let next = a + b + c + d
d = c
c = b
b = a
a = next
}
return a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
let next = a + b + c + d
d = c
c = b
b = a
a = next
}
return a
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
guard n > 3 else {
return [0, 0, 2, 0][n]
}
var arr = [0, 0, 2, 0]
for i in 4...n {
arr.append(arr[i - 1] + arr[i - 2] + arr[i - 3] + arr[i - 4])
}
return arr[n]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
guard n > 3 else {
return [0, 0, 2, 0][n]
}
var arr = [0, 0, 2, 0]
for i in 4...n {
arr.append(arr[i - 1] + arr[i - 2] + arr[i - 3] + arr[i - 4])
}
return arr[n]
}
```
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
let temp = a + b + c + d
a = b
b = c
c = d
d = temp
}
return d
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 0..<n {
let temp = a + b + c + d
a = b
b = c
c = d
d = temp
}
return d
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
guard n > 3 else { return n == 0 ? 0 : 2 }
var a = 0, b = 0, c = 2, d = 0
for _ in 4...n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
guard n > 3 else { return n == 0 ? 0 : 2 }
var a = 0, b = 0, c = 2, d = 0
for _ in 4...n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
```
func fib4(n: Int) -> Int {
guard n > 3 else {
return [0, 0, 2, 0][n]
}
var arr = [0, 0, 2, 0]
for i in 4...n {
arr.append(arr[i - 1] + arr[i - 2] + arr[i - 3] + arr[i - 4])
}
return arr[n]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14<end_of_turn>
<start_of_turn>model
```swift
func fib4(n: Int) -> Int {
guard n > 3 else {
return [0, 0, 2, 0][n]
}
var arr = [0, 0, 2, 0]
for i in 4...n {
arr.append(arr[i - 1] + arr[i - 2] + arr[i - 3] + arr[i - 4])
}
return arr[n]
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double((sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2)
} else {
return Double(sortedArray[count / 2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double((sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2)
} else {
return Double(sortedArray[count / 2])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double((sorted[count/2 - 1] + sorted[count/2]) / 2)
} else {
return Double(sorted[count/2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double((sorted[count/2 - 1] + sorted[count/2]) / 2)
} else {
return Double(sorted[count/2])
}
}
```
// XCTAssertTrue failed
func median(l: [Int]) -> Double {
var sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double((sorted[count/2] + sorted[count/2 - 1])) / 2.0
} else {
return Double(sorted[count/2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
var sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double((sorted[count/2] + sorted[count/2 - 1])) / 2.0
} else {
return Double(sorted[count/2])
}
}
```
var sorted = l.sorted() // variable 'sorted' was never mutated; consider changing to 'let' constant
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double((sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2)
} else {
return Double(sortedArray[count / 2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double((sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2)
} else {
return Double(sortedArray[count / 2])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double((sortedArray[count / 2] + sortedArray[count / 2 - 1]) / 2)
} else {
return Double(sortedArray[count / 2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
var sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double((sortedArray[count / 2] + sortedArray[count / 2 - 1]) / 2)
} else {
return Double(sortedArray[count / 2])
}
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0<end_of_turn>
<start_of_turn>model
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let textReversed = String(textLowercased.reversed())
return textLowercased == textReversed
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let textReversed = String(textLowercased.reversed())
return textLowercased == textReversed
}
```
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased()
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased()
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let textReversed = String(textLowercased.reversed())
return textLowercased == textReversed
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let textReversed = String(textLowercased.reversed())
return textLowercased == textReversed
}
```
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased()
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased()
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased().replacingOccurrences(of: "\\s+", with: "", options: .regularExpression)
let textReversed = String(text.reversed())
return text == textReversed
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased().replacingOccurrences(of: "\\s+", with: "", options: .regularExpression)
let textReversed = String(text.reversed())
return text == textReversed
}
```
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let reversedText = String(textLowercased.reversed())
return textLowercased == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let textReversed = String(textLowercased.reversed())
return textLowercased == textReversed
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let textLowercased = text.lowercased().replacingOccurrences(of: " ", with: "")
let textReversed = String(textLowercased.reversed())
return textLowercased == textReversed
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased().replacingOccurrences(of: " ", with: "")
return text == String(text.reversed())
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false<end_of_turn>
<start_of_turn>model
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased().replacingOccurrences(of: " ", with: "")
return text == String(text.reversed())
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n >>= 1
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n >>= 1
}
return result
}
```
// Fatal error: Division by zero in remainder operation
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * Int(pow(Double(2), Double(p - 2)))) % p
}
n >>= 1
p = p % n
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * Int(pow(Double(2), Double(p - 2)))) % p
}
n >>= 1
p = p % n
}
return result
}
```
p = p % n // cannot assign to value: 'p' is a 'let' constant
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n >>= 1
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n >>= 1
}
return result
}
```
// Fatal error: Division by zero in remainder operation
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * 2) % p
}
n >>= 1
2 = 2 % p
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * 2) % p
}
n >>= 1
2 = 2 % p
}
return result
}
```
2 = 2 % p // cannot assign to value: literals are not mutable
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * 2) % p
}
n >>= 1
let square = 2 * 2 % p
p = square % p
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * 2) % p
}
n >>= 1
let square = 2 * 2 % p
p = square % p
}
return result
}
```
p = square % p // cannot assign to value: 'p' is a 'let' constant
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n /= 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n /= 2
}
return result
}
```
// Fatal error: Division by zero in remainder operation
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * 2) % p
}
n >>= 1
if n > 0 {
2 = (2 * 2) % p
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * 2) % p
}
n >>= 1
if n > 0 {
2 = (2 * 2) % p
}
}
return result
}
```
2 = (2 * 2) % p // cannot assign to value: literals are not mutable
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n /= 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n /= 2
}
return result
}
```
// Fatal error: Division by zero in remainder operation
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n /= 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n /= 2
}
return result
}
```
// Fatal error: Division by zero in remainder operation
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n >>= 1
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1<end_of_turn>
<start_of_turn>model
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var n = n
var p = p
while n > 0 {
if n % 2 == 1 {
result = (result * p) % p
}
p = (p * p) % p
n >>= 1
}
return result
}
```
// Fatal error: Division by zero in remainder operation
func removeVowels(text: String) -> String {
return text.filter { !$0.isVowel }
}
extension Character {
var isVowel: Bool {
switch self.lowercase {
case "a", "e", "i", "o", "u":
return true
default:
return false
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
return text.filter { !$0.isVowel }
}
extension Character {
var isVowel: Bool {
switch self.lowercase {
case "a", "e", "i", "o", "u":
return true
default:
return false
}
}
}
```
switch self.lowercase { // value of type 'Character' has no member 'lowercase'
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
return text.filter { !vowels.contains($0) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
return text.filter { !$0.isVowel }
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"].contains(String(self))
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
return text.filter { !$0.isVowel }
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"].contains(String(self))
}
}
```
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
return text.filter { !vowels.contains($0) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
return text.filter { !vowels.contains($0) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
return text.filter { !$0.isVowel }
}
extension Character {
var isVowel: Bool {
switch self {
case "a", "e", "i", "o", "u", "A", "E", "I", "O", "U":
return true
default:
return false
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
return text.filter { !$0.isVowel }
}
extension Character {
var isVowel: Bool {
switch self {
case "a", "e", "i", "o", "u", "A", "E", "I", "O", "U":
return true
default:
return false
}
}
}
```
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
return String(text.filter { !vowels.contains($0) })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
return String(text.filter { !vowels.contains($0) })
}
```
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"<end_of_turn>
<start_of_turn>model
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false<end_of_turn>
<start_of_turn>model
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12<end_of_turn>
<start_of_turn>model
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func sameChars(s0: String, s1: String) -> Bool {
var dict = [Character: Int]()
for char in s0.lowercased() {
dict[char, default: 0] += 1
}
for char in s1.lowercased() {
if let count = dict[char] {
dict[char] = count - 1
} else {
return false
}
}
for count in dict.values {
if count != 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
var dict = [Character: Int]()
for char in s0.lowercased() {
dict[char, default: 0] += 1
}
for char in s1.lowercased() {
if let count = dict[char] {
dict[char] = count - 1
} else {
return false
}
}
for count in dict.values {
if count != 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var dict = [Character: Int]()
for char in s0 {
dict[char, default: 0] += 1
}
for char in s1 {
if let count = dict[char] {
if count == 0 {
return false
} else {
dict[char] = count - 1
}
} else {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
var dict = [Character: Int]()
for char in s0 {
dict[char, default: 0] += 1
}
for char in s1 {
if let count = dict[char] {
if count == 0 {
return false
} else {
dict[char] = count - 1
}
} else {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
if s0.count != s1.count {
return false
}
var chars = [Character: Int]()
for char in s0 {
chars[char, default: 0] += 1
}
for char in s1 {
if let count = chars[char], count == 0 {
return false
}
chars[char] = count - 1
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
if s0.count != s1.count {
return false
}
var chars = [Character: Int]()
for char in s0 {
chars[char, default: 0] += 1
}
for char in s1 {
if let count = chars[char], count == 0 {
return false
}
chars[char] = count - 1
}
return true
}
```
chars[char] = count - 1 // cannot find 'count' in scope
func sameChars(s0: String, s1: String) -> Bool {
let charSet0 = Set(s0)
let charSet1 = Set(s1)
return charSet0 == charSet1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
let charSet0 = Set(s0)
let charSet1 = Set(s1)
return charSet0 == charSet1
}
```
func sameChars(s0: String, s1: String) -> Bool {
let charCount = [Character: Int]()
for char in s0 {
charCount[char, default: 0] += 1
}
for char in s1 {
if let count = charCount[char], count > 0 {
charCount[char] = count - 1
} else {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
let charCount = [Character: Int]()
for char in s0 {
charCount[char, default: 0] += 1
}
for char in s1 {
if let count = charCount[char], count > 0 {
charCount[char] = count - 1
} else {
return false
}
}
return true
}
```
charCount[char, default: 0] += 1 // left side of mutating operator isn't mutable: 'charCount' is a 'let' constant
charCount[char] = count - 1 // cannot assign through subscript: 'charCount' is a 'let' constant
func sameChars(s0: String, s1: String) -> Bool {
var dict = [Character: Int]()
for char in s0.lowercased() {
dict[char, default: 0] += 1
}
for char in s1.lowercased() {
if let count = dict[char] {
if count == 0 {
return false
}
dict[char] = count - 1
} else {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
var dict = [Character: Int]()
for char in s0.lowercased() {
dict[char, default: 0] += 1
}
for char in s1.lowercased() {
if let count = dict[char] {
if count == 0 {
return false
}
dict[char] = count - 1
} else {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
if s0.count != s1.count {
return false
}
var chars = [Character: Int]()
for char in s0 {
chars[char, default: 0] += 1
}
for char in s1 {
if let count = chars[char] {
chars[char] = count - 1
if chars[char] == 0 {
chars.removeValue(forKey: char)
}
} else {
return false
}
}
return chars.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
if s0.count != s1.count {
return false
}
var chars = [Character: Int]()
for char in s0 {
chars[char, default: 0] += 1
}
for char in s1 {
if let count = chars[char] {
chars[char] = count - 1
if chars[char] == 0 {
chars.removeValue(forKey: char)
}
} else {
return false
}
}
return chars.isEmpty
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
if s0.count != s1.count {
return false
}
var chars = [Character: Int]()
for char in s0 {
chars[char, default: 0] += 1
}
for char in s1 {
if let count = chars[char], count > 0 {
chars[char] = count - 1
} else {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
if s0.count != s1.count {
return false
}
var chars = [Character: Int]()
for char in s0 {
chars[char, default: 0] += 1
}
for char in s1 {
if let count = chars[char], count > 0 {
chars[char] = count - 1
} else {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = s0.sorted()
let sortedS1 = s1.sorted()
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var dict = [Character: Int]()
for char in s0.lowercased() {
dict[char] = (dict[char] ?? 0) + 1
}
for char in s1.lowercased() {
if let count = dict[char] {
dict[char] = count - 1
} else {
return false
}
}
return dict.values.allSatisfy({ $0 == 0 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false<end_of_turn>
<start_of_turn>model
```swift
func sameChars(s0: String, s1: String) -> Bool {
var dict = [Character: Int]()
for char in s0.lowercased() {
dict[char] = (dict[char] ?? 0) + 1
}
for char in s1.lowercased() {
if let count = dict[char] {
dict[char] = count - 1
} else {
return false
}
}
return dict.values.allSatisfy({ $0 == 0 })
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21<end_of_turn>
<start_of_turn>model
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
var isIncreasing = true
var previous = l[0]
for i in 1..<l.count {
if l[i] > previous {
isIncreasing = true
} else if l[i] < previous {
isIncreasing = false
}
previous = l[i]
}
return isIncreasing
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
var isIncreasing = true
var previous = l[0]
for i in 1..<l.count {
if l[i] > previous {
isIncreasing = true
} else if l[i] < previous {
isIncreasing = false
}
previous = l[i]
}
return isIncreasing
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
var isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
}
if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
var isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
}
if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
```
var isIncreasing = l[1] > l[0] // variable 'isIncreasing' was never mutated; consider changing to 'let' constant
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
} else if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
} else if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
var isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
}
if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
var isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
}
if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
```
var isIncreasing = l[1] > l[0] // variable 'isIncreasing' was never mutated; consider changing to 'let' constant
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
var isIncreasing = true
var previous = l[0]
for i in 1..<l.count {
if l[i] > previous {
isIncreasing = true
} else if l[i] < previous {
isIncreasing = false
}
previous = l[i]
}
return isIncreasing
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
var isIncreasing = true
var previous = l[0]
for i in 1..<l.count {
if l[i] > previous {
isIncreasing = true
} else if l[i] < previous {
isIncreasing = false
}
previous = l[i]
}
return isIncreasing
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
} else if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
} else if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.isEmpty || l.count <= 2 {
return true
}
var isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
}
if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
if l.isEmpty || l.count <= 2 {
return true
}
var isIncreasing = l[1] > l[0]
for i in 2..<l.count {
if isIncreasing && l[i] < l[i - 1] {
return false
}
if !isIncreasing && l[i] > l[i - 1] {
return false
}
}
return true
}
```
var isIncreasing = l[1] > l[0] // variable 'isIncreasing' was never mutated; consider changing to 'let' constant
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1...] > l[0..<l.count-1]
let isDecreasing = l[1...] < l[0..<l.count-1]
return isIncreasing || isDecreasing
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1...] > l[0..<l.count-1]
let isDecreasing = l[1...] < l[0..<l.count-1]
return isIncreasing || isDecreasing
}
```
let isIncreasing = l[1...] > l[0..<l.count-1] // cannot convert value of type 'PartialRangeFrom<Int>' to expected argument type 'Int'
let isIncreasing = l[1...] > l[0..<l.count-1] // cannot convert value of type 'Range<Int>' to expected argument type 'Int'
let isDecreasing = l[1...] < l[0..<l.count-1] // cannot convert value of type 'Range<Int>' to expected argument type 'Int'
let isDecreasing = l[1...] < l[0..<l.count-1] // cannot convert value of type 'PartialRangeFrom<Int>' to expected argument type 'Int'
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1...] > l[0..<l.count-1]
let isDecreasing = l[1...] < l[0..<l.count-1]
return isIncreasing || isDecreasing
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1...] > l[0..<l.count-1]
let isDecreasing = l[1...] < l[0..<l.count-1]
return isIncreasing || isDecreasing
}
```
let isIncreasing = l[1...] > l[0..<l.count-1] // cannot convert value of type 'PartialRangeFrom<Int>' to expected argument type 'Int'
let isIncreasing = l[1...] > l[0..<l.count-1] // cannot convert value of type 'Range<Int>' to expected argument type 'Int'
let isDecreasing = l[1...] < l[0..<l.count-1] // cannot convert value of type 'Range<Int>' to expected argument type 'Int'
let isDecreasing = l[1...] < l[0..<l.count-1] // cannot convert value of type 'PartialRangeFrom<Int>' to expected argument type 'Int'
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1...] == l[1...].sorted()
let isDecreasing = l[1...] == l[1...].sorted(by: >)
return isIncreasing || isDecreasing
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true<end_of_turn>
<start_of_turn>model
```swift
func monotonic(l: [Int]) -> Bool {
if l.count <= 2 {
return true
}
let isIncreasing = l[1...] == l[1...].sorted()
let isDecreasing = l[1...] == l[1...].sorted(by: >)
return isIncreasing || isDecreasing
}
```
let isIncreasing = l[1...] == l[1...].sorted() // cannot convert value of type '[Int]' to expected argument type 'ArraySlice<Int>'
let isDecreasing = l[1...] == l[1...].sorted(by: >) // cannot convert value of type '[Int]' to expected argument type 'ArraySlice<Int>'
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2))
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2))
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2))
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
return Array(Set(l1).intersection(Set(l2))).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
return Array(Set(l1).intersection(Set(l2))).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2))
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
var intersection = [Int]()
for element in set1 {
if set2.contains(element) {
intersection.append(element)
}
}
return intersection.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
var intersection = [Int]()
for element in set1 {
if set2.contains(element) {
intersection.append(element)
}
}
return intersection.sorted()
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
func common(l1: [Int], l2: [Int]) -> [Int] {
return Array(Set(l1).intersection(Set(l2))).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
return Array(Set(l1).intersection(Set(l2))).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
var intersection = [Int]()
for element in set1 {
if set2.contains(element) {
intersection.append(element)
}
}
return intersection.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set1 = Set(l1)
var set2 = Set(l2)
var intersection = [Int]()
for element in set1 {
if set2.contains(element) {
intersection.append(element)
}
}
return intersection.sorted()
}
```
var set1 = Set(l1) // variable 'set1' was never mutated; consider changing to 'let' constant
var set2 = Set(l2) // variable 'set2' was never mutated; consider changing to 'let' constant
func common(l1: [Int], l2: [Int]) -> [Int] {
return Array(Set(l1).intersection(Set(l2)))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
return Array(Set(l1).intersection(Set(l2)))
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
return Array(Set(l1).intersection(Set(l2)))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]<end_of_turn>
<start_of_turn>model
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
return Array(Set(l1).intersection(Set(l2)))
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var divisor = 2
var largestFactor = 1
while divisor * divisor <= n {
while n % divisor == 0 {
largestFactor = divisor
n /= divisor
}
divisor += 1
}
if n > largestFactor {
largestFactor = n
}
return largestFactor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var divisor = 2
var largestFactor = 1
while divisor * divisor <= n {
while n % divisor == 0 {
largestFactor = divisor
n /= divisor
}
divisor += 1
}
if n > largestFactor {
largestFactor = n
}
return largestFactor
}
```
n /= divisor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
var largestFactor = 1
while i * i <= n {
while n % i == 0 {
largestFactor = i
n /= i
}
i += 1
}
if n > largestFactor {
largestFactor = n
}
return largestFactor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
var largestFactor = 1
while i * i <= n {
while n % i == 0 {
largestFactor = i
n /= i
}
i += 1
}
if n > largestFactor {
largestFactor = n
}
return largestFactor
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var num = n
var factor = 2
while factor * factor <= num {
while num % factor == 0 {
num /= factor
}
factor += 1
}
return num
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var factor = 2
while factor * factor <= num {
while num % factor == 0 {
num /= factor
}
factor += 1
}
return num
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var number = n
var divisor = 2
while number > 1 {
while number % divisor == 0 {
number /= divisor
}
divisor += 1
}
return divisor - 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var number = n
var divisor = 2
while number > 1 {
while number % divisor == 0 {
number /= divisor
}
divisor += 1
}
return divisor - 1
}
```
func largestPrimeFactor(n: Int) -> Int {
var number = n
var divisor = 2
while number > 1 {
while number % divisor == 0 {
number /= divisor
}
divisor += 1
}
return divisor - 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var number = n
var divisor = 2
while number > 1 {
while number % divisor == 0 {
number /= divisor
}
divisor += 1
}
return divisor - 1
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var divisor = 2
while divisor * divisor <= num {
while num % divisor == 0 {
num /= divisor
}
divisor += 1
}
return num
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var divisor = 2
while divisor * divisor <= num {
while num % divisor == 0 {
num /= divisor
}
divisor += 1
}
return num
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var divisor = 2
var largestFactor = 1
var number = n
while number > 1 {
if number % divisor == 0 {
largestFactor = divisor
number /= divisor
} else {
divisor += 1
}
}
return largestFactor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var divisor = 2
var largestFactor = 1
var number = n
while number > 1 {
if number % divisor == 0 {
largestFactor = divisor
number /= divisor
} else {
divisor += 1
}
}
return largestFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var divisor = 2
while divisor * divisor <= num {
while num % divisor == 0 {
num /= divisor
}
divisor += 1
}
return num
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var divisor = 2
while divisor * divisor <= num {
while num % divisor == 0 {
num /= divisor
}
divisor += 1
}
return num
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var divisor = 2
var largestFactor = 1
var number = n
while number > 1 {
var factor = 1
while number % divisor == 0 {
factor *= divisor
number /= divisor
}
largestFactor = max(largestFactor, factor)
divisor = divisor == 2 ? 3 : divisor + 2
}
return largestFactor
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var divisor = 2
var largestFactor = 1
var number = n
while number > 1 {
var factor = 1
while number % divisor == 0 {
factor *= divisor
number /= divisor
}
largestFactor = max(largestFactor, factor)
divisor = divisor == 2 ? 3 : divisor + 2
}
return largestFactor
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var num = n
var factor = 2
while factor * factor <= num {
while num % factor == 0 {
num /= factor
}
factor += 1
}
return num
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2<end_of_turn>
<start_of_turn>model
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var factor = 2
while factor * factor <= num {
while num % factor == 0 {
num /= factor
}
factor += 1
}
return num
}
```
// XCTAssertTrue failed
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1<end_of_turn>
<start_of_turn>model
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false<end_of_turn>
<start_of_turn>model
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]<end_of_turn>
<start_of_turn>model
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(i * xs[i])
}
return result
}
```
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 2...n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 2...n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return b
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return b
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 2...n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 2...n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 2...n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 2...n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return b
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return b
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
for _ in 0..<n {
(a, b, c) = (b, c, a + b + c)
}
return c
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
if n <= 2 {
return n
}
for _ in 3...n {
let next = a + b + c
a = b
b = c
c = next
}
return c
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24<end_of_turn>
<start_of_turn>model
```swift
func fibfib(n: Int) -> Int {
var a = 0
var b = 0
var c = 1
if n <= 2 {
return n
}
for _ in 3...n {
let next = a + b + c
a = b
b = c
c = next
}
return c
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u", "y"]
var count = 0
let lowercased = s.lowercased()
for i in 0..<lowercased.count {
if vowels.contains(String(lowercased[i])) {
count += 1
}
if i == lowercased.count - 1 && lowercased[i] == "y" {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u", "y"]
var count = 0
let lowercased = s.lowercased()
for i in 0..<lowercased.count {
if vowels.contains(String(lowercased[i])) {
count += 1
}
if i == lowercased.count - 1 && lowercased[i] == "y" {
count += 1
}
}
return count
}
```
if vowels.contains(String(lowercased[i])) { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if i == lowercased.count - 1 && lowercased[i] == "y" { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func vowelsCount(s: String) -> Int {
var count = 0
let vowels = ["a", "e", "i", "o", "u", "y"]
for i in 0..<s.count {
let character = String(s[s.index(s.startIndex, offsetBy: i)])
if vowels.contains(character) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
var count = 0
let vowels = ["a", "e", "i", "o", "u", "y"]
for i in 0..<s.count {
let character = String(s[s.index(s.startIndex, offsetBy: i)])
if vowels.contains(character) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
var count = 0
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "y"]
for i in s.indices {
if vowels.contains(s[i].lowercased()) {
count += 1
}
}
if s.last?.lowercased() == "y" {
count -= 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
var count = 0
let vowels: Set<Character> = ["a", "e", "i", "o", "u", "y"]
for i in s.indices {
if vowels.contains(s[i].lowercased()) {
count += 1
}
}
if s.last?.lowercased() == "y" {
count -= 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set<Character>(["a", "e", "i", "o", "u", "y"])
var count = 0
for (index, character) in s.lowercased().enumerated() {
if vowels.contains(character) {
count += 1
} else if character == "y" && index == s.count - 1 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set<Character>(["a", "e", "i", "o", "u", "y"])
var count = 0
for (index, character) in s.lowercased().enumerated() {
if vowels.contains(character) {
count += 1
} else if character == "y" && index == s.count - 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u", "y"])
var count = 0
let s = s.lowercased()
for i in 0..<s.count {
if vowels.contains(String(s[s.index(s.startIndex, offsetBy: i)])) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u", "y"])
var count = 0
let s = s.lowercased()
for i in 0..<s.count {
if vowels.contains(String(s[s.index(s.startIndex, offsetBy: i)])) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u", "y"])
var count = 0
for i in 0..<s.count {
let letter = String(s[s.index(s.startIndex, offsetBy: i)])
if vowels.contains(letter) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u", "y"])
var count = 0
for i in 0..<s.count {
let letter = String(s[s.index(s.startIndex, offsetBy: i)])
if vowels.contains(letter) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u", "y"]
var count = 0
for (index, char) in s.lowercased().enumerated() {
if vowels.contains(String(char)) {
count += 1
}
if char == "y" && index == s.count - 1 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u", "y"]
var count = 0
for (index, char) in s.lowercased().enumerated() {
if vowels.contains(String(char)) {
count += 1
}
if char == "y" && index == s.count - 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u", "y"])
var count = 0
for i in 0..<s.count {
let letter = String(s[s.index(s.startIndex, offsetBy: i)])
if vowels.contains(letter) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u", "y"])
var count = 0
for i in 0..<s.count {
let letter = String(s[s.index(s.startIndex, offsetBy: i)])
if vowels.contains(letter) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u", "y"])
var count = 0
for i in 0..<s.count {
let letter = String(s[s.index(s.startIndex, offsetBy: i)])
if vowels.contains(letter) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set(["a", "e", "i", "o", "u", "y"])
var count = 0
for i in 0..<s.count {
let letter = String(s[s.index(s.startIndex, offsetBy: i)])
if vowels.contains(letter) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = Set<Character>(["a", "e", "i", "o", "u", "y"])
var count = 0
for (index, char) in s.lowercased().enumerated() {
if vowels.contains(char) {
count += 1
if char == "y" && index == s.count - 1 {
count -= 1
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3<end_of_turn>
<start_of_turn>model
```swift
func vowelsCount(s: String) -> Int {
let vowels = Set<Character>(["a", "e", "i", "o", "u", "y"])
var count = 0
for (index, char) in s.lowercased().enumerated() {
if vowels.contains(char) {
count += 1
if char == "y" && index == s.count - 1 {
count -= 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let length = str.count
let newShift = shift % length
let right = str.suffix(newShift)
let left = str.dropLast(newShift)
return right + left
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let length = str.count
let newShift = shift % length
let right = str.suffix(newShift)
let left = str.dropLast(newShift)
return right + left
}
```
return right + left // cannot convert return expression of type 'String.SubSequence' (aka 'Substring') to return type 'String'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let actualShift = shift % count
let reversedDigits = digits.reversed()
let shiftedDigits = reversedDigits[actualShift..<count] + reversedDigits[0..<actualShift]
return shiftedDigits.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let actualShift = shift % count
let reversedDigits = digits.reversed()
let shiftedDigits = reversedDigits[actualShift..<count] + reversedDigits[0..<actualShift]
return shiftedDigits.joined()
}
```
let shiftedDigits = reversedDigits[actualShift..<count] + reversedDigits[0..<actualShift] // no exact matches in call to subscript
let shiftedDigits = reversedDigits[actualShift..<count] + reversedDigits[0..<actualShift] // no exact matches in call to subscript
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let effectiveShift = shift % count
let reversedDigits = digits.reversed()
let shiftedDigits = reversedDigits[effectiveShift..<count] + reversedDigits[0..<effectiveShift]
return shiftedDigits.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let effectiveShift = shift % count
let reversedDigits = digits.reversed()
let shiftedDigits = reversedDigits[effectiveShift..<count] + reversedDigits[0..<effectiveShift]
return shiftedDigits.joined()
}
```
let shiftedDigits = reversedDigits[effectiveShift..<count] + reversedDigits[0..<effectiveShift] // no exact matches in call to subscript
let shiftedDigits = reversedDigits[effectiveShift..<count] + reversedDigits[0..<effectiveShift] // no exact matches in call to subscript
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let n = str.count
let shifted = str.suffix(n - shift) + str.prefix(shift)
return shifted
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let n = str.count
let shifted = str.suffix(n - shift) + str.prefix(shift)
return shifted
}
```
return shifted // cannot convert return expression of type 'String.SubSequence' (aka 'Substring') to return type 'String'
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let length = str.count
let newShift = shift % length
let right = str.suffix(newShift)
let left = str.prefix(length - newShift)
return right + left
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let length = str.count
let newShift = shift % length
let right = str.suffix(newShift)
let left = str.prefix(length - newShift)
return right + left
}
```
return right + left // cannot convert return expression of type 'String.SubSequence' (aka 'Substring') to return type 'String'
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let newShift = shift % len
let rightPart = str.suffix(newShift)
let leftPart = str.prefix(len - newShift)
return rightPart + leftPart
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let newShift = shift % len
let rightPart = str.suffix(newShift)
let leftPart = str.prefix(len - newShift)
return rightPart + leftPart
}
```
return rightPart + leftPart // cannot convert return expression of type 'String.SubSequence' (aka 'Substring') to return type 'String'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let actualShift = shift % count
let reversedDigits = digits.reversed()
let shiftedDigits = reversedDigits[actualShift..<count] + reversedDigits[0..<actualShift]
return shiftedDigits.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let actualShift = shift % count
let reversedDigits = digits.reversed()
let shiftedDigits = reversedDigits[actualShift..<count] + reversedDigits[0..<actualShift]
return shiftedDigits.joined()
}
```
let shiftedDigits = reversedDigits[actualShift..<count] + reversedDigits[0..<actualShift] // no exact matches in call to subscript
let shiftedDigits = reversedDigits[actualShift..<count] + reversedDigits[0..<actualShift] // no exact matches in call to subscript
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let newIndex = (shift % count + count) % count
let shiftedDigits = digits.suffix(newIndex) + digits.prefix(count - newIndex)
return shiftedDigits.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let newIndex = (shift % count + count) % count
let shiftedDigits = digits.suffix(newIndex) + digits.prefix(count - newIndex)
return shiftedDigits.joined()
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let newShift = shift % count
let rotatedDigits = digits.suffix(newShift) + digits.dropLast(newShift)
return rotatedDigits.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let newShift = shift % count
let rotatedDigits = digits.suffix(newShift) + digits.dropLast(newShift)
return rotatedDigits.joined()
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let newShift = shift % count
let reversedDigits = digits.reversed()
if newShift > count {
return reversedDigits.joined()
} else {
let shiftedDigits = digits.dropLast(count - newShift) + digits.prefix(count - newShift)
return shiftedDigits.joined()
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"<end_of_turn>
<start_of_turn>model
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let count = digits.count
let newShift = shift % count
let reversedDigits = digits.reversed()
if newShift > count {
return reversedDigits.joined()
} else {
let shiftedDigits = digits.dropLast(count - newShift) + digits.prefix(count - newShift)
return shiftedDigits.joined()
}
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
return s.reduce(0) { sum, char in
if char.isUpper {
return sum + Int(char.asciiValue!)
}
return sum
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { sum, char in
if char.isUpper {
return sum + Int(char.asciiValue!)
}
return sum
}
}
```
if char.isUpper { // value of type 'String.Element' (aka 'Character') has no member 'isUpper'
func digitSum(s: String) -> Int {
return s.reduce(0) { result, character in
let asciiValue = Int(character.asciiValue!)
return result + (asciiValue >= 65 && asciiValue <= 90 ? asciiValue : 0)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { result, character in
let asciiValue = Int(character.asciiValue!)
return result + (asciiValue >= 65 && asciiValue <= 90 ? asciiValue : 0)
}
}
```
func digitSum(s: String) -> Int {
return s.reduce(0) { result, char in
let asciiValue = Int(char.asciiValue!)
return result + (asciiValue >= 65 && asciiValue <= 90 ? asciiValue : 0)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { result, char in
let asciiValue = Int(char.asciiValue!)
return result + (asciiValue >= 65 && asciiValue <= 90 ? asciiValue : 0)
}
}
```
func digitSum(s: String) -> Int {
return s.reduce(0) { sum, char in
if char.isUpper {
return sum + Int(char.asciiValue!)
}
return sum
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { sum, char in
if char.isUpper {
return sum + Int(char.asciiValue!)
}
return sum
}
}
```
if char.isUpper { // value of type 'String.Element' (aka 'Character') has no member 'isUpper'
func digitSum(s: String) -> Int {
return s.reduce(0) { result, char in
let asciiValue = Int(char.asciiValue!)
return result + (asciiValue >= 65 && asciiValue <= 90 ? asciiValue : 0)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { result, char in
let asciiValue = Int(char.asciiValue!)
return result + (asciiValue >= 65 && asciiValue <= 90 ? asciiValue : 0)
}
}
```
func digitSum(s: String) -> Int {
return s.reduce(0) { result, char in
let asciiCode = Int(char.asciiValue!)
return result + (asciiCode >= 65 && asciiCode <= 90 ? asciiCode : 0)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { result, char in
let asciiCode = Int(char.asciiValue!)
return result + (asciiCode >= 65 && asciiCode <= 90 ? asciiCode : 0)
}
}
```
func digitSum(s: String) -> Int {
return s.reduce(0) { result, character in
if character.isUppercase {
return result + Int(character.asciiValue!)
} else {
return result
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { result, character in
if character.isUppercase {
return result + Int(character.asciiValue!)
} else {
return result
}
}
}
```
func digitSum(s: String) -> Int {
return s.reduce(0) { result, char in
let asciiCode = Int(char.asciiValue!)
return result + (asciiCode >= 65 && asciiCode <= 90 ? asciiCode : 0)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { result, char in
let asciiCode = Int(char.asciiValue!)
return result + (asciiCode >= 65 && asciiCode <= 90 ? asciiCode : 0)
}
}
```
func digitSum(s: String) -> Int {
return s.reduce(0) { sum, char in
if char.isUppercase {
return sum + Int(char.asciiValue!)
}
return sum
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { sum, char in
if char.isUppercase {
return sum + Int(char.asciiValue!)
}
return sum
}
}
```
func digitSum(s: String) -> Int {
return s.reduce(0) { result, character in
if character.isUppercase {
return result + Int(character.asciiValue!)
} else {
return result
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153<end_of_turn>
<start_of_turn>model
```swift
func digitSum(s: String) -> Int {
return s.reduce(0) { result, character in
if character.isUppercase {
return result + Int(character.asciiValue!)
} else {
return result
}
}
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].components(separatedBy: " ")[0])!
let oranges = Int(fruits[1].components(separatedBy: " ")[0])!
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].components(separatedBy: " ")[0])!
let oranges = Int(fruits[1].components(separatedBy: " ")[0])!
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].components(separatedBy: " ")[0])!
let oranges = Int(fruits[1].components(separatedBy: " ")[0])!
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].components(separatedBy: " ")[0])!
let oranges = Int(fruits[1].components(separatedBy: " ")[0])!
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].components(separatedBy: " ")[0])!
let oranges = Int(fruits[1].components(separatedBy: " ")[0])!
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].components(separatedBy: " ")[0])!
let oranges = Int(fruits[1].components(separatedBy: " ")[0])!
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
var apples = 0
var oranges = 0
for fruit in fruits {
if fruit.contains("apples") {
apples = Int(fruit.components(separatedBy: " ")[0])!
} else if fruit.contains("oranges") {
oranges = Int(fruit.components(separatedBy: " ")[0])!
}
}
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
var apples = 0
var oranges = 0
for fruit in fruits {
if fruit.contains("apples") {
apples = Int(fruit.components(separatedBy: " ")[0])!
} else if fruit.contains("oranges") {
oranges = Int(fruit.components(separatedBy: " ")[0])!
}
}
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0].dropLast())!
let oranges = Int(components[2].dropLast())!
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0].dropLast())!
let oranges = Int(components[2].dropLast())!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
let apples = Int(fruits[0].replacingOccurrences(of: "apples", with: ""))!
let oranges = Int(fruits[2].replacingOccurrences(of: "oranges", with: ""))!
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
let apples = Int(fruits[0].replacingOccurrences(of: "apples", with: ""))!
let oranges = Int(fruits[2].replacingOccurrences(of: "oranges", with: ""))!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0].replacingOccurrences(of: "apples", with: ""))!
let oranges = Int(components[2].replacingOccurrences(of: "oranges", with: ""))!
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0].replacingOccurrences(of: "apples", with: ""))!
let oranges = Int(components[2].replacingOccurrences(of: "oranges", with: ""))!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0].trimmingCharacters(in: .whitespaces))!
let oranges = Int(components[2].trimmingCharacters(in: .whitespaces))!
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " ")
let apples = Int(components[0].trimmingCharacters(in: .whitespaces))!
let oranges = Int(components[2].trimmingCharacters(in: .whitespaces))!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
var apples = 0
var oranges = 0
for fruit in fruits {
if fruit.contains("apples") {
apples = Int(fruit.replacingOccurrences(of: " apples", with: ""))!
} else if fruit.contains("oranges") {
oranges = Int(fruit.replacingOccurrences(of: " oranges", with: ""))!
}
}
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
var apples = 0
var oranges = 0
for fruit in fruits {
if fruit.contains("apples") {
apples = Int(fruit.replacingOccurrences(of: " apples", with: ""))!
} else if fruit.contains("oranges") {
oranges = Int(fruit.replacingOccurrences(of: " oranges", with: ""))!
}
}
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
var apples = 0
var oranges = 0
for fruit in fruits {
if fruit.contains("apples") {
apples = Int(fruit.replacingOccurrences(of: " apples", with: ""))!
} else if fruit.contains("oranges") {
oranges = Int(fruit.replacingOccurrences(of: " oranges", with: ""))!
}
}
return n - apples - oranges
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19<end_of_turn>
<start_of_turn>model
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
var apples = 0
var oranges = 0
for fruit in fruits {
if fruit.contains("apples") {
apples = Int(fruit.replacingOccurrences(of: " apples", with: ""))!
} else if fruit.contains("oranges") {
oranges = Int(fruit.replacingOccurrences(of: " oranges", with: ""))!
}
}
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var smallestEven = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestIndex = index
} else if value % 2 == 0 && value == smallestEven && index < smallestIndex {
smallestIndex = index
}
}
return [smallestEven, smallestIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var smallestEven = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestIndex = index
} else if value % 2 == 0 && value == smallestEven && index < smallestIndex {
smallestIndex = index
}
}
return [smallestEven, smallestIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty { return [] }
var smallestEvenValue = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestIndex = index
} else if value % 2 == 0 && value == smallestEvenValue && index < smallestIndex {
smallestIndex = index
}
}
if smallestIndex == -1 { return [] }
return [smallestEvenValue, smallestIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty { return [] }
var smallestEvenValue = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestIndex = index
} else if value % 2 == 0 && value == smallestEvenValue && index < smallestIndex {
smallestIndex = index
}
}
if smallestIndex == -1 { return [] }
return [smallestEvenValue, smallestIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty {
return []
}
var smallestEven = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestIndex = index
} else if value % 2 == 0 && value == smallestEven && index < smallestIndex {
smallestIndex = index
}
}
if smallestIndex == -1 {
return []
}
return [smallestEven, smallestIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty {
return []
}
var smallestEven = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestIndex = index
} else if value % 2 == 0 && value == smallestEven && index < smallestIndex {
smallestIndex = index
}
}
if smallestIndex == -1 {
return []
}
return [smallestEven, smallestIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value <= smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenValue == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value <= smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenValue == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty {
return []
}
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < minEven {
minEven = value
minIndex = index
} else if value % 2 == 0 && value == minEven && index < minIndex {
minIndex = index
}
}
if minIndex == -1 {
return []
}
return [minEven, minIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
if arr.isEmpty {
return []
}
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < minEven {
minEven = value
minIndex = index
} else if value % 2 == 0 && value == minEven && index < minIndex {
minIndex = index
}
}
if minIndex == -1 {
return []
}
return [minEven, minIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < minEven {
minEven = value
minIndex = index
} else if value % 2 == 0 && value == minEven && index < minIndex {
minIndex = index
}
}
return [minEven, minIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < minEven {
minEven = value
minIndex = index
} else if value % 2 == 0 && value == minEven && index < minIndex {
minIndex = index
}
}
return [minEven, minIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value <= minEven {
minEven = value
minIndex = index
}
}
return minIndex == -1 ? [] : [minEven, minIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value <= minEven {
minEven = value
minIndex = index
}
}
return minIndex == -1 ? [] : [minEven, minIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var smallestEvenValue = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestIndex = index
} else if value % 2 == 0 && value == smallestEvenValue && index < smallestIndex {
smallestIndex = index
}
}
return smallestEvenValue == Int.max ? [] : [smallestEvenValue, smallestIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var smallestEvenValue = Int.max
var smallestIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestIndex = index
} else if value % 2 == 0 && value == smallestEvenValue && index < smallestIndex {
smallestIndex = index
}
}
return smallestEvenValue == Int.max ? [] : [smallestEvenValue, smallestIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < minEven {
minEven = value
minIndex = index
} else if value % 2 == 0 && value == minEven && index < minIndex {
minIndex = index
}
}
return [minEven, minIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < minEven {
minEven = value
minIndex = index
} else if value % 2 == 0 && value == minEven && index < minIndex {
minIndex = index
}
}
return [minEven, minIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < minEven {
minEven = value
minIndex = index
} else if value % 2 == 0 && value == minEven && index < minIndex {
minIndex = index
}
}
return [minEven, minIndex]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]<end_of_turn>
<start_of_turn>model
```swift
func pluck(arr: [Int]) -> [Int] {
guard !arr.isEmpty else { return [] }
var minEven = Int.max
var minIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < minEven {
minEven = value
minIndex = index
} else if value % 2 == 0 && value == minEven && index < minIndex {
minIndex = index
}
}
return [minEven, minIndex]
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
dict[num, default: 0] += 1
}
var result = -1
for (num, freq) in dict {
if num > 0 && freq >= num {
result = max(result, num)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
dict[num, default: 0] += 1
}
var result = -1
for (num, freq) in dict {
if num > 0 && freq >= num {
result = max(result, num)
}
}
return result
}
```
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
for (num, count) in freq {
if count >= num {
return num
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
for (num, count) in freq {
if count >= num {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freqMap = [Int: Int]()
for num in lst {
freqMap[num, default: 0] += 1
}
for (num, freq) in freqMap {
if freq >= num {
return num
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var freqMap = [Int: Int]()
for num in lst {
freqMap[num, default: 0] += 1
}
for (num, freq) in freqMap {
if freq >= num {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freqDict = [Int: Int]()
for num in lst {
freqDict[num, default: 0] += 1
}
for (num, freq) in freqDict {
if freq >= num {
return num
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var freqDict = [Int: Int]()
for num in lst {
freqDict[num, default: 0] += 1
}
for (num, freq) in freqDict {
if freq >= num {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num] = (freq[num] ?? 0) + 1
}
for (num, count) in freq {
if count >= num {
return num
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num] = (freq[num] ?? 0) + 1
}
for (num, count) in freq {
if count >= num {
return num
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
dict[num] = (dict[num] ?? 0) + 1
}
for (key, value) in dict {
if value >= key {
return key
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
dict[num] = (dict[num] ?? 0) + 1
}
for (key, value) in dict {
if value >= key {
return key
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freqDict = [Int: Int]()
for num in lst {
freqDict[num, default: 0] += 1
}
for (num, freq) in freqDict {
if freq >= num {
return num
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var freqDict = [Int: Int]()
for num in lst {
freqDict[num, default: 0] += 1
}
for (num, freq) in freqDict {
if freq >= num {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freqMap = [Int: Int]()
for num in lst {
freqMap[num] = (freqMap[num] ?? 0) + 1
}
for (num, freq) in freqMap {
if freq >= num {
return num
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var freqMap = [Int: Int]()
for num in lst {
freqMap[num] = (freqMap[num] ?? 0) + 1
}
for (num, freq) in freqMap {
if freq >= num {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
dict[num] = (dict[num] ?? 0) + 1
}
for (key, value) in dict {
if value >= key {
return key
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
dict[num] = (dict[num] ?? 0) + 1
}
for (key, value) in dict {
if value >= key {
return key
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freqMap = [Int: Int]()
for num in lst {
freqMap[num] = (freqMap[num] ?? 0) + 1
}
for (num, freq) in freqMap {
if freq >= num {
return num
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1<end_of_turn>
<start_of_turn>model
```swift
func search(lst: [Int]) -> Int {
var freqMap = [Int: Int]()
for num in lst {
freqMap[num] = (freqMap[num] ?? 0) + 1
}
for (num, freq) in freqMap {
if freq >= num {
return num
}
}
return -1
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
let mid = lst.count / 2
var left = lst[..<mid].sorted()
var right = lst[mid...].sorted(by: >)
while !left.isEmpty && !right.isEmpty {
result.append(left.removeFirst())
result.append(right.removeFirst())
}
return result + left + right
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
let mid = lst.count / 2
var left = lst[..<mid].sorted()
var right = lst[mid...].sorted(by: >)
while !left.isEmpty && !right.isEmpty {
result.append(left.removeFirst())
result.append(right.removeFirst())
}
return result + left + right
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
```
// Fatal error: Can't remove last element from an empty collection
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
let mid = lst.count / 2
var left = lst[..<mid].sorted()
var right = lst[mid...].sorted(by: >)
while !left.isEmpty && !right.isEmpty {
result.append(left.removeFirst())
result.append(right.removeFirst())
}
result.append(contentsOf: left + right)
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
let mid = lst.count / 2
var left = lst[..<mid].sorted()
var right = lst[mid...].sorted(by: >)
while !left.isEmpty && !right.isEmpty {
result.append(left.removeFirst())
result.append(right.removeFirst())
}
result.append(contentsOf: left + right)
return result
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sorted = lst.sorted()
while !sorted.isEmpty {
result.append(sorted.removeFirst())
result.append(sorted.removeLast())
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sorted = lst.sorted()
while !sorted.isEmpty {
result.append(sorted.removeFirst())
result.append(sorted.removeLast())
}
return result
}
```
// Fatal error: Can't remove last element from an empty collection
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sorted = lst.sorted()
var left = 0
var right = sorted.count - 1
while !sorted.isEmpty {
result.append(sorted[left])
sorted.remove(at: left)
result.append(sorted[right])
sorted.remove(at: right)
left += 1
right -= 1
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sorted = lst.sorted()
var left = 0
var right = sorted.count - 1
while !sorted.isEmpty {
result.append(sorted[left])
sorted.remove(at: left)
result.append(sorted[right])
sorted.remove(at: right)
left += 1
right -= 1
}
return result
}
```
// Fatal error: Index out of range
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
```
// Fatal error: Can't remove last element from an empty collection
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
```
// Fatal error: Can't remove last element from an empty collection
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
```
// Fatal error: Can't remove last element from an empty collection
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard !lst.isEmpty else { return [] }
var result = [Int]()
var sortedList = lst.sorted()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
return result
}
```
// Fatal error: Can't remove last element from an empty collection
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
let s = (a + b + c) / 2
return Double(sqrt(Double(s * (s - a) * (s - b) * (s - c))))).rounded(toPlaces: 2)
} else {
return -1
}
}
extension Double {
func rounded(toPlaces places: Int) -> Double {
let divisor = pow(10.0, Double(places))
return (self * divisor).rounded() / divisor
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
let s = (a + b + c) / 2
return Double(sqrt(Double(s * (s - a) * (s - b) * (s - c))))).rounded(toPlaces: 2)
} else {
return -1
}
}
extension Double {
func rounded(toPlaces places: Int) -> Double {
let divisor = pow(10.0, Double(places))
return (self * divisor).rounded() / divisor
}
}
```
return Double(sqrt(Double(s * (s - a) * (s - b) * (s - c))))).rounded(toPlaces: 2) // expected expression
return Double(sqrt(Double(s * (s - a) * (s - b) * (s - c))))).rounded(toPlaces: 2) // consecutive statements on a line must be separated by ';'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (Double(a) + Double(b) + Double(c)) / 2
return sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
} else {
return -1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (Double(a) + Double(b) + Double(c)) / 2
return sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
} else {
return -1
}
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (Double(a) + Double(b) + Double(c)) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return (round(area * 100) / 100)
} else {
return -1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (Double(a) + Double(b) + Double(c)) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return (round(area * 100) / 100)
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
let s = (a + b + c) / 2
return Double(sqrt(Double(s) * Double(s - a) * Double(s - b) * Double(s - c))).rounded(toPlaces: 2)
} else {
return -1
}
}
extension Double {
func rounded(toPlaces places: Int) -> Double {
let divisor = pow(10.0, Double(places))
return (self * divisor).rounded() / divisor
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
let s = (a + b + c) / 2
return Double(sqrt(Double(s) * Double(s - a) * Double(s - b) * Double(s - c))).rounded(toPlaces: 2)
} else {
return -1
}
}
extension Double {
func rounded(toPlaces places: Int) -> Double {
let divisor = pow(10.0, Double(places))
return (self * divisor).rounded() / divisor
}
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (Double(a) + Double(b) + Double(c)) / 2
return sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
} else {
return -1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (Double(a) + Double(b) + Double(c)) / 2
return sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
} else {
return -1
}
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (a + b + c) / 2
let area = sqrt(s * (s - a) * (s - b) * (s - c))
return Double(round(area * 100) / 100)
} else {
return -1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (a + b + c) / 2
let area = sqrt(s * (s - a) * (s - b) * (s - c))
return Double(round(area * 100) / 100)
} else {
return -1
}
}
```
let area = sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (a + b + c) / 2
let area = sqrt(s * (s - a) * (s - b) * (s - c))
return Double(round(100 * area) / 100)
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (a + b + c) / 2
let area = sqrt(s * (s - a) * (s - b) * (s - c))
return Double(round(100 * area) / 100)
}
return -1
}
```
let area = sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (a + b + c) / 2
return Double(round(sqrt(s * (s - a) * (s - b) * (s - c)) * 100) / 100)
} else {
return -1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (a + b + c) / 2
return Double(round(sqrt(s * (s - a) * (s - b) * (s - c)) * 100) / 100)
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (a + b + c) / 2
return Double(round((s * (s - a) * (s - b) * (s - c)) ** 0.5 * 100) / 100)
} else {
return -1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if (a + b > c) && (a + c > b) && (b + c > a) {
let s = (a + b + c) / 2
return Double(round((s * (s - a) * (s - b) * (s - c)) ** 0.5 * 100) / 100)
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
let s = (a + b + c) / 2
return Double(sqrt(s * (s - a) * (s - b) * (s - c))).rounded(toPlaces: 2)
} else {
return -1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1<end_of_turn>
<start_of_turn>model
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
let s = (a + b + c) / 2
return Double(sqrt(s * (s - a) * (s - b) * (s - c))).rounded(toPlaces: 2)
} else {
return -1
}
}
```
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(q: [Int]) -> Bool {
let mid = q.count / 2
let left = q[0..<mid]
let right = q[mid..<q.count]
return left == right.reversed()
}
// Check if the sum of the elements is less than or equal the maximum possible weight
func isWithinWeightLimit(q: [Int], w: Int) -> Bool {
return q.reduce(0, +) <= w
}
// Return true if the object q will fly
return isBalanced(q: q) && isWithinWeightLimit(q: q, w: w)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(q: [Int]) -> Bool {
let mid = q.count / 2
let left = q[0..<mid]
let right = q[mid..<q.count]
return left == right.reversed()
}
// Check if the sum of the elements is less than or equal the maximum possible weight
func isWithinWeightLimit(q: [Int], w: Int) -> Bool {
return q.reduce(0, +) <= w
}
// Return true if the object q will fly
return isBalanced(q: q) && isWithinWeightLimit(q: q, w: w)
}
```
return left == right.reversed() // binary operator '==' cannot be applied to operands of type 'ArraySlice<Int>' and '[Int]'
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(q: [Int]) -> Bool {
let mid = q.count / 2
var left = q[0..<mid]
var right = q[mid..<q.count]
left = left.reversed()
return left == right
}
// Check if the sum of the array elements is less than or equal to the maximum possible weight
func isWithinWeightLimit(q: [Int], w: Int) -> Bool {
return q.reduce(0, +) <= w
}
// Return true if the object will fly
return isBalanced(q: q) && isWithinWeightLimit(q: q, w: w)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(q: [Int]) -> Bool {
let mid = q.count / 2
var left = q[0..<mid]
var right = q[mid..<q.count]
left = left.reversed()
return left == right
}
// Check if the sum of the array elements is less than or equal to the maximum possible weight
func isWithinWeightLimit(q: [Int], w: Int) -> Bool {
return q.reduce(0, +) <= w
}
// Return true if the object will fly
return isBalanced(q: q) && isWithinWeightLimit(q: q, w: w)
}
```
left = left.reversed() // no 'reversed' candidates produce the expected contextual result type 'ArraySlice<Int>'
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(q: [Int]) -> Bool {
let n = q.count
for i in 0..<n/2 {
if q[i] != q[n-i-1] {
return false
}
}
return true
}
// Check if the sum of the elements is less than or equal to the maximum possible weight
let sum = q.reduce(0, +)
if sum > w {
return false
}
// Return true if the object will fly
return isBalanced(q: q)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(q: [Int]) -> Bool {
let n = q.count
for i in 0..<n/2 {
if q[i] != q[n-i-1] {
return false
}
}
return true
}
// Check if the sum of the elements is less than or equal to the maximum possible weight
let sum = q.reduce(0, +)
if sum > w {
return false
}
// Return true if the object will fly
return isBalanced(q: q)
}
```
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(arr: [Int]) -> Bool {
let mid = arr.count / 2
var leftSum = 0
var rightSum = 0
for i in 0..<mid {
leftSum += arr[i]
}
for i in mid..<arr.count {
rightSum += arr[i]
}
return leftSum == rightSum
}
// Check if the sum of the elements is less than or equal the maximum possible weight
func isWithinWeight(arr: [Int], weight: Int) -> Bool {
return arr.reduce(0, +) <= weight
}
return isBalanced(arr: q) && isWithinWeight(arr: q, weight: w)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(arr: [Int]) -> Bool {
let mid = arr.count / 2
var leftSum = 0
var rightSum = 0
for i in 0..<mid {
leftSum += arr[i]
}
for i in mid..<arr.count {
rightSum += arr[i]
}
return leftSum == rightSum
}
// Check if the sum of the elements is less than or equal the maximum possible weight
func isWithinWeight(arr: [Int], weight: Int) -> Bool {
return arr.reduce(0, +) <= weight
}
return isBalanced(arr: q) && isWithinWeight(arr: q, weight: w)
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(arr: [Int]) -> Bool {
let mid = arr.count / 2
var left = arr[0..<mid]
var right = arr[mid..<arr.count]
if arr.count % 2 == 1 {
right.removeFirst()
}
return left == right.reversed()
}
// Check if the sum of the array elements is less than or equal the maximum possible weight
func isWithinWeightLimit(arr: [Int], weightLimit: Int) -> Bool {
return arr.reduce(0, +) <= weightLimit
}
return isBalanced(arr: q) && isWithinWeightLimit(arr: q, weightLimit: w)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(arr: [Int]) -> Bool {
let mid = arr.count / 2
var left = arr[0..<mid]
var right = arr[mid..<arr.count]
if arr.count % 2 == 1 {
right.removeFirst()
}
return left == right.reversed()
}
// Check if the sum of the array elements is less than or equal the maximum possible weight
func isWithinWeightLimit(arr: [Int], weightLimit: Int) -> Bool {
return arr.reduce(0, +) <= weightLimit
}
return isBalanced(arr: q) && isWithinWeightLimit(arr: q, weightLimit: w)
}
```
return left == right.reversed() // binary operator '==' cannot be applied to operands of type 'ArraySlice<Int>' and '[Int]'
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced.
func isPalindrome(_ arr: [Int]) -> Bool {
return arr == arr.reversed()
}
// Calculate the sum of the elements in the array.
let sum = q.reduce(0, +)
// Return true if the array is balanced and the sum is less than or equal to the maximum weight.
return isPalindrome(q) && sum <= w
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced.
func isPalindrome(_ arr: [Int]) -> Bool {
return arr == arr.reversed()
}
// Calculate the sum of the elements in the array.
let sum = q.reduce(0, +)
// Return true if the array is balanced and the sum is less than or equal to the maximum weight.
return isPalindrome(q) && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced.
func isPalindrome(_ arr: [Int]) -> Bool {
return arr == arr.reversed()
}
// Calculate the sum of the array elements.
let sum = q.reduce(0, +)
// Return true if the array is balanced and the sum is less than or equal to the maximum weight.
return isPalindrome(q) && sum <= w
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced.
func isPalindrome(_ arr: [Int]) -> Bool {
return arr == arr.reversed()
}
// Calculate the sum of the array elements.
let sum = q.reduce(0, +)
// Return true if the array is balanced and the sum is less than or equal to the maximum weight.
return isPalindrome(q) && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced.
func isBalanced(arr: [Int]) -> Bool {
let mid = arr.count / 2
var left = arr[0..<mid]
var right = arr[mid..<arr.count]
if arr.count % 2 == 1 {
right.removeFirst()
}
return left == right.reversed()
}
// Check if the sum of the elements is less than or equal to the maximum possible weight.
func isWithinWeightLimit(arr: [Int], weightLimit: Int) -> Bool {
return arr.reduce(0, +) <= weightLimit
}
return isBalanced(arr: q) && isWithinWeightLimit(arr: q, weightLimit: w)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced.
func isBalanced(arr: [Int]) -> Bool {
let mid = arr.count / 2
var left = arr[0..<mid]
var right = arr[mid..<arr.count]
if arr.count % 2 == 1 {
right.removeFirst()
}
return left == right.reversed()
}
// Check if the sum of the elements is less than or equal to the maximum possible weight.
func isWithinWeightLimit(arr: [Int], weightLimit: Int) -> Bool {
return arr.reduce(0, +) <= weightLimit
}
return isBalanced(arr: q) && isWithinWeightLimit(arr: q, weightLimit: w)
}
```
return left == right.reversed() // binary operator '==' cannot be applied to operands of type 'ArraySlice<Int>' and '[Int]'
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced.
func isPalindrome(_ arr: [Int]) -> Bool {
return arr == arr.reversed()
}
// Calculate the sum of the array elements.
let sum = q.reduce(0, +)
// Return true if the array is balanced and the sum is less than or equal to the maximum weight.
return isPalindrome(q) && sum <= w
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced.
func isPalindrome(_ arr: [Int]) -> Bool {
return arr == arr.reversed()
}
// Calculate the sum of the array elements.
let sum = q.reduce(0, +)
// Return true if the array is balanced and the sum is less than or equal to the maximum weight.
return isPalindrome(q) && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(q: [Int]) -> Bool {
return q == q.reversed()
}
// Calculate the sum of the array elements
let sum = q.reduce(0, +)
// Check if the sum is less than or equal to the maximum weight and the array is balanced
return sum <= w && isBalanced(q: q)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true<end_of_turn>
<start_of_turn>model
```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
func isBalanced(q: [Int]) -> Bool {
return q == q.reversed()
}
// Calculate the sum of the array elements
let sum = q.reduce(0, +)
// Check if the sum is less than or equal to the maximum weight and the array is balanced
return sum <= w && isBalanced(q: q)
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
changes += 1
left += 1
}
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
changes += 1
left += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
changes += 1
left += 1
}
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] == arr[right] {
left += 1
right -= 1
} else {
changes += 1
left += 1
}
}
return changes
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0<end_of_turn>
<start_of_turn>model
```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
if totalChars1 < totalChars2 {
return lst1
} else if totalChars2 < totalChars1 {
return lst2
} else {
return lst1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
if totalChars1 < totalChars2 {
return lst1
} else if totalChars2 < totalChars1 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
} else {
return lst1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
if totalChars1 == totalChars2 {
return lst1
} else if totalChars1 < totalChars2 {
return lst1
} else {
return lst2
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
if totalChars1 == totalChars2 {
return lst1
} else if totalChars1 < totalChars2 {
return lst1
} else {
return lst2
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 == total2 {
return lst1
} else if total1 < total2 {
return lst1
} else {
return lst2
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 == total2 {
return lst1
} else if total1 < total2 {
return lst1
} else {
return lst2
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 == total2 {
return lst1
} else if total1 < total2 {
return lst1
} else {
return lst2
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 == total2 {
return lst1
} else if total1 < total2 {
return lst1
} else {
return lst2
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
} else {
return lst1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for str in lst1 {
total1 += str.count
}
for str in lst2 {
total2 += str.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0, { $0 + $1.count })
let total2 = lst2.reduce(0, { $0 + $1.count })
return total1 < total2 ? lst1 : (total1 > total2 ? lst2 : lst1)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0, { $0 + $1.count })
let total2 = lst2.reduce(0, { $0 + $1.count })
return total1 < total2 ? lst1 : (total1 > total2 ? lst2 : lst1)
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
if total1 == total2 {
return lst1
}
return total1 < total2 ? lst1 : lst2
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
if total1 == total2 {
return lst1
}
return total1 < total2 ? lst1 : lst2
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0, { $0 + $1.count })
let total2 = lst2.reduce(0, { $0 + $1.count })
return total1 < total2 ? lst1 : (total1 == total2 ? lst1 : lst2)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0, { $0 + $1.count })
let total2 = lst2.reduce(0, { $0 + $1.count })
return total1 < total2 ? lst1 : (total1 == total2 ? lst1 : lst2)
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
if totalChars1 < totalChars2 {
return lst1
} else if totalChars2 < totalChars1 {
return lst2
} else {
return lst1
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]<end_of_turn>
<start_of_turn>model
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0, { $0 + $1.count })
let totalChars2 = lst2.reduce(0, { $0 + $1.count })
if totalChars1 < totalChars2 {
return lst1
} else if totalChars2 < totalChars1 {
return lst2
} else {
return lst1
}
}
```
func isMultiplyPrime(a: Int) -> Bool {
guard a < 100 else { return false }
var count = 0
var i = 2
while i * i <= a {
while a % i == 0 {
a /= i
count += 1
if count > 3 { return false }
}
i += 1
}
return a == 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
guard a < 100 else { return false }
var count = 0
var i = 2
while i * i <= a {
while a % i == 0 {
a /= i
count += 1
if count > 3 { return false }
}
i += 1
}
return a == 1
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var divisor = 2
while divisor * divisor <= a {
while a % divisor == 0 {
count += 1
a /= divisor
if count > 3 {
return false
}
}
divisor += 1
}
return a == 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var divisor = 2
while divisor * divisor <= a {
while a % divisor == 0 {
count += 1
a /= divisor
if count > 3 {
return false
}
}
divisor += 1
}
return a == 1
}
```
a /= divisor // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var i = 2
while i <= a {
if a % i == 0 {
count += 1
a /= i
}
i += 1
}
return count == 3
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var i = 2
while i <= a {
if a % i == 0 {
count += 1
a /= i
}
i += 1
}
return count == 3
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
guard a > 1 else { return false }
var divisor = 2
var count = 0
while divisor * divisor <= a {
while a % divisor == 0 {
a /= divisor
count += 1
if count > 3 {
return false
}
}
divisor += 1
}
return a == 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
guard a > 1 else { return false }
var divisor = 2
var count = 0
while divisor * divisor <= a {
while a % divisor == 0 {
a /= divisor
count += 1
if count > 3 {
return false
}
}
divisor += 1
}
return a == 1
}
```
a /= divisor // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var i = 2
while i * i <= a {
while a % i == 0 {
count += 1
a /= i
if count > 3 {
return false
}
}
i += 1
}
if a > 1 {
count += 1
}
return count == 3
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var i = 2
while i * i <= a {
while a % i == 0 {
count += 1
a /= i
if count > 3 {
return false
}
}
i += 1
}
if a > 1 {
count += 1
}
return count == 3
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var divisor = 2
while divisor * divisor <= a {
while a % divisor == 0 {
a /= divisor
count += 1
if count > 3 {
return false
}
}
divisor += 1
}
return a == 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 2 {
return false
}
var count = 0
var divisor = 2
while divisor * divisor <= a {
while a % divisor == 0 {
a /= divisor
count += 1
if count > 3 {
return false
}
}
divisor += 1
}
return a == 1
}
```
a /= divisor // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
guard a > 1 else { return false }
var divisor = 2
var count = 0
while divisor * divisor <= a {
while a % divisor == 0 {
count += 1
a /= divisor
}
divisor += 1
}
return count == 3
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
guard a > 1 else { return false }
var divisor = 2
var count = 0
while divisor * divisor <= a {
while a % divisor == 0 {
count += 1
a /= divisor
}
divisor += 1
}
return count == 3
}
```
a /= divisor // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var divisor = 2
var count = 0
while number > 1 {
while number % divisor == 0 {
number /= divisor
count += 1
}
divisor += 1
}
return count == 3
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var divisor = 2
var count = 0
while number > 1 {
while number % divisor == 0 {
number /= divisor
count += 1
}
divisor += 1
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
guard a < 100 else { return false }
var count = 0
var divisor = 2
while divisor * divisor <= a {
while a % divisor == 0 {
count += 1
a /= divisor
}
divisor += 1
}
return count == 3
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
guard a < 100 else { return false }
var count = 0
var divisor = 2
while divisor * divisor <= a {
while a % divisor == 0 {
count += 1
a /= divisor
}
divisor += 1
}
return count == 3
}
```
a /= divisor // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var count = 0
while number % 2 == 0 {
count += 1
number /= 2
}
var i = 3
while i * i <= number {
while number % i == 0 {
count += 1
number /= i
}
i += 2
}
return count == 3
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true<end_of_turn>
<start_of_turn>model
```swift
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var count = 0
while number % 2 == 0 {
count += 1
number /= 2
}
var i = 3
while i * i <= number {
while number % i == 0 {
count += 1
number /= i
}
i += 2
}
return count == 3
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
if x == n.pow(Int(log(Double(x)) / log(Double(n)))) {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == n.pow(Int(log(Double(x)) / log(Double(n)))) {
return true
}
return false
}
```
if x == n.pow(Int(log(Double(x)) / log(Double(n)))) { // value of type 'Int' has no member 'pow'
func isSimplePower(x: Int, n: Int) -> Bool {
if x == n.pow(Int(log(Double(x)) / log(Double(n)))) {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == n.pow(Int(log(Double(x)) / log(Double(n)))) {
return true
}
return false
}
```
if x == n.pow(Int(log(Double(x)) / log(Double(n)))) { // value of type 'Int' has no member 'pow'
func isSimplePower(x: Int, n: Int) -> Bool {
if x == n && Int(pow(Double(n), Double(x))) == x {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == n && Int(pow(Double(n), Double(x))) == x {
return true
}
return false
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
return Double(x) == pow(Double(n), Double(Int(log(Double(x)) / log(Double(n)))))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return Double(x) == pow(Double(n), Double(Int(log(Double(x)) / log(Double(n)))))
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func isSimplePower(x: Int, n: Int) -> Bool {
var result = x
while result != 1 {
if result % n != 0 {
return false
}
result /= n
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = x
while result != 1 {
if result % n != 0 {
return false
}
result /= n
}
return true
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = x
while result % n == 0 && result != 1 {
result /= n
}
return result == 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = x
while result % n == 0 && result != 1 {
result /= n
}
return result == 1
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
var result = 1
while result < x {
result *= n
if result == x {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
var result = 1
while result < x {
result *= n
if result == x {
return true
}
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == n && x == 1 {
return true
}
var result = 1
var count = 0
while result < x {
result *= n
count += 1
}
return result == x
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == n && x == 1 {
return true
}
var result = 1
var count = 0
while result < x {
result *= n
count += 1
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
var result = 1
while result < x {
result *= n
if result == x {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
var result = 1
while result < x {
result *= n
if result == x {
return true
}
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
var result = 1
while result < x {
result *= n
}
return result == x
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
return Int(pow(Double(a), 1/3)) == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
return Int(pow(Double(a), 1/3)) == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cubeRoot = Int(cbrt(Double(a)))
return cubeRoot * cubeRoot * cubeRoot == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(cbrt(Double(a)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
func iscube(a: Int) -> Bool {
let cubeRoot = Int(cbrt(Double(a)))
return cubeRoot * cubeRoot * cubeRoot == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(cbrt(Double(a)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cubeRoot = Int(cbrt(Double(a)))
return cubeRoot * cubeRoot * cubeRoot == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(cbrt(Double(a)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
func iscube(a: Int) -> Bool {
let cubeRoot = Int(cbrt(Double(a)))
return cubeRoot * cubeRoot * cubeRoot == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(cbrt(Double(a)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false<end_of_turn>
<start_of_turn>model
```swift
func iscube(a: Int) -> Bool {
let cube = Int(pow(Double(a), 1/3))
return cube * cube * cube == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func hexKey(num: String) -> Int {
let hexDigits = num.map { $0.uppercased() }
var primeCount = 0
for digit in hexDigits {
let decimalValue = Int(String(digit), radix: 16)!
if decimalValue == 2 || decimalValue == 3 || decimalValue == 5 || decimalValue == 7 || decimalValue == 11 || decimalValue == 13 {
primeCount += 1
}
}
return primeCount
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
let hexDigits = num.map { $0.uppercased() }
var primeCount = 0
for digit in hexDigits {
let decimalValue = Int(String(digit), radix: 16)!
if decimalValue == 2 || decimalValue == 3 || decimalValue == 5 || decimalValue == 7 || decimalValue == 11 || decimalValue == 13 {
primeCount += 1
}
}
return primeCount
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num.uppercased() {
let digit = Int(char.unicodeScalars.first!.value - 48)
if digit >= 2 && digit <= 9 {
if digit % 2 != 0 && digit % 3 != 0 && digit % 5 != 0 && digit % 7 != 0 {
count += 1
}
} else if digit >= 10 && digit <= 15 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num.uppercased() {
let digit = Int(char.unicodeScalars.first!.value - 48)
if digit >= 2 && digit <= 9 {
if digit % 2 != 0 && digit % 3 != 0 && digit % 5 != 0 && digit % 7 != 0 {
count += 1
}
} else if digit >= 10 && digit <= 15 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func hexKey(num: String) -> Int {
let digits = Array(num.uppercased())
var count = 0
for digit in digits {
let value = Int(String(digit), radix: 16)!
if isPrime(value) {
count += 1
}
}
return count
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
} else if number <= 3 {
return true
} else if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
let digits = Array(num.uppercased())
var count = 0
for digit in digits {
let value = Int(String(digit), radix: 16)!
if isPrime(value) {
count += 1
}
}
return count
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
} else if number <= 3 {
return true
} else if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num.uppercased() {
let digit = Int(String(char), radix: 16) ?? 0
if isPrime(digit) {
count += 1
}
}
return count
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
return false
}
divisor += 1
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num.uppercased() {
let digit = Int(String(char), radix: 16) ?? 0
if isPrime(digit) {
count += 1
}
}
return count
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
return false
}
divisor += 1
}
return true
}
```
func hexKey(num: String) -> Int {
var count = 0
let digits: [Character] = ["2", "3", "5", "7", "B", "D"]
for digit in num.uppercased() {
if digits.contains(digit) {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
var count = 0
let digits: [Character] = ["2", "3", "5", "7", "B", "D"]
for digit in num.uppercased() {
if digits.contains(digit) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
let hexDigits = Array(num.uppercased())
for digit in hexDigits {
let value = Int(String(digit), radix: 16)!
if isPrime(value) {
count += 1
}
}
return count
}
func isPrime(_ value: Int) -> Bool {
if value <= 1 {
return false
}
let limit = Int(sqrt(Double(value))) + 1
for i in 2..<limit {
if value % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
var count = 0
let hexDigits = Array(num.uppercased())
for digit in hexDigits {
let value = Int(String(digit), radix: 16)!
if isPrime(value) {
count += 1
}
}
return count
}
func isPrime(_ value: Int) -> Bool {
if value <= 1 {
return false
}
let limit = Int(sqrt(Double(value))) + 1
for i in 2..<limit {
if value % i == 0 {
return false
}
}
return true
}
```
func hexKey(num: String) -> Int {
let digits = num.map { $0.hexDigitValue }
return digits.filter { isPrime($0) }.count
}
extension Character {
var hexDigitValue: Int {
switch self {
case "0"..."9":
return Int(String(self))!
case "A"..."F":
return Int(String(self).lowercased(), radix: 16)!
default:
return 0
}
}
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 { return false }
if num <= 3 { return true }
if num % 2 == 0 || num % 3 == 0 { return false }
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
let digits = num.map { $0.hexDigitValue }
return digits.filter { isPrime($0) }.count
}
extension Character {
var hexDigitValue: Int {
switch self {
case "0"..."9":
return Int(String(self))!
case "A"..."F":
return Int(String(self).lowercased(), radix: 16)!
default:
return 0
}
}
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 { return false }
if num <= 3 { return true }
if num % 2 == 0 || num % 3 == 0 { return false }
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func hexKey(num: String) -> Int {
let digits = num.map { $0.hexDigitValue }
return digits.filter { isPrime($0) }.count
}
extension Character {
var hexDigitValue: Int {
switch self {
case "0"..."9":
return Int(String(self))!
case "A"..."F":
return Int(String(self).lowercased(), radix: 16)!
default:
return 0
}
}
}
func isPrime(_ n: Int) -> Bool {
guard n > 1 else { return false }
var i = 3
while i * i <= n {
if n % i == 0 { return false }
i += 2
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
let digits = num.map { $0.hexDigitValue }
return digits.filter { isPrime($0) }.count
}
extension Character {
var hexDigitValue: Int {
switch self {
case "0"..."9":
return Int(String(self))!
case "A"..."F":
return Int(String(self).lowercased(), radix: 16)!
default:
return 0
}
}
}
func isPrime(_ n: Int) -> Bool {
guard n > 1 else { return false }
var i = 3
while i * i <= n {
if n % i == 0 { return false }
i += 2
}
return true
}
```
// XCTAssertTrue failed
func hexKey(num: String) -> Int {
var count = 0
for char in num.uppercased() {
let digit = Int(String(char), radix: 16)!
if digit == 2 || digit == 3 || digit == 5 || digit == 7 || digit == 11 || digit == 13 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num.uppercased() {
let digit = Int(String(char), radix: 16)!
if digit == 2 || digit == 3 || digit == 5 || digit == 7 || digit == 11 || digit == 13 {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let hexDigits = num.map { String($0) }
var primeCount = 0
for digit in hexDigits {
let decimalValue = Int(digit, radix: 16)!
if isPrime(decimalValue) {
primeCount += 1
}
}
return primeCount
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2<end_of_turn>
<start_of_turn>model
```swift
func hexKey(num: String) -> Int {
let hexDigits = num.map { String($0) }
var primeCount = 0
for digit in hexDigits {
let decimalValue = Int(digit, radix: 16)!
if isPrime(decimalValue) {
primeCount += 1
}
}
return primeCount
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
let padding = String(repeating: "0", count: 4 - binary.count)
return "db\(padding)\(binary)db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
let padding = String(repeating: "0", count: 4 - binary.count)
return "db\(padding)\(binary)db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
let padding = String(repeating: "0", count: 4 - binary.count)
return "db\(padding)\(binary)db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
let padding = String(repeating: "0", count: 4 - binary.count)
return "db\(padding)\(binary)db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
let padding = String(repeating: "0", count: 4 - binary.count)
return "db\(padding)\(binary)db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
let padding = String(repeating: "0", count: 4 - binary.count)
return "db\(padding)\(binary)db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binaryString = "db"
var number = decimal
while number > 0 {
let remainder = number % 2
binaryString = "\(binaryString)\(remainder)"
number /= 2
}
return String(binaryString.reversed()) + "db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = "db"
var number = decimal
while number > 0 {
let remainder = number % 2
binaryString = "\(binaryString)\(remainder)"
number /= 2
}
return String(binaryString.reversed()) + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db\(binary)db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db\(binary)db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db\(binary)db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db\(binary)db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db\(binary)db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db\(binary)db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db\(binary)db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db\(binary)db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
let padding = String(repeating: "0", count: 4 - binary.count)
return "db\(padding)\(binary)db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
let padding = String(repeating: "0", count: 4 - binary.count)
return "db\(padding)\(binary)db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db" + binary + "db"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"<end_of_turn>
<start_of_turn>model
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
let remainder = number % 2
binary = "\(remainder)" + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0...s.count - 3 {
let a = s[i]
let b = s[i + 1]
let c = s[i + 2]
if a == b || b == c || c == a {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0...s.count - 3 {
let a = s[i]
let b = s[i + 1]
let c = s[i + 2]
if a == b || b == c || c == a {
return false
}
}
return true
}
```
let a = s[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let b = s[i + 1] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let c = s[i + 2] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let set = Set(Array(s[i...i+2]))
if set.count != 3 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let set = Set(Array(s[i...i+2]))
if set.count != 3 {
return false
}
}
return true
}
```
let set = Set(Array(s[i...i+2])) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let c1 = s[i]
let c2 = s[i+1]
let c3 = s[i+2]
if c1 == c2 || c1 == c3 || c2 == c3 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let c1 = s[i]
let c2 = s[i+1]
let c3 = s[i+2]
if c1 == c2 || c1 == c3 || c2 == c3 {
return false
}
}
return true
}
```
let c1 = s[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let c2 = s[i+1] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let c3 = s[i+2] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let a = s[i...i+2]
if a.count != a.removeDuplicates().count {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let a = s[i...i+2]
if a.count != a.removeDuplicates().count {
return false
}
}
return true
}
```
let a = s[i...i+2] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
if a.count != a.removeDuplicates().count { // value of type 'String' has no member 'removeDuplicates'
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let set = Set([s[i], s[i + 1], s[i + 2]])
if set.count != 3 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let set = Set([s[i], s[i + 1], s[i + 2]])
if set.count != 3 {
return false
}
}
return true
}
```
let set = Set([s[i], s[i + 1], s[i + 2]]) // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let set = Set([s[i], s[i + 1], s[i + 2]]) // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let set = Set([s[i], s[i + 1], s[i + 2]]) // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] || s[i] == s[i + 2] || s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false<end_of_turn>
<start_of_turn>model
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map { grade in
switch grade {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "E"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map { grade in
switch grade {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "E"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "E"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "E"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "E"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "E"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map { grade in
switch grade {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "E"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map { grade in
switch grade {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "E"
}
}
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]<end_of_turn>
<start_of_turn>model
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
return grades.map {
switch $0 {
case 4.0:
return "A+"
case 3.7..<4.0:
return "A"
case 3.3..<3.7:
return "A-"
case 3.0..<3.3:
return "B+"
case 2.7..<3.0:
return "B"
case 2.3..<2.7:
return "B-"
case 2.0..<2.3:
return "C+"
case 1.7..<2.0:
return "C"
case 1.3..<1.7:
return "C-"
case 1.0..<1.3:
return "D+"
case 0.7..<1.0:
return "D"
default:
return "D-"
}
}
}
```
// XCTAssertTrue failed
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
var i = 2
while i <= Int(sqrt(Double(length))) {
if length % i == 0 {
return false
}
i += 1
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
var i = 2
while i <= Int(sqrt(Double(length))) {
if length % i == 0 {
return false
}
i += 1
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
var i = 2
while i <= Int(sqrt(Double(length))) {
if length % i == 0 {
return false
}
i += 1
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
var i = 2
while i <= Int(sqrt(Double(length))) {
if length % i == 0 {
return false
}
i += 1
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
if length <= 3 {
return true
}
if length % 2 == 0 || length % 3 == 0 {
return false
}
var i = 5
while i * i <= length {
if length % i == 0 || length % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
if length <= 3 {
return true
}
if length % 2 == 0 || length % 3 == 0 {
return false
}
var i = 5
while i * i <= length {
if length % i == 0 || length % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
if length <= 3 {
return true
}
if length % 2 == 0 || length % 3 == 0 {
return false
}
var i = 5
while i * i <= length {
if length % i == 0 || length % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
if length <= 3 {
return true
}
if length % 2 == 0 || length % 3 == 0 {
return false
}
var i = 5
while i * i <= length {
if length % i == 0 || length % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
if length <= 3 {
return true
}
if length % 2 == 0 || length % 3 == 0 {
return false
}
var i = 5
while i * i <= length {
if length % i == 0 || length % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
if length <= 3 {
return true
}
if length % 2 == 0 || length % 3 == 0 {
return false
}
var i = 5
while i * i <= length {
if length % i == 0 || length % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
var i = 3
while i * i <= length {
if length % i == 0 {
return false
}
i += 2
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
var i = 3
while i * i <= length {
if length % i == 0 {
return false
}
i += 2
}
return true
}
```
// XCTAssertTrue failed
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
if length == 2 {
return true
}
if length % 2 == 0 {
return false
}
var i = 3
while i <= Int(sqrt(Double(length))) {
if length % i == 0 {
return false
}
i += 2
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false<end_of_turn>
<start_of_turn>model
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
if length == 2 {
return true
}
if length % 2 == 0 {
return false
}
var i = 3
while i <= Int(sqrt(Double(length))) {
if length % i == 0 {
return false
}
i += 2
}
return true
}
```
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
if digits.first == 1 || digits.last == 1 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
if digits.first == 1 || digits.last == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 9
}
let count = Int(pow(Double(9), Double(n - 1))) * 2
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 9
}
let count = Int(pow(Double(9), Double(n - 1))) * 2
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
let digit = String(n).count
if digit == 1 {
return 2
}
return 9 * (Int(pow(Double(10), Double(digit - 1))) - 1) + (n - Int(pow(Double(10), Double(digit - 1)))) + 1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
let digit = String(n).count
if digit == 1 {
return 2
}
return 9 * (Int(pow(Double(10), Double(digit - 1))) - 1) + (n - Int(pow(Double(10), Double(digit - 1)))) + 1
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 10
}
let total = Int(pow(Double(10), Double(n - 1)))
let last = Int(pow(Double(10), Double(n - 1))) - 1
let first = total
let mid = total / 2
return total - (last - first + 1 - mid)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 10
}
let total = Int(pow(Double(10), Double(n - 1)))
let last = Int(pow(Double(10), Double(n - 1))) - 1
let first = total
let mid = total / 2
return total - (last - first + 1 - mid)
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
let digits = String(n).count
var count = 0
for i in 1...n {
let s = String(i)
if s.first == "1" || s.last == "1" {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
let digits = String(n).count
var count = 0
for i in 1...n {
let s = String(i)
if s.first == "1" || s.last == "1" {
count += 1
}
}
return count
}
```
let digits = String(n).count // initialization of immutable value 'digits' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 10
}
let total = Int(pow(Double(10), Double(n - 1)))
let first = Int(pow(Double(10), Double(n - 1)))
let last = Int(pow(Double(10), Double(n))) - 1
var count = 0
for i in first...last {
if String(i).first == "1" || String(i).last == "1" {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 10
}
let total = Int(pow(Double(10), Double(n - 1)))
let first = Int(pow(Double(10), Double(n - 1)))
let last = Int(pow(Double(10), Double(n))) - 1
var count = 0
for i in first...last {
if String(i).first == "1" || String(i).last == "1" {
count += 1
}
}
return count
}
```
let total = Int(pow(Double(10), Double(n - 1))) // initialization of immutable value 'total' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let number = String(i)
if number.first == "1" || number.last == "1" {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let number = String(i)
if number.first == "1" || number.last == "1" {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let numberString = String(i)
if numberString.first == "1" || numberString.last == "1" {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let numberString = String(i)
if numberString.first == "1" || numberString.last == "1" {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let number = String(i)
if number.first == "1" || number.last == "1" {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let number = String(i)
if number.first == "1" || number.last == "1" {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 9
}
var result = 8 * pow(10, n - 2)
result += Int(Double(pow(10, n - 1)) - Double(pow(10, n - 2)))
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.<end_of_turn>
<start_of_turn>model
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 9
}
var result = 8 * pow(10, n - 2)
result += Int(Double(pow(10, n - 1)) - Double(pow(10, n - 2)))
return result
}
```
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
let digit = n % 2
sum += digit
n /= 2
}
return String(sum, radix: 2)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
let digit = n % 2
sum += digit
n /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let digit = number % 2
sum += digit
number /= 2
}
return String(sum, radix: 2)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let digit = number % 2
sum += digit
number /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let digit = number % 2
sum += digit
number /= 2
}
return String(sum, radix: 2)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let digit = number % 2
sum += digit
number /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
let digit = n % 2
sum += digit
n /= 2
}
return String(sum, radix: 2)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
let digit = n % 2
sum += digit
n /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let digit = number % 2
sum += digit
number /= 2
}
return String(sum, radix: 2)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let digit = number % 2
sum += digit
number /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let remainder = number % 2
sum += remainder
number /= 2
}
return String(sum, radix: 2)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let remainder = number % 2
sum += remainder
number /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let digit = number % 2
sum += digit
number /= 2
}
return String(sum, radix: 2)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"<end_of_turn>
<start_of_turn>model
```swift
func solve(N: Int) -> String {
var sum = 0
var number = N
while number > 0 {
let digit = number % 2
sum += digit
number /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
func add(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.offset % 2 != 0 && $0.element % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.offset % 2 != 0 && $0.element % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 0, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
return lst.enumerated().filter { $0.offset % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
return lst.enumerated().filter { $0.offset % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +)
}
```
func add(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.index % 2 != 0 && $0.element % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.index % 2 != 0 && $0.element % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
```
.filter { $0.index % 2 != 0 && $0.element % 2 == 0 } // trailing closure passed to parameter of type 'Predicate<EnumeratedSequence<[Int]>.Element>' (aka 'Predicate<(offset: Int, element: Int)>') that does not accept a closure
func add(lst: [Int]) -> Int {
return lst.enumerated().filter { $0.index % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2<end_of_turn>
<start_of_turn>model
```swift
func add(lst: [Int]) -> Int {
return lst.enumerated().filter { $0.index % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +)
}
```
return lst.enumerated().filter { $0.index % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +) // trailing closure passed to parameter of type 'Predicate<EnumeratedSequence<[Int]>.Element>' (aka 'Predicate<(offset: Int, element: Int)>') that does not accept a closure
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ").map(String.init)
let orderedWords = words.map { word -> String in
let sortedChars = word.map { char in
return String(char).sorted().joined()
}
return sortedChars.joined()
}
return orderedWords.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ").map(String.init)
let orderedWords = words.map { word -> String in
let sortedChars = word.map { char in
return String(char).sorted().joined()
}
return sortedChars.joined()
}
return orderedWords.joined(separator: " ")
}
```
return String(char).sorted().joined() // referencing instance method 'joined(separator:)' on 'BidirectionalCollection' requires the types 'String.Element' (aka 'Character') and 'String' be equivalent
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { word -> String in
let sortedChars = word.map { $0 }.sorted()
return String(sortedChars)
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { word -> String in
let sortedChars = word.map { $0 }.sorted()
return String(sortedChars)
}.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ").map(String.init)
let orderedWords = words.map { word -> String in
let sortedChars = word.map { $0.asciiValue! }.sorted()
return String(sortedChars.map { Character(UnicodeScalar($0)) })
}
return orderedWords.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ").map(String.init)
let orderedWords = words.map { word -> String in
let sortedChars = word.map { $0.asciiValue! }.sorted()
return String(sortedChars.map { Character(UnicodeScalar($0)) })
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ").map(String.init)
let orderedWords = words.map { word in
let sortedChars = word.sorted { $0.asciiValue! < $1.asciiValue! }
return String(sortedChars)
}
return orderedWords.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ").map(String.init)
let orderedWords = words.map { word in
let sortedChars = word.sorted { $0.asciiValue! < $1.asciiValue! }
return String(sortedChars)
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ").map { $0 }
let orderedWords = words.map { word in
let characters = Array(word).sorted { $0.asciiValue! < $1.asciiValue! }
return String(characters)
}
return orderedWords.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ").map { $0 }
let orderedWords = words.map { word in
let characters = Array(word).sorted { $0.asciiValue! < $1.asciiValue! }
return String(characters)
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
return s.components(separatedBy: " ").map { word in
let sortedChars = word.map { String($0) }.sorted { $0 > $1 }
return sortedChars.joined()
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
return s.components(separatedBy: " ").map { word in
let sortedChars = word.map { String($0) }.sorted { $0 > $1 }
return sortedChars.joined()
}.joined(separator: " ")
}
```
// XCTAssertTrue failed
func antiShuffle(s: String) -> String {
return s.components(separatedBy: " ").map { word in
let sortedChars = word.map { String($0) }.sorted { $0 > $1 }
return sortedChars.joined()
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
return s.components(separatedBy: " ").map { word in
let sortedChars = word.map { String($0) }.sorted { $0 > $1 }
return sortedChars.joined()
}.joined(separator: " ")
}
```
// XCTAssertTrue failed
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { word -> String in
let sortedChars = word.map { $0 }.sorted()
return String(sortedChars)
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { word -> String in
let sortedChars = word.map { $0 }.sorted()
return String(sortedChars)
}.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { word -> String in
var chars = Array(word).sorted { $0.asciiValue! < $1.asciiValue! }
return String(chars)
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { word -> String in
var chars = Array(word).sorted { $0.asciiValue! < $1.asciiValue! }
return String(chars)
}.joined(separator: " ")
}
```
var chars = Array(word).sorted { $0.asciiValue! < $1.asciiValue! } // variable 'chars' was never mutated; consider changing to 'let' constant
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { word in
return String(word.map { char in
return String(char.sorted())
}.joined())
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"<end_of_turn>
<start_of_turn>model
```swift
func antiShuffle(s: String) -> String {
return s.split(separator: " ").map { word in
return String(word.map { char in
return String(char.sorted())
}.joined())
}.joined(separator: " ")
}
```
return String(char.sorted()) // value of type 'String.Element' (aka 'Character') has no member 'sorted'
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated().reversed() {
if element == x {
result.append((i, j))
}
}
}
result.sort(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated().reversed() {
if element == x {
result.append((i, j))
}
}
}
result.sort(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (index, row) in lst.enumerated() {
for (column, value) in row.enumerated().reversed() {
if value == x {
result.append((index, column))
}
}
}
result.sort { $0.0 < $1.0 }
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (index, row) in lst.enumerated() {
for (column, value) in row.enumerated().reversed() {
if value == x {
result.append((index, column))
}
}
}
result.sort { $0.0 < $1.0 }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (indexRow, row) in lst.enumerated() {
for (indexColumn, element) in row.enumerated().reversed() {
if element == x {
result.append((indexRow, indexColumn))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (indexRow, row) in lst.enumerated() {
for (indexColumn, element) in row.enumerated().reversed() {
if element == x {
result.append((indexRow, indexColumn))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, num) in row.enumerated().reversed() {
if num == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, num) in row.enumerated().reversed() {
if num == x {
result.append((i, j))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, value) in row.enumerated().reversed() {
if value == x {
result.append((rowIndex, columnIndex))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, value) in row.enumerated().reversed() {
if value == x {
result.append((rowIndex, columnIndex))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (index, row) in lst.enumerated() {
for (column, value) in row.enumerated().reversed() {
if value == x {
result.append((index, column))
}
}
}
result.sort(by: { $0.0 == $1.0 ? $0.1 > $1.1 : $0.0 < $1.0 })
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (index, row) in lst.enumerated() {
for (column, value) in row.enumerated().reversed() {
if value == x {
result.append((index, column))
}
}
}
result.sort(by: { $0.0 == $1.0 ? $0.1 > $1.1 : $0.0 < $1.0 })
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated().reversed() {
if element == x {
result.append((i, j))
}
}
}
result.sort(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated().reversed() {
if element == x {
result.append((i, j))
}
}
}
result.sort(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated().reversed() {
if element == x {
result.append((i, j))
}
}
}
result.sort(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated().reversed() {
if element == x {
result.append((i, j))
}
}
}
result.sort(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (row, arr) in lst.enumerated() {
for (col, num) in arr.enumerated().reversed() {
if num == x {
result.append((row, col))
}
}
}
result.sort(by: { $0.0 == $1.0 ? $0.1 > $1.1 : $0.0 < $1.0 })
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (row, arr) in lst.enumerated() {
for (col, num) in arr.enumerated().reversed() {
if num == x {
result.append((row, col))
}
}
}
result.sort(by: { $0.0 == $1.0 ? $0.1 > $1.1 : $0.0 < $1.0 })
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated().reversed() {
if value == x {
result.append((i, j))
}
}
}
result.sort { (p1, p2) -> Bool in
if p1.0 == p2.0 {
return p1.1 > p2.1
} else {
return p1.0 < p2.0
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]<end_of_turn>
<start_of_turn>model
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
guard !lst.isEmpty else { return [] }
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated().reversed() {
if value == x {
result.append((i, j))
}
}
}
result.sort { (p1, p2) -> Bool in
if p1.0 == p2.0 {
return p1.1 > p2.1
} else {
return p1.0 < p2.0
}
}
return result
}
```
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = result.first! + result.last!
result.sort {
if sum % 2 == 1 {
return $0 < $1
} else {
return $0 > $1
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = result.first! + result.last!
result.sort {
if sum % 2 == 1 {
return $0 < $1
} else {
return $0 > $1
}
}
return result
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = result.first! + result.last!
result.sort(by: { (a, b) -> Bool in
if sum % 2 == 1 {
return a < b
} else {
return a > b
}
})
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = result.first! + result.last!
result.sort(by: { (a, b) -> Bool in
if sum % 2 == 1 {
return a < b
} else {
return a > b
}
})
return result
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let sum = array.first! + array.last!
let sortedArray = sum % 2 == 1 ? array.sorted() : array.sorted(by: >)
return sortedArray
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let sum = array.first! + array.last!
let sortedArray = sum % 2 == 1 ? array.sorted() : array.sorted(by: >)
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard !array.isEmpty else { return [] }
let sum = array.first! + array.last!
let sortedArray = array.sorted { (a, b) -> Bool in
if sum % 2 == 1 {
return a < b
} else {
return a > b
}
}
return sortedArray
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
guard !array.isEmpty else { return [] }
let sum = array.first! + array.last!
let sortedArray = array.sorted { (a, b) -> Bool in
if sum % 2 == 1 {
return a < b
} else {
return a > b
}
}
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard !array.isEmpty else { return array }
let sum = array[0] + array[array.count - 1]
var sortedArray = array
if sum % 2 == 1 {
sortedArray.sort(by: <)
} else {
sortedArray.sort(by: >)
}
return sortedArray
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
guard !array.isEmpty else { return array }
let sum = array[0] + array[array.count - 1]
var sortedArray = array
if sum % 2 == 1 {
sortedArray.sort(by: <)
} else {
sortedArray.sort(by: >)
}
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard !array.isEmpty else { return [] }
let sum = array[0] + array[array.count - 1]
let sortedArray = array.sorted { (a, b) -> Bool in
if sum % 2 == 1 {
return a < b
} else {
return a > b
}
}
return sortedArray
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
guard !array.isEmpty else { return [] }
let sum = array[0] + array[array.count - 1]
let sortedArray = array.sorted { (a, b) -> Bool in
if sum % 2 == 1 {
return a < b
} else {
return a > b
}
}
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = result.first! + result.last!
result.sort {
if sum % 2 == 1 {
return $0 < $1
} else {
return $0 > $1
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = result.first! + result.last!
result.sort {
if sum % 2 == 1 {
return $0 < $1
} else {
return $0 > $1
}
}
return result
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
guard !array.isEmpty else { return [] }
let sum = array[0] + array[array.count - 1]
return sum % 2 == 1 ? array.sorted() : array.sorted(by: >)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
guard !array.isEmpty else { return [] }
let sum = array[0] + array[array.count - 1]
return sum % 2 == 1 ? array.sorted() : array.sorted(by: >)
}
```
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
let sortedArray = array.sorted { (a, b) -> Bool in
if sum % 2 == 1 {
return a < b
} else {
return a > b
}
}
return sortedArray
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
let sortedArray = array.sorted { (a, b) -> Bool in
if sum % 2 == 1 {
return a < b
} else {
return a > b
}
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array[0] + array[array.count - 1]
var sortedArray = array
if sum % 2 == 1 {
sortedArray.sort()
} else {
sortedArray.sort(by: >)
}
return sortedArray
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array[0] + array[array.count - 1]
var sortedArray = array
if sum % 2 == 1 {
sortedArray.sort()
} else {
sortedArray.sort(by: >)
}
return sortedArray
}
```
// Fatal error: Index out of range
func encrypt(s: String) -> String {
return s.map { char in
let offset = 2 * 2
let base = "abcdefghijklmnopqrstuvwxyz"
let index = base.firstIndex(of: char)!
let newIndex = (index + offset) % base.count
return base[newIndex]
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
return s.map { char in
let offset = 2 * 2
let base = "abcdefghijklmnopqrstuvwxyz"
let index = base.firstIndex(of: char)!
let newIndex = (index + offset) % base.count
return base[newIndex]
}.joined()
}
```
let newIndex = (index + offset) % base.count // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + 4) % 26
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + 4) % 26
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
let newIndex = (index + 4) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encrypt(s: String) -> String {
return s.map { char in
let base = Int(UnicodeScalar(char).value)
if (base >= Int(UnicodeScalar("a").value)) && (base <= Int(UnicodeScalar("z").value)) {
return UnicodeScalar(UInt(base + (2 * 2) % 26)).escaped()
} else {
return String(char)
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
return s.map { char in
let base = Int(UnicodeScalar(char).value)
if (base >= Int(UnicodeScalar("a").value)) && (base <= Int(UnicodeScalar("z").value)) {
return UnicodeScalar(UInt(base + (2 * 2) % 26)).escaped()
} else {
return String(char)
}
}.joined()
}
```
let base = Int(UnicodeScalar(char).value) // no exact matches in call to initializer
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + 4) % 26
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + 4) % 26
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
let newIndex = (index + 4) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + 4) % 26
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + 4) % 26
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
let newIndex = (index + 4) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + (alphabet.count * 2)) % alphabet.count
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + (alphabet.count * 2)) % alphabet.count
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
let newIndex = (index + (alphabet.count * 2)) % alphabet.count // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + (alphabet.count * 2)) % alphabet.count
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + (alphabet.count * 2)) % alphabet.count
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
let newIndex = (index + (alphabet.count * 2)) % alphabet.count // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + (alphabet.count * 2)) % alphabet.count
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + (alphabet.count * 2)) % alphabet.count
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
let newIndex = (index + (alphabet.count * 2)) % alphabet.count // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encrypt(s: String) -> String {
return s.map { char in
let base: UInt16 = 97
let shift: UInt16 = (2 * 2)
let offset: UInt16 = (char.asciiValue! - base + shift) % 26 + base
return Character(UnicodeScalar(offset))
}.map { String($0) }.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
return s.map { char in
let base: UInt16 = 97
let shift: UInt16 = (2 * 2)
let offset: UInt16 = (char.asciiValue! - base + shift) % 26 + base
return Character(UnicodeScalar(offset))
}.map { String($0) }.joined()
}
```
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + (alphabet.count / 2) * 2) % alphabet.count
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"<end_of_turn>
<start_of_turn>model
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + (alphabet.count / 2) * 2) % alphabet.count
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
let sortedList = lst.sorted()
return sortedList[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
let sortedList = lst.sorted()
return sortedList[1]
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
let sorted = lst.sorted()
return sorted[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
let sorted = lst.sorted()
return sorted[1]
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
let sortedList = lst.sorted()
return sortedList[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
let sortedList = lst.sorted()
return sortedList[1]
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
var smallest = lst.min()!
var secondSmallest: Int?
for num in lst {
if num > smallest && (secondSmallest == nil || num < secondSmallest!) {
secondSmallest = num
}
}
return secondSmallest
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
var smallest = lst.min()!
var secondSmallest: Int?
for num in lst {
if num > smallest && (secondSmallest == nil || num < secondSmallest!) {
secondSmallest = num
}
}
return secondSmallest
}
```
var smallest = lst.min()! // variable 'smallest' was never mutated; consider changing to 'let' constant
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
let sortedLst = lst.sorted()
return sortedLst[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
let sortedLst = lst.sorted()
return sortedLst[1]
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
var sorted = lst.sorted()
return sorted[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
var sorted = lst.sorted()
return sorted[1]
}
```
var sorted = lst.sorted() // variable 'sorted' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var secondMin = Int.max
for num in lst {
if num < min {
secondMin = min
min = num
} else if num < secondMin && num != min {
secondMin = num
}
}
return secondMin == Int.max ? nil : secondMin
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var secondMin = Int.max
for num in lst {
if num < min {
secondMin = min
min = num
} else if num < secondMin && num != min {
secondMin = num
}
}
return secondMin == Int.max ? nil : secondMin
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
var sorted = lst.sorted()
return sorted[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
var sorted = lst.sorted()
return sorted[1]
}
```
var sorted = lst.sorted() // variable 'sorted' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
var sortedList = lst.sorted()
return sortedList[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil<end_of_turn>
<start_of_turn>model
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else {
return nil
}
var sortedList = lst.sorted()
return sortedList[1]
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
return sentences.filter { $0.hasPrefix("I") }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
return sentences.filter { $0.hasPrefix("I") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
return sentences.filter { $0.hasPrefix("I") }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
return sentences.filter { $0.hasPrefix("I") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
return sentences.filter { $0.hasPrefix("I") }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
return sentences.filter { $0.hasPrefix("I") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
return sentences.filter { $0.hasPrefix("I") }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
return sentences.filter { $0.hasPrefix("I") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
return sentences.filter { $0.lowercased().hasPrefix("i") }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
return sentences.filter { $0.lowercased().hasPrefix("i") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
return sentences.filter { $0.hasPrefix("I") }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
return sentences.filter { $0.hasPrefix("I") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
return sentences.filter { $0.lowercased().hasPrefix("i") }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
return sentences.filter { $0.lowercased().hasPrefix("i") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
return sentences.filter { $0.lowercased().hasPrefix("i") }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
return sentences.filter { $0.lowercased().hasPrefix("i") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).filter { !$0.isEmpty }
var boredomCount = 0
for sentence in sentences {
if sentence.lowercased().hasPrefix("i") {
boredomCount += 1
}
}
return boredomCount
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).filter { !$0.isEmpty }
var boredomCount = 0
for sentence in sentences {
if sentence.lowercased().hasPrefix("i") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
var boredomCount = 0
for sentence in sentences {
if sentence.lowercased().hasPrefix("i") {
boredomCount += 1
}
}
return boredomCount
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1<end_of_turn>
<start_of_turn>model
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"]).map { $0.trimmingCharacters(in: .whitespaces) }
var boredomCount = 0
for sentence in sentences {
if sentence.lowercased().hasPrefix("i") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if Int(x) == Int(x + y + z - x) && Int(y) == Int(x + y + z - y) && Int(z) == Int(x + y + z - z) {
return true
} else {
return false
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if Int(x) == Int(x + y + z - x) && Int(y) == Int(x + y + z - y) && Int(z) == Int(x + y + z - z) {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInteger && y.isInteger && z.isInteger {
return x == y + z || y == x + z || z == x + y
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInteger && y.isInteger && z.isInteger {
return x == y + z || y == x + z || z == x + y
}
return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let numbers = [x, y, z]
let sum = numbers.reduce(0, +)
for number in numbers {
if number == sum - number {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let numbers = [x, y, z]
let sum = numbers.reduce(0, +)
for number in numbers {
if number == sum - number {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInteger && y.isInteger && z.isInteger {
return x == y + z || y == x + z || z == x + y
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInteger && y.isInteger && z.isInteger {
return x == y + z || y == x + z || z == x + y
}
return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (Int(x) == Int(y) + Int(z)) ||
(Int(y) == Int(x) + Int(z)) ||
(Int(z) == Int(x) + Int(y))
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let numbers = [x, y, z]
for i in 0..<numbers.count {
let sum = numbers[0..<i] + numbers[i+1..<numbers.count].reduce(0, +)
if numbers[i] == sum {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false<end_of_turn>
<start_of_turn>model
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let numbers = [x, y, z]
for i in 0..<numbers.count {
let sum = numbers[0..<i] + numbers[i+1..<numbers.count].reduce(0, +)
if numbers[i] == sum {
return true
}
}
return false
}
```
let sum = numbers[0..<i] + numbers[i+1..<numbers.count].reduce(0, +) // cannot convert value of type 'Range<Int>' to expected argument type 'Int'
let sum = numbers[0..<i] + numbers[i+1..<numbers.count].reduce(0, +) // binary operator '+' cannot be applied to two 'Double' operands
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message {
let lowercasedChar = char.lowercased()
if alphabet.contains(lowercasedChar) {
let index = alphabet.firstIndex(of: lowercasedChar)!
let encodedChar = alphabet[(index + 2) % 26]
encodedMessage.append(char.isUppercase ? encodedChar.uppercased() : encodedChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message {
let lowercasedChar = char.lowercased()
if alphabet.contains(lowercasedChar) {
let index = alphabet.firstIndex(of: lowercasedChar)!
let encodedChar = alphabet[(index + 2) % 26]
encodedMessage.append(char.isUppercase ? encodedChar.uppercased() : encodedChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
let index = alphabet.firstIndex(of: lowercasedChar)! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
return message.map { char in
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + 2) % 26
let newChar = alphabet[newIndex]
if ["a", "e", "i", "o", "u"].contains(String(char)) {
return newChar
} else {
return char.isUppercase ? newChar.uppercased() : newChar
}
} else {
return char
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
return message.map { char in
if let index = alphabet.firstIndex(of: char) {
let newIndex = (index + 2) % 26
let newChar = alphabet[newIndex]
if ["a", "e", "i", "o", "u"].contains(String(char)) {
return newChar
} else {
return char.isUppercase ? newChar.uppercased() : newChar
}
} else {
return char
}
}.joined()
}
```
let newIndex = (index + 2) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return message.map { char in
if vowels.contains(char.lowercased()) {
let index = "abcdefghijklmnopqrstuvwxyz".firstIndex(of: char)!
let newIndex = (index + 2) % 26
return "abcdefghijklmnopqrstuvwxyz"[newIndex]
} else {
return char.isUppercase ? char.lowercased() : char.uppercased()
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return message.map { char in
if vowels.contains(char.lowercased()) {
let index = "abcdefghijklmnopqrstuvwxyz".firstIndex(of: char)!
let newIndex = (index + 2) % 26
return "abcdefghijklmnopqrstuvwxyz"[newIndex]
} else {
return char.isUppercase ? char.lowercased() : char.uppercased()
}
}.joined()
}
```
let newIndex = (index + 2) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message {
if let index = alphabet.firstIndex(of: char) {
let caseSwappedChar = char.isLowercase ? char.uppercased() : char.lowercased()
let encodedChar = alphabet[(index + 2) % 26]
encodedMessage.append(caseSwappedChar == char ? encodedChar : caseSwappedChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message {
if let index = alphabet.firstIndex(of: char) {
let caseSwappedChar = char.isLowercase ? char.uppercased() : char.lowercased()
let encodedChar = alphabet[(index + 2) % 26]
encodedMessage.append(caseSwappedChar == char ? encodedChar : caseSwappedChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
let encodedChar = alphabet[(index + 2) % 26] // cannot convert value of type 'String.Index' to expected argument type 'Int'
encodedMessage.append(caseSwappedChar == char ? encodedChar : caseSwappedChar) // binary operator '==' cannot be applied to operands of type 'String' and 'Character'
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message {
if let index = alphabet.firstIndex(of: char) {
let newChar = alphabet[(alphabet.index(after: index)) % 26]
encodedMessage.append(char.isUppercase ? newChar.uppercased() : newChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for char in message {
if let index = alphabet.firstIndex(of: char) {
let newChar = alphabet[(alphabet.index(after: index)) % 26]
encodedMessage.append(char.isUppercase ? newChar.uppercased() : newChar)
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
let newChar = alphabet[(alphabet.index(after: index)) % 26] // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let vowels = "aeiou"
return message.map { char in
if let index = alphabet.firstIndex(of: char) {
if vowels.contains(char) {
let newIndex = (index + 2) % 26
return alphabet[alphabet.index(alphabet.startIndex, offsetBy: newIndex)]
} else {
return char.isUppercase ? char.lowercased() : char.uppercased()
}
} else {
return char
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let vowels = "aeiou"
return message.map { char in
if let index = alphabet.firstIndex(of: char) {
if vowels.contains(char) {
let newIndex = (index + 2) % 26
return alphabet[alphabet.index(alphabet.startIndex, offsetBy: newIndex)]
} else {
return char.isUppercase ? char.lowercased() : char.uppercased()
}
} else {
return char
}
}.joined()
}
```
let newIndex = (index + 2) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return message.map { char in
if vowels.contains(char.lowercased()) {
let newChar = Character(UnicodeScalar(Int(char.unicodeScalars.first!.value) + 2)!)
return newChar
} else {
return char.isUppercase ? char.lowercase() : char.uppercase()
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return message.map { char in
if vowels.contains(char.lowercased()) {
let newChar = Character(UnicodeScalar(Int(char.unicodeScalars.first!.value) + 2)!)
return newChar
} else {
return char.isUppercase ? char.lowercase() : char.uppercase()
}
}.joined()
}
```
return newChar // cannot convert value of type 'Character' to closure result type 'String'
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let vowels = "aeiou"
return message.map { char in
if let index = alphabet.firstIndex(of: char) {
if vowels.contains(char) {
let newIndex = (index + 2) % 26
return alphabet[alphabet.index(alphabet.startIndex, offsetBy: newIndex)]
} else {
return char.isUppercase ? char.lowercased() : char.uppercased()
}
} else {
return char
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let vowels = "aeiou"
return message.map { char in
if let index = alphabet.firstIndex(of: char) {
if vowels.contains(char) {
let newIndex = (index + 2) % 26
return alphabet[alphabet.index(alphabet.startIndex, offsetBy: newIndex)]
} else {
return char.isUppercase ? char.lowercased() : char.uppercased()
}
} else {
return char
}
}.joined()
}
```
let newIndex = (index + 2) % 26 // cannot convert value of type 'String.Index' to expected argument type 'Int'
func encode(message: String) -> String {
let letters = Array(message.lowercased())
var encodedMessage = ""
for letter in letters {
if letter.isLetter {
let isUppercase = letter.isUppercase
let encodedLetter = isUppercase ? letter.lowercased() : letter.uppercased()
let vowelIndex = ["a", "e", "i", "o", "u"].firstIndex(of: String(letter))
let encodedVowel = vowelIndex != nil ? String(Array("abcdefghijklmnopqrstuvwxyz")[(vowelIndex! + 2) % 26]) : String(letter)
encodedMessage += isUppercase ? encodedVowel.uppercased() : encodedVowel
} else {
encodedMessage += String(letter)
}
}
return encodedMessage
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let letters = Array(message.lowercased())
var encodedMessage = ""
for letter in letters {
if letter.isLetter {
let isUppercase = letter.isUppercase
let encodedLetter = isUppercase ? letter.lowercased() : letter.uppercased()
let vowelIndex = ["a", "e", "i", "o", "u"].firstIndex(of: String(letter))
let encodedVowel = vowelIndex != nil ? String(Array("abcdefghijklmnopqrstuvwxyz")[(vowelIndex! + 2) % 26]) : String(letter)
encodedMessage += isUppercase ? encodedVowel.uppercased() : encodedVowel
} else {
encodedMessage += String(letter)
}
}
return encodedMessage
}
```
let encodedLetter = isUppercase ? letter.lowercased() : letter.uppercased() // initialization of immutable value 'encodedLetter' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
let letters = Array(message.lowercased())
return letters.map { letter in
if vowels.contains(letter) {
let index = vowels.firstIndex(of: letter)!
let nextVowel = vowels[(index + 2) % vowels.count]
return nextVowel.uppercased()
} else {
return letter.isUppercase ? letter.lowercased() : letter.uppercased()
}
}.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"<end_of_turn>
<start_of_turn>model
```swift
func encode(message: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
let letters = Array(message.lowercased())
return letters.map { letter in
if vowels.contains(letter) {
let index = vowels.firstIndex(of: letter)!
let nextVowel = vowels[(index + 2) % vowels.count]
return nextVowel.uppercased()
} else {
return letter.isUppercase ? letter.lowercased() : letter.uppercased()
}
}.joined()
}
```
let nextVowel = vowels[(index + 2) % vowels.count] // referencing operator function '+' on 'SIMD' requires that 'Set<Character>.Index' conform to 'SIMD'
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 { return false }
if num <= 3 { return true }
if num % 2 == 0 || num % 3 == 0 { return false }
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
guard let largestPrime = lst.filter(isPrime).max() else { return 0 }
var sum = 0
var num = largestPrime
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 { return false }
if num <= 3 { return true }
if num % 2 == 0 || num % 3 == 0 { return false }
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
guard let largestPrime = lst.filter(isPrime).max() else { return 0 }
var sum = 0
var num = largestPrime
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
while maxPrime > 0 {
sum += maxPrime % 10
maxPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sum = 0
while largestPrime != 0 {
sum += largestPrime % 10
largestPrime /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sum = 0
while largestPrime != 0 {
sum += largestPrime % 10
largestPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
return num.description.reduce(0) { $0 + Int(String($1))! }
}
guard let largestPrime = lst.filter(isPrime).max() else {
return 0
}
return sumOfDigits(largestPrime)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
return num.description.reduce(0) { $0 + Int(String($1))! }
}
guard let largestPrime = lst.filter(isPrime).max() else {
return 0
}
return sumOfDigits(largestPrime)
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n < 2 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ n: Int) -> Int {
var sum = 0
var number = n
while number > 0 {
sum += number % 10
number /= 10
}
return sum
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n < 2 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ n: Int) -> Int {
var sum = 0
var number = n
while number > 0 {
sum += number % 10
number /= 10
}
return sum
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 { return false }
i += 6
}
return true
}
guard let largestPrime = lst.filter(isPrime).max() else { return 0 }
return largestPrime.digitsSum()
}
extension Int {
func digitsSum() -> Int {
var sum = 0
var n = self
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 { return false }
i += 6
}
return true
}
guard let largestPrime = lst.filter(isPrime).max() else { return 0 }
return largestPrime.digitsSum()
}
extension Int {
func digitsSum() -> Int {
var sum = 0
var n = self
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sum = 0
while largestPrime != 0 {
sum += largestPrime % 10
largestPrime /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(num))) + 1 {
if num % i == 0 {
return false
}
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sum = 0
while largestPrime != 0 {
sum += largestPrime % 10
largestPrime /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n < 2 { return false }
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 { return false }
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sum = 0
while largestPrime != 0 {
sum += largestPrime % 10
largestPrime /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7<end_of_turn>
<start_of_turn>model
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n < 2 { return false }
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 { return false }
}
return true
}
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
var sum = 0
while largestPrime != 0 {
sum += largestPrime % 10
largestPrime /= 10
}
return sum
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var number = 2
while number < n {
var isPrime = true
for divisor in 2..<number {
if number % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(number)
}
number += 1
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var number = 2
while number < n {
var isPrime = true
for divisor in 2..<number {
if number % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(number)
}
number += 1
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var isPrime: Bool
for i in 2..<n {
isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var isPrime: Bool
for i in 2..<n {
isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var isPrime: Bool
for num in 2..<n {
isPrime = true
for divisor in 2..<num {
if num % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(num)
}
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var isPrime: Bool
for num in 2..<n {
isPrime = true
for divisor in 2..<num {
if num % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(num)
}
}
return primes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var number = 2
while number < n {
var isPrime = true
for divisor in 2..<number {
if number % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(number)
}
number += 1
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var number = 2
while number < n {
var isPrime = true
for divisor in 2..<number {
if number % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(number)
}
number += 1
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var isPrime: Bool
for num in 2..<n {
isPrime = true
for divisor in 2..<num {
if num % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(num)
}
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var isPrime: Bool
for num in 2..<n {
isPrime = true
for divisor in 2..<num {
if num % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(num)
}
}
return primes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var isPrime: Bool
for num in 2..<n {
isPrime = true
for divisor in 2..<num {
if num % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(num)
}
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var isPrime: Bool
for num in 2..<n {
isPrime = true
for divisor in 2..<num {
if num % divisor == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(num)
}
}
return primes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]<end_of_turn>
<start_of_turn>model
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
```
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnit = a % 10
let bUnit = b % 10
return aUnit * bUnit
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnit = a % 10
let bUnit = b % 10
return aUnit * bUnit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnit = a % 10
let bUnit = b % 10
return aUnit * bUnit
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnit = a % 10
let bUnit = b % 10
return aUnit * bUnit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20<end_of_turn>
<start_of_turn>model
```swift
func multiply(a: Int, b: Int) -> Int {
return (a % 10) * (b % 10)
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
let vowels: Set<Character> = ["A", "E", "I", "O", "U"]
for (index, character) in s.enumerated() {
if vowels.contains(character) && index % 2 == 0 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
var count = 0
let vowels: Set<Character> = ["A", "E", "I", "O", "U"]
for (index, character) in s.enumerated() {
if vowels.contains(character) && index % 2 == 0 {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() where index % 2 == 0 {
if char.isUppercase {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() where index % 2 == 0 {
if char.isUppercase {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() {
if i % 2 == 0 && char.isUppercase {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() {
if i % 2 == 0 && char.isUppercase {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
return s.enumerated().filter { $0.offset % 2 == 0 && $0.element.isUppercase }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
return s.enumerated().filter { $0.offset % 2 == 0 && $0.element.isUppercase }.count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
return s.enumerated().filter { $0.offset % 2 == 0 && $0.element.isUppercase }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
return s.enumerated().filter { $0.offset % 2 == 0 && $0.element.isUppercase }.count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
let vowels: Set<Character> = ["A", "E", "I", "O", "U"]
for (index, character) in s.enumerated() where index % 2 == 0 && vowels.contains(character) {
count += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
var count = 0
let vowels: Set<Character> = ["A", "E", "I", "O", "U"]
for (index, character) in s.enumerated() where index % 2 == 0 && vowels.contains(character) {
count += 1
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
let vowels: Set<Character> = ["A", "E", "I", "O", "U"]
for (index, char) in s.enumerated() {
if vowels.contains(char) && index % 2 == 0 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
var count = 0
let vowels: Set<Character> = ["A", "E", "I", "O", "U"]
for (index, char) in s.enumerated() {
if vowels.contains(char) && index % 2 == 0 {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
return s.enumerated()
.filter { $0.offset % 2 == 0 && $0.element.isUppercase }
.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
return s.enumerated()
.filter { $0.offset % 2 == 0 && $0.element.isUppercase }
.count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() where i % 2 == 0 && c.isUppercase {
count += 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() where i % 2 == 0 && c.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
return s.enumerated().filter { $0.offset % 2 == 0 && $0.element.isUppercase }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0<end_of_turn>
<start_of_turn>model
```swift
func countUpper(s: String) -> Int {
return s.enumerated().filter { $0.offset % 2 == 0 && $0.element.isUppercase }.count
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? Int(number.rounded(.up)) : Int(number.rounded(.down))
return rounded
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? Int(number.rounded(.up)) : Int(number.rounded(.down))
return rounded
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? ceil(number) : floor(number)
return Int(rounded)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? ceil(number) : floor(number)
return Int(rounded)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0.0) ? ceil(number) : floor(number)
return Int(rounded)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0.0) ? ceil(number) : floor(number)
return Int(rounded)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0.0 ? ceil(number) : floor(number))
return Int(rounded)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0.0 ? ceil(number) : floor(number))
return Int(rounded)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? Int(number.rounded(.up)) : Int(number.rounded(.down))
return rounded
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? Int(number.rounded(.up)) : Int(number.rounded(.down))
return rounded
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0 ? ceil(number) : floor(number))
return Int(rounded)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0 ? ceil(number) : floor(number))
return Int(rounded)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? Int(number + 0.5) : Int(number - 0.5)
return rounded
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? Int(number + 0.5) : Int(number - 0.5)
return rounded
}
```
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? ceil(number) : floor(number)
return Int(rounded)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0) ? ceil(number) : floor(number)
return Int(rounded)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0.0) ? Int(number.rounded(.up)) : Int(number.rounded(.down))
return rounded
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0.0) ? Int(number.rounded(.up)) : Int(number.rounded(.down))
return rounded
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0.0) ? Int(number.rounded(.up)) : Int(number.rounded(.down))
return rounded
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15<end_of_turn>
<start_of_turn>model
```swift
func closestInteger(value: String) -> Int {
let number = Double(value)!
let rounded = (number > 0.0) ? Int(number.rounded(.up)) : Int(number.rounded(.down))
return rounded
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
if stones % 2 == 0 {
stones += 1
} else {
stones += 2
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
if stones % 2 == 0 {
stones += 1
} else {
stones += 2
}
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
if stones % 2 == 0 {
stones += 1
} else {
stones += 2
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
if stones % 2 == 0 {
stones += 1
} else {
stones += 2
}
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]<end_of_turn>
<start_of_turn>model
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones = stones % 2 == 0 ? stones + 1 : stones + 2
}
return result
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters).filter {!$0.isEmpty}.map { $0.trimmingCharacters(in: .whitespaces) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters).filter {!$0.isEmpty}.map { $0.trimmingCharacters(in: .whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters.union(.whitespaces))
.filter { !$0.isEmpty }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters.union(.whitespaces))
.filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters.union(.whitespaces))
.filter { !$0.isEmpty }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters.union(.whitespaces))
.filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters).filter { !$0.isEmpty }.map { $0.trimmingCharacters(in: .whitespaces) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters).filter { !$0.isEmpty }.map { $0.trimmingCharacters(in: .whitespaces) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters.union(.whitespaces))
.filter { !$0.isEmpty }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters.union(.whitespaces))
.filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters.union(.whitespaces))
.filter { !$0.isEmpty }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.punctuationCharacters.union(.whitespaces))
.filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]<end_of_turn>
<start_of_turn>model
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 1 {
x += 1
}
if y % 2 == 1 {
y -= 1
}
if x > y {
return -1
} else {
return y
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 1 {
x += 1
}
if y % 2 == 1 {
y -= 1
}
if x > y {
return -1
} else {
return y
}
}
```
x += 1 // left side of mutating operator isn't mutable: 'x' is a 'let' constant
y -= 1 // left side of mutating operator isn't mutable: 'y' is a 'let' constant
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 != 0 {
x += 1
}
if y % 2 != 0 {
y -= 1
}
if x > y {
return -1
} else {
return y
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 != 0 {
x += 1
}
if y % 2 != 0 {
y -= 1
}
if x > y {
return -1
} else {
return y
}
}
```
x += 1 // left side of mutating operator isn't mutable: 'x' is a 'let' constant
y -= 1 // left side of mutating operator isn't mutable: 'y' is a 'let' constant
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 1 {
x += 1
}
while x <= y {
if x % 2 == 0 {
return x
}
x += 1
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 1 {
x += 1
}
while x <= y {
if x % 2 == 0 {
return x
}
x += 1
}
return -1
}
```
x += 1 // left side of mutating operator isn't mutable: 'x' is a 'let' constant
x += 1 // left side of mutating operator isn't mutable: 'x' is a 'let' constant
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 != 0 {
x += 1
}
for i in stride(from: x, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 != 0 {
x += 1
}
for i in stride(from: x, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
x += 1 // left side of mutating operator isn't mutable: 'x' is a 'let' constant
func chooseNum(x: Int, y: Int) -> Int {
for i in stride(from: y, to: x - 1, by: -1) {
if i % 2 == 0 {
return i
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
for i in stride(from: y, to: x - 1, by: -1) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 != 0 {
x += 1
}
for i in stride(from: x, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 != 0 {
x += 1
}
for i in stride(from: x, through: y, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
x += 1 // left side of mutating operator isn't mutable: 'x' is a 'let' constant
func chooseNum(x: Int, y: Int) -> Int {
for i in stride(from: y, through: x, by: -1) {
if i % 2 == 0 {
return i
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
for i in stride(from: y, through: x, by: -1) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 1 {
x += 1
}
for i in stride(from: y, to: x - 1, by: -1) {
if i % 2 == 0 {
return i
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 1 {
x += 1
}
for i in stride(from: y, to: x - 1, by: -1) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
x += 1 // left side of mutating operator isn't mutable: 'x' is a 'let' constant
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in stride(from: y, through: x, by: -1) {
if i % 2 == 0 {
result = i
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in stride(from: y, through: x, by: -1) {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in stride(from: y, through: x, by: -1) {
if i % 2 == 0 {
result = i
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1<end_of_turn>
<start_of_turn>model
```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in stride(from: y, through: x, by: -1) {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = stride(from: n, through: m, by: 1).reduce(0, +)
let average = Int(Double(sum) / Double((m - n + 1)))
let binary = String(average, radix: 2)
return .success(binary)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = stride(from: n, through: m, by: 1).reduce(0, +)
let average = Int(Double(sum) / Double((m - n + 1)))
let binary = String(average, radix: 2)
return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = stride(from: n, through: m, by: 1).reduce(0, +)
let average = Int(Double(sum) / Double(m - n + 1).rounded())
return .success(String(average, radix: 2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = stride(from: n, through: m, by: 1).reduce(0, +)
let average = Int(Double(sum) / Double(m - n + 1).rounded())
return .success(String(average, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = Int(exactly: (Double(n) + Double(m)) / 2) ?? 0
let binarySum = String(sum, radix: 2)
return .success(binarySum)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = Int(exactly: (Double(n) + Double(m)) / 2) ?? 0
let binarySum = String(sum, radix: 2)
return .success(binarySum)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let average = Int(Double(sum) / Double((m - n + 1)).rounded())
return .success(String(average, radix: 2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let average = Int(Double(sum) / Double((m - n + 1)).rounded())
return .success(String(average, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = stride(from: n, through: m, by: 1).reduce(0, +)
let average = Int(Double(sum) / Double((m - n + 1)))
return .success(String(average, radix: 2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = stride(from: n, through: m, by: 1).reduce(0, +)
let average = Int(Double(sum) / Double((m - n + 1)))
return .success(String(average, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let average = Int(Double(sum) / Double(m - n + 1).rounded())
return .success(String(average, radix: 2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let average = Int(Double(sum) / Double(m - n + 1).rounded())
return .success(String(average, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let average = Int(Double(sum) / Double(m - n + 1).rounded())
return .success(String(average, radix: 2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
var sum = 0
for i in n...m {
sum += i
}
let average = Int(Double(sum) / Double(m - n + 1).rounded())
return .success(String(average, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
var sum = 0
var count = 0
for i in n...m {
sum += i
count += 1
}
let average = Int(Double(sum) / Double(count) + 0.5)
return .success(String(average, radix: 2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
var sum = 0
var count = 0
for i in n...m {
sum += i
count += 1
}
let average = Int(Double(sum) / Double(count) + 0.5)
return .success(String(average, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let average = Int(Double(sum) / Double((m - n + 1)))
let binary = String(average, radix: 2)
return .success(binary)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let average = Int(Double(sum) / Double((m - n + 1)))
let binary = String(average, radix: 2)
return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = Int(exactly: stride(from: n, through: m, by: 1).reduce(0, +))!
let average = Int(Double(sum) / Double((m - n) + 1).rounded())
return .success(String(average, radix: 2))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = Int(exactly: stride(from: n, through: m, by: 1).reduce(0, +))!
let average = Int(Double(sum) / Double((m - n) + 1).rounded())
return .success(String(average, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter { !String($0).contains("2") && !String($0).contains("4") && !String($0).contains("6") && !String($0).contains("8") }.sorted()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
return arr
.filter { $0 >= 1 && $0 <= 9 }
.sorted(by: >)
.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
return arr
.filter { $0 >= 1 && $0 <= 9 }
.sorted(by: >)
.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
return arr
.filter { $0 >= 1 && $0 <= 9 }
.sorted()
.reversed()
.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
return arr
.filter { $0 >= 1 && $0 <= 9 }
.sorted()
.reversed()
.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
return arr
.filter { $0 >= 1 && $0 <= 9 }
.sorted()
.reversed()
.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
return arr
.filter { $0 >= 1 && $0 <= 9 }
.sorted()
.reversed()
.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
var result: [String] = []
for num in arr {
if num >= 1 && num <= 9 {
result.append(numToWord(num: num))
}
}
result.sort { $0.count < $1.count }
result.reverse()
return result
}
func numToWord(num: Int) -> String {
switch num {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
var result: [String] = []
for num in arr {
if num >= 1 && num <= 9 {
result.append(numToWord(num: num))
}
}
result.sort { $0.count < $1.count }
result.reverse()
return result
}
func numToWord(num: Int) -> String {
switch num {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
var result: [String] = []
for num in arr where num >= 1 && num <= 9 {
result.append(numToWord(num: num))
}
result.sort(by: { $0.count < $1.count })
result.reverse()
return result
}
func numToWord(num: Int) -> String {
switch num {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
var result: [String] = []
for num in arr where num >= 1 && num <= 9 {
result.append(numToWord(num: num))
}
result.sort(by: { $0.count < $1.count })
result.reverse()
return result
}
func numToWord(num: Int) -> String {
switch num {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted(by: >)
return sortedNumbers.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
let validNumbers = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedNumbers = validNumbers.sorted(by: >)
return sortedNumbers.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let reversed = filtered.sorted(by: >)
return reversed.map {
switch $0 {
case 1: "One"
case 2: "Two"
case 3: "Three"
case 4: "Four"
case 5: "Five"
case 6: "Six"
case 7: "Seven"
case 8: "Eight"
case 9: "Nine"
default: ""
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let reversed = filtered.sorted(by: >)
return reversed.map {
switch $0 {
case 1: "One"
case 2: "Two"
case 3: "Three"
case 4: "Four"
case 5: "Five"
case 6: "Six"
case 7: "Seven"
case 8: "Eight"
case 9: "Nine"
default: ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
var result = arr.filter { $0 >= 1 && $0 <= 9 }.sorted().reversed().map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
var result = arr.filter { $0 >= 1 && $0 <= 9 }.sorted().reversed().map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return result
}
```
var result = arr.filter { $0 >= 1 && $0 <= 9 }.sorted().reversed().map { // variable 'result' was never mutated; consider changing to 'let' constant
func byLength(arr: [Int]) -> [String] {
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let reversed = filtered.reversed()
return reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let reversed = filtered.reversed()
return reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
var result: [String] = []
for num in arr {
if num >= 1 && num <= 9 {
result.append(numToWord(num: num))
}
}
result.sort(by: { $0.count < $1.count })
result.reverse()
return result
}
func numToWord(num: Int) -> String {
switch num {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]<end_of_turn>
<start_of_turn>model
```swift
func byLength(arr: [Int]) -> [String] {
var result: [String] = []
for num in arr {
if num >= 1 && num <= 9 {
result.append(numToWord(num: num))
}
}
result.sort(by: { $0.count < $1.count })
result.reverse()
return result
}
func numToWord(num: Int) -> String {
switch num {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
```
// XCTAssertTrue failed
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
result[i - 1] = (1...i).reduce(0, +)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
result[i - 1] = (1...i).reduce(0, +)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
var sum = 0
for j in 1...i {
sum += j
}
result[i - 1] = sum
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
result[i - 1] = (1...i).reduce(0, +)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]<end_of_turn>
<start_of_turn>model
```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result[i - 1] = factorial
} else {
result[i - 1] = (1...i).reduce(0, +)
}
}
return result
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversedDigits = digits.reversed()
if digits == reversedDigits {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversedDigits = digits.reversed()
if digits == reversedDigits {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
if digits == reversedDigits { // cannot convert value of type 'ReversedCollection<[String]>' to expected argument type '[String]'
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversed = digits.reversed()
if digits == reversed {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversed = digits.reversed()
if digits == reversed {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
if digits == reversed { // cannot convert value of type 'ReversedCollection<[String]>' to expected argument type '[String]'
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversedDigits = digits.reversed()
if digits == reversedDigits {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversedDigits = digits.reversed()
if digits == reversedDigits {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
if digits == reversedDigits { // cannot convert value of type 'ReversedCollection<[String]>' to expected argument type '[String]'
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversedDigits = digits.reversed()
if digits == reversedDigits {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversedDigits = digits.reversed()
if digits == reversedDigits {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
if digits == reversedDigits { // cannot convert value of type 'ReversedCollection<[String]>' to expected argument type '[String]'
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversed = digits.reversed()
let palindrome = Int(digits + reversed) ?? 0
if palindrome % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { String($0) }
let reversed = digits.reversed()
let palindrome = Int(digits + reversed) ?? 0
if palindrome % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
let palindrome = Int(digits + reversed) ?? 0 // cannot convert value of type '[String]' to expected argument type 'String'
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var isPalindrome = true
for j in 0..<digits.count / 2 {
if digits[j] != digits[digits.count - 1 - j] {
isPalindrome = false
break
}
}
if isPalindrome {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var isPalindrome = true
for j in 0..<digits.count / 2 {
if digits[j] != digits[digits.count - 1 - j] {
isPalindrome = false
break
}
}
if isPalindrome {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var reversed = digits
reversed.reverse()
if digits == reversed {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var reversed = digits
reversed.reverse()
if digits == reversed {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var reversed = digits
reversed.reverse()
if digits == reversed {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var reversed = digits
reversed.reverse()
if digits == reversed {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var reversed = digits
reversed.reverse()
if digits == reversed {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var reversed = digits
reversed.reverse()
if digits == reversed {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var isPalindrome = true
for j in 0..<digits.count / 2 {
if digits[j] != digits[digits.count - j - 1] {
isPalindrome = false
break
}
}
if isPalindrome {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)<end_of_turn>
<start_of_turn>model
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let digits = String(i).map { Int(String($0))! }
var isPalindrome = true
for j in 0..<digits.count / 2 {
if digits[j] != digits[digits.count - j - 1] {
isPalindrome = false
break
}
}
if isPalindrome {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
let digit = n % 10
sum += abs(digit)
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
let digit = n % 10
sum += abs(digit)
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
return arr.filter { num in
var sum = 0
var n = num
while n != 0 {
sum += abs(n % 10)
n /= 10
}
return sum > 0
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
return arr.filter { num in
var sum = 0
var n = num
while n != 0 {
sum += abs(n % 10)
n /= 10
}
return sum > 0
}.count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
let digit = n % 10
sum += digit
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
let digit = n % 10
sum += digit
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
return arr.filter { num in
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum > 0
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
return arr.filter { num in
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum > 0
}.count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
let digit = n % 10
sum += digit
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
let digit = n % 10
sum += digit
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
return arr.filter {
var sum = 0
var number = $0
while number != 0 {
sum += abs(number % 10)
number /= 10
}
return sum > 0
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
return arr.filter {
var sum = 0
var number = $0
while number != 0 {
sum += abs(number % 10)
number /= 10
}
return sum > 0
}.count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
return arr.filter { number in
var sum = 0
var n = number
while n != 0 {
let digit = n % 10
sum += digit > 0 ? digit : 0
n /= 10
}
return sum > 0
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
return arr.filter { number in
var sum = 0
var n = number
while n != 0 {
let digit = n % 10
sum += digit > 0 ? digit : 0
n /= 10
}
return sum > 0
}.count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
return arr.filter { number in
var sum = 0
var n = number
while n != 0 {
sum += abs(n % 10)
n /= 10
}
return sum > 0
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
return arr.filter { number in
var sum = 0
var n = number
while n != 0 {
sum += abs(n % 10)
n /= 10
}
return sum > 0
}.count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
return arr.filter { sumOfDigits($0) > 0 }.count
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return num > 0 ? sum : -sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3<end_of_turn>
<start_of_turn>model
```swift
func countNums(arr: [Int]) -> Int {
return arr.filter { sumOfDigits($0) > 0 }.count
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return num > 0 ? sum : -sum
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var currentMax = arr.last!
var count = 0
while !arr.sorted().elementsEqual(arr) {
if arr.first! > currentMax {
return false
}
let lastElement = arr.removeLast()
arr.insert(lastElement, at: 0)
currentMax = max(currentMax, lastElement)
count += 1
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var currentMax = arr.last!
var count = 0
while !arr.sorted().elementsEqual(arr) {
if arr.first! > currentMax {
return false
}
let lastElement = arr.removeLast()
arr.insert(lastElement, at: 0)
currentMax = max(currentMax, lastElement)
count += 1
}
return true
}
```
let lastElement = arr.removeLast() // cannot use mutating member on immutable value: 'arr' is a 'let' constant
arr.insert(lastElement, at: 0) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var currentMax = arr.max()!
var count = 0
while arr != arr.sorted() {
let first = arr.removeFirst()
arr.append(first)
if first > currentMax {
count += 1
currentMax = first
}
}
return count % 2 == 0
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var currentMax = arr.max()!
var count = 0
while arr != arr.sorted() {
let first = arr.removeFirst()
arr.append(first)
if first > currentMax {
count += 1
currentMax = first
}
}
return count % 2 == 0
}
```
let first = arr.removeFirst() // cannot use mutating member on immutable value: 'arr' is a 'let' constant
arr.append(first) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var currentMax = arr[arr.count - 1]
var count = 0
for i in stride(from: arr.count - 2, through: 0, by: -1) {
if arr[i] > currentMax {
count += 1
currentMax = arr[i]
}
}
return count % 2 == 0
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var currentMax = arr[arr.count - 1]
var count = 0
for i in stride(from: arr.count - 2, through: 0, by: -1) {
if arr[i] > currentMax {
count += 1
currentMax = arr[i]
}
}
return count % 2 == 0
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var max = arr[0]
var count = 0
for i in 1..<arr.count {
if arr[i] > max {
return false
}
if arr[i] < max {
count += 1
}
max = max > arr[i] ? max : arr[i]
}
return count % 2 == 0
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var max = arr[0]
var count = 0
for i in 1..<arr.count {
if arr[i] > max {
return false
}
if arr[i] < max {
count += 1
}
max = max > arr[i] ? max : arr[i]
}
return count % 2 == 0
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var currentMax = arr[arr.count - 1]
for i in stride(from: arr.count - 2, through: 0, by: -1) {
if arr[i] > currentMax {
return false
}
currentMax = max(currentMax, arr[i])
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var currentMax = arr[arr.count - 1]
for i in stride(from: arr.count - 2, through: 0, by: -1) {
if arr[i] > currentMax {
return false
}
currentMax = max(currentMax, arr[i])
}
return true
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var max = arr[arr.count - 1]
for i in stride(from: arr.count - 2, through: 0, by: -1) {
if arr[i] > max {
return false
}
max = max > arr[i] ? max : arr[i]
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var max = arr[arr.count - 1]
for i in stride(from: arr.count - 2, through: 0, by: -1) {
if arr[i] > max {
return false
}
max = max > arr[i] ? max : arr[i]
}
return true
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var temp = arr
for i in 0..<arr.count {
temp.append(temp.removeFirst())
if temp == arr.sorted() { return true }
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var temp = arr
for i in 0..<arr.count {
temp.append(temp.removeFirst())
if temp == arr.sorted() { return true }
}
return false
}
```
for i in 0..<arr.count { // immutable value 'i' was never used; consider replacing with '_' or removing it
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var arr = arr
var i = 0
while i < arr.count {
if arr[i] > arr[(i + 1) % arr.count] {
arr.append(arr.remove(at: i))
if i > 0 { i -= 1 }
} else {
i += 1
}
}
return arr == arr.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var arr = arr
var i = 0
while i < arr.count {
if arr[i] > arr[(i + 1) % arr.count] {
arr.append(arr.remove(at: i))
if i > 0 { i -= 1 }
} else {
i += 1
}
}
return arr == arr.sorted()
}
```
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var shifted = arr
var i = 0
while i < shifted.count {
if shifted[i] > shifted[(i + 1) % shifted.count] {
shifted.insert(shifted.removeLast(), at: 0)
i = 0
} else {
i += 1
}
}
return shifted == arr.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var shifted = arr
var i = 0
while i < shifted.count {
if shifted[i] > shifted[(i + 1) % shifted.count] {
shifted.insert(shifted.removeLast(), at: 0)
i = 0
} else {
i += 1
}
}
return shifted == arr.sorted()
}
```
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var arr = arr
var i = 0
while i < arr.count {
if arr[i] > arr[(i + 1) % arr.count] {
arr.append(arr.remove(at: i))
if i != 0 { i -= 1 }
} else {
i += 1
}
}
return arr == arr.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false<end_of_turn>
<start_of_turn>model
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var arr = arr
var i = 0
while i < arr.count {
if arr[i] > arr[(i + 1) % arr.count] {
arr.append(arr.remove(at: i))
if i != 0 { i -= 1 }
} else {
i += 1
}
}
return arr == arr.sorted()
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
while lst1.filter({$0 % 2 == 1}).count > 0 {
if lst2.filter({$0 % 2 == 0}).count == 0 {
return "NO"
}
let even = lst2.filter({$0 % 2 == 0}).removeFirst()
let odd = lst1.filter({$0 % 2 == 1}).removeFirst()
lst1.append(even)
lst2.append(odd)
}
return "YES"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
while lst1.filter({$0 % 2 == 1}).count > 0 {
if lst2.filter({$0 % 2 == 0}).count == 0 {
return "NO"
}
let even = lst2.filter({$0 % 2 == 0}).removeFirst()
let odd = lst1.filter({$0 % 2 == 1}).removeFirst()
lst1.append(even)
lst2.append(odd)
}
return "YES"
}
```
let even = lst2.filter({$0 % 2 == 0}).removeFirst() // cannot use mutating member on immutable value: function call returns immutable value
let odd = lst1.filter({$0 % 2 == 1}).removeFirst() // cannot use mutating member on immutable value: function call returns immutable value
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= oddCount {
return "YES"
} else {
return "NO"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= oddCount {
return "YES"
} else {
return "NO"
}
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= oddCount {
return "YES"
} else {
return "NO"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= oddCount {
return "YES"
} else {
return "NO"
}
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
while lst1.contains(where: { $0 % 2 != 0 }) {
if lst2.isEmpty {
return "NO"
}
if let even = lst2.first(where: { $0 % 2 == 0 }) {
let index = lst1.firstIndex(where: { $0 % 2 != 0 })!
lst1[index] = even
lst2.removeFirst()
}
}
return "YES"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
while lst1.contains(where: { $0 % 2 != 0 }) {
if lst2.isEmpty {
return "NO"
}
if let even = lst2.first(where: { $0 % 2 == 0 }) {
let index = lst1.firstIndex(where: { $0 % 2 != 0 })!
lst1[index] = even
lst2.removeFirst()
}
}
return "YES"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else if oddCount == lst2.count {
return "YES"
} else {
return "NO"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else if oddCount == lst2.count {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= oddCount {
return "YES"
} else {
return "NO"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= oddCount {
return "YES"
} else {
return "NO"
}
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
while lst1.filter({ $0 % 2 != 0 }).count > 0 {
if lst2.filter({ $0 % 2 == 0 }).count == 0 {
return "NO"
}
let even = lst2.filter({ $0 % 2 == 0 }).first!
let odd = lst1.filter({ $0 % 2 != 0 }).first!
lst1 = lst1.map({ $0 == odd ? even : $0 })
lst2 = lst2.map({ $0 == even ? odd : $0 })
}
return "YES"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
while lst1.filter({ $0 % 2 != 0 }).count > 0 {
if lst2.filter({ $0 % 2 == 0 }).count == 0 {
return "NO"
}
let even = lst2.filter({ $0 % 2 == 0 }).first!
let odd = lst1.filter({ $0 % 2 != 0 }).first!
lst1 = lst1.map({ $0 == odd ? even : $0 })
lst2 = lst2.map({ $0 == even ? odd : $0 })
}
return "YES"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= oddCount {
return "YES"
} else {
return "NO"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"<end_of_turn>
<start_of_turn>model
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= oddCount {
return "YES"
} else {
return "NO"
}
}
```
func histogram(test: String) -> [String : Int] {
guard !test.isEmpty else {
return [:]
}
var letters = [String : Int]()
let lettersArray = test.split(separator: " ")
for letter in lettersArray {
if let count = letters[String(letter)] {
letters[String(letter)] = count + 1
} else {
letters[String(letter)] = 1
}
}
var result = [String : Int]()
var maxCount = 0
for (letter, count) in letters {
if count > maxCount {
maxCount = count
result = [letter : count]
} else if count == maxCount {
result[letter] = count
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
guard !test.isEmpty else {
return [:]
}
var letters = [String : Int]()
let lettersArray = test.split(separator: " ")
for letter in lettersArray {
if let count = letters[String(letter)] {
letters[String(letter)] = count + 1
} else {
letters[String(letter)] = 1
}
}
var result = [String : Int]()
var maxCount = 0
for (letter, count) in letters {
if count > maxCount {
maxCount = count
result = [letter : count]
} else if count == maxCount {
result[letter] = count
}
}
return result
}
```
func histogram(test: String) -> [String : Int] {
let letters = test.split(separator: " ").map { String($0) }
var countDict = [String : Int]()
for letter in letters {
if let count = countDict[letter] {
countDict[letter] = count + 1
} else {
countDict[letter] = 1
}
}
let maxCount = countDict.values.max()
return countDict.filter { $0.value == maxCount }.map { $0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
let letters = test.split(separator: " ").map { String($0) }
var countDict = [String : Int]()
for letter in letters {
if let count = countDict[letter] {
countDict[letter] = count + 1
} else {
countDict[letter] = 1
}
}
let maxCount = countDict.values.max()
return countDict.filter { $0.value == maxCount }.map { $0 }
}
```
return countDict.filter { $0.value == maxCount }.map { $0 } // cannot convert return expression of type '[Dictionary<String, Int>.Element]' (aka 'Array<(key: String, value: Int)>') to return type '[String : Int]'
func histogram(test: String) -> [String : Int] {
if test.isEmpty {
return [:]
}
let letters = test.split(separator: " ").map { String($0) }
var histogram: [String: Int] = [:]
for letter in letters {
histogram[letter, default: 0] += 1
}
let maxCount = histogram.values.max()!
return histogram.filter { $0.value == maxCount }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
if test.isEmpty {
return [:]
}
let letters = test.split(separator: " ").map { String($0) }
var histogram: [String: Int] = [:]
for letter in letters {
histogram[letter, default: 0] += 1
}
let maxCount = histogram.values.max()!
return histogram.filter { $0.value == maxCount }
}
```
func histogram(test: String) -> [String : Int] {
let letters = test.split(separator: " ").map { String($0) }
var dictionary = [String : Int]()
for letter in letters {
dictionary[letter] = (dictionary[letter] ?? 0) + 1
}
return dictionary
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
let letters = test.split(separator: " ").map { String($0) }
var dictionary = [String : Int]()
for letter in letters {
dictionary[letter] = (dictionary[letter] ?? 0) + 1
}
return dictionary
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let letters = test.split(separator: " ").map { String($0) }
for letter in letters {
dict[letter] = (dict[letter] ?? 0) + 1
}
var maxCount = 0
var result = [String]()
for (letter, count) in dict {
if count > maxCount {
maxCount = count
result = [letter]
} else if count == maxCount {
result.append(letter)
}
}
return Dictionary(uniqueKeysWithValues: result.map { ($0, maxCount) })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let letters = test.split(separator: " ").map { String($0) }
for letter in letters {
dict[letter] = (dict[letter] ?? 0) + 1
}
var maxCount = 0
var result = [String]()
for (letter, count) in dict {
if count > maxCount {
maxCount = count
result = [letter]
} else if count == maxCount {
result.append(letter)
}
}
return Dictionary(uniqueKeysWithValues: result.map { ($0, maxCount) })
}
```
func histogram(test: String) -> [String : Int] {
let letters = test.split(separator: " ").map { String($0) }
var countDict: [String : Int] = [:]
for letter in letters {
countDict[letter] = (countDict[letter] ?? 0) + 1
}
var maxCount = 0
var result: [String] = []
for (letter, count) in countDict {
if count > maxCount {
maxCount = count
result = [letter]
} else if count == maxCount {
result.append(letter)
}
}
return Dictionary(uniqueKeysWithValues: result.map { ($0, maxCount) })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
let letters = test.split(separator: " ").map { String($0) }
var countDict: [String : Int] = [:]
for letter in letters {
countDict[letter] = (countDict[letter] ?? 0) + 1
}
var maxCount = 0
var result: [String] = []
for (letter, count) in countDict {
if count > maxCount {
maxCount = count
result = [letter]
} else if count == maxCount {
result.append(letter)
}
}
return Dictionary(uniqueKeysWithValues: result.map { ($0, maxCount) })
}
```
func histogram(test: String) -> [String : Int] {
var dict = [String: Int]()
let letters = test.split(separator: " ").map { String($0) }
for letter in letters {
if let count = dict[letter] {
dict[letter] = count + 1
} else {
dict[letter] = 1
}
}
var maxCount = 0
var result = [String: Int]()
for (letter, count) in dict {
if count > maxCount {
maxCount = count
result = [letter: count]
} else if count == maxCount {
result[letter] = count
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String: Int]()
let letters = test.split(separator: " ").map { String($0) }
for letter in letters {
if let count = dict[letter] {
dict[letter] = count + 1
} else {
dict[letter] = 1
}
}
var maxCount = 0
var result = [String: Int]()
for (letter, count) in dict {
if count > maxCount {
maxCount = count
result = [letter: count]
} else if count == maxCount {
result[letter] = count
}
}
return result
}
```
func histogram(test: String) -> [String : Int] {
if test.isEmpty {
return [:]
}
let letters = test.split(separator: " ").map { String($0) }
var letterCounts = [String : Int]()
for letter in letters {
letterCounts[letter, default: 0] += 1
}
let maxCount = letterCounts.values.max()!
return letterCounts.filter { $0.value == maxCount }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
if test.isEmpty {
return [:]
}
let letters = test.split(separator: " ").map { String($0) }
var letterCounts = [String : Int]()
for letter in letters {
letterCounts[letter, default: 0] += 1
}
let maxCount = letterCounts.values.max()!
return letterCounts.filter { $0.value == maxCount }
}
```
func histogram(test: String) -> [String : Int] {
if test.isEmpty {
return [:]
}
var dictionary = [String : Int]()
let letters = test.split(separator: " ").map { String($0) }
for letter in letters {
dictionary[letter] = (dictionary[letter] ?? 0) + 1
}
var maxCount = 0
var result = [String]()
for (letter, count) in dictionary {
if count > maxCount {
maxCount = count
result = [letter]
} else if count == maxCount {
result.append(letter)
}
}
return Dictionary(uniqueKeysWithValues: result.map { ($0, maxCount) })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
if test.isEmpty {
return [:]
}
var dictionary = [String : Int]()
let letters = test.split(separator: " ").map { String($0) }
for letter in letters {
dictionary[letter] = (dictionary[letter] ?? 0) + 1
}
var maxCount = 0
var result = [String]()
for (letter, count) in dictionary {
if count > maxCount {
maxCount = count
result = [letter]
} else if count == maxCount {
result.append(letter)
}
}
return Dictionary(uniqueKeysWithValues: result.map { ($0, maxCount) })
}
```
func histogram(test: String) -> [String : Int] {
if test.isEmpty {
return [:]
}
let letters = test.split(separator: " ").map { String($0) }
var letterCounts = [String: Int]()
for letter in letters {
letterCounts[letter] = (letterCounts[letter] ?? 0) + 1
}
var maxCount = 0
var result: [String] = []
for (letter, count) in letterCounts {
if count > maxCount {
maxCount = count
result = [letter]
} else if count == maxCount {
result.append(letter)
}
}
return Dictionary(uniqueKeysWithValues: result.map { ($0, maxCount) })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]<end_of_turn>
<start_of_turn>model
```swift
func histogram(test: String) -> [String : Int] {
if test.isEmpty {
return [:]
}
let letters = test.split(separator: " ").map { String($0) }
var letterCounts = [String: Int]()
for letter in letters {
letterCounts[letter] = (letterCounts[letter] ?? 0) + 1
}
var maxCount = 0
var result: [String] = []
for (letter, count) in letterCounts {
if count > maxCount {
maxCount = count
result = [letter]
} else if count == maxCount {
result.append(letter)
}
}
return Dictionary(uniqueKeysWithValues: result.map { ($0, maxCount) })
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, result == reversed)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, result == reversed)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, result == reversed)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, result == reversed)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
return (result, result == result.reversed().joined())
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
return (result, result == result.reversed().joined())
}
```
return (result, result == result.reversed().joined()) // no exact matches in call to instance method 'joined'
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
return (result, result == result.reversed().joined())
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
return (result, result == result.reversed().joined())
}
```
return (result, result == result.reversed().joined()) // no exact matches in call to instance method 'joined'
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)<end_of_turn>
<start_of_turn>model
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(String(char)) {
result.append(char)
}
}
let reversed = String(result.reversed())
return (result, reversed == result)
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
```
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str) of the \(lst.count)nput." // trailing closure passed to parameter of type 'Predicate<String.Element>' (aka 'Predicate<Character>') that does not accept a closure
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
```
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str) of the \(lst.count)nput." // trailing closure passed to parameter of type 'Predicate<String.Element>' (aka 'Predicate<Character>') that does not accept a closure
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddDigits = str.filter { $0 % 2 != 0 }.count
return "the number of odd elements \(oddDigits) in the string \(str) of the input."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddDigits = str.filter { $0 % 2 != 0 }.count
return "the number of odd elements \(oddDigits) in the string \(str) of the input."
}
}
```
let oddDigits = str.filter { $0 % 2 != 0 }.count // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str.first!) of the \(lst.count)nput."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str.first!) of the \(lst.count)nput."
}
}
```
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str.first!) of the \(lst.count)nput." // trailing closure passed to parameter of type 'Predicate<String.Element>' (aka 'Predicate<Character>') that does not accept a closure
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str.first!) of the \(lst.count)nput."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str.first!) of the \(lst.count)nput."
}
}
```
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count)n the str\(str.count)ng \(str.first!) of the \(lst.count)nput." // trailing closure passed to parameter of type 'Predicate<String.Element>' (aka 'Predicate<Character>') that does not accept a closure
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0 % 2 != 0 }.count) in the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0 % 2 != 0 }.count) in the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
```
"the number of odd elements \(str.filter { $0 % 2 != 0 }.count) in the str\(str.count)ng \(str) of the \(lst.count)nput." // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count) in the string \(str) of the input."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count) in the string \(str) of the input."
}
}
```
"the number of odd elements \(str.filter { $0.isDigit && Int($0)! % 2 != 0 }.count) in the string \(str) of the input." // trailing closure passed to parameter of type 'Predicate<String.Element>' (aka 'Predicate<Character>') that does not accept a closure
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0 % 2 != 0 }.count) in the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
"the number of odd elements \(str.filter { $0 % 2 != 0 }.count) in the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
```
"the number of odd elements \(str.filter { $0 % 2 != 0 }.count) in the str\(str.count)ng \(str) of the \(lst.count)nput." // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddDigits = str.filter { char in
char.isDigit && Int(String(char))! % 2 != 0
}
return "the number of odd elements \(oddDigits.count)n the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddDigits = str.filter { char in
char.isDigit && Int(String(char))! % 2 != 0
}
return "the number of odd elements \(oddDigits.count)n the str\(str.count)ng \(str) of the \(lst.count)nput."
}
}
```
let oddDigits = str.filter { char in // trailing closure passed to parameter of type 'Predicate<String.Element>' (aka 'Predicate<Character>') that does not accept a closure
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
Int(String(char))! % 2 != 0
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]<end_of_turn>
<start_of_turn>model
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let oddCount = str.filter { char in
Int(String(char))! % 2 != 0
}.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6<end_of_turn>
<start_of_turn>model
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filled = [[Bool]](repeating: [Bool](repeating: false, count: cols), count: rows)
for row in 0..<rows {
var waterCount = 0
for col in 0..<cols {
if grid[row][col] == 1 {
waterCount += 1
}
}
totalWater += waterCount
}
var steps = 0
while totalWater > 0 {
for row in 0..<rows {
for col in 0..<cols {
if !filled[row][col] && grid[row][col] == 1 {
filled[row][col] = true
totalWater -= capacity
}
}
}
steps += 1
}
return steps
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filled = [[Bool]](repeating: [Bool](repeating: false, count: cols), count: rows)
for row in 0..<rows {
var waterCount = 0
for col in 0..<cols {
if grid[row][col] == 1 {
waterCount += 1
}
}
totalWater += waterCount
}
var steps = 0
while totalWater > 0 {
for row in 0..<rows {
for col in 0..<cols {
if !filled[row][col] && grid[row][col] == 1 {
filled[row][col] = true
totalWater -= capacity
}
}
}
steps += 1
}
return steps
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filledWater = 0
for col in 0..<cols {
var currentRow = 0
for row in 0..<rows {
if grid[row][col] == 1 {
currentRow += 1
filledWater += 1
if filledWater == capacity {
filledWater = 0
totalWater += 1
}
}
}
}
return totalWater
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filledWater = 0
for col in 0..<cols {
var currentRow = 0
for row in 0..<rows {
if grid[row][col] == 1 {
currentRow += 1
filledWater += 1
if filledWater == capacity {
filledWater = 0
totalWater += 1
}
}
}
}
return totalWater
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
for i in 0..<rows {
totalWater += grid[i].filter({ $0 == 1 }).count
}
var lowered = 0
while totalWater > 0 {
for i in 0..<rows {
for j in 0..<cols {
if grid[i][j] == 1 {
grid[i][j] = 0
totalWater -= 1
}
if totalWater == 0 {
return lowered
}
}
}
lowered += 1
}
return lowered
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
for i in 0..<rows {
totalWater += grid[i].filter({ $0 == 1 }).count
}
var lowered = 0
while totalWater > 0 {
for i in 0..<rows {
for j in 0..<cols {
if grid[i][j] == 1 {
grid[i][j] = 0
totalWater -= 1
}
if totalWater == 0 {
return lowered
}
}
}
lowered += 1
}
return lowered
}
```
grid[i][j] = 0 // cannot assign through subscript: 'grid' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
for row in 0..<rows {
for col in 0..<cols {
totalWater += grid[row][col]
}
}
var filledWater = 0
var lowerCount = 0
while filledWater < totalWater {
for row in 0..<rows {
for col in 0..<cols {
if grid[row][col] == 1 && filledWater < capacity {
filledWater += 1
grid[row][col] = 0
}
}
}
lowerCount += 1
}
return lowerCount
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
for row in 0..<rows {
for col in 0..<cols {
totalWater += grid[row][col]
}
}
var filledWater = 0
var lowerCount = 0
while filledWater < totalWater {
for row in 0..<rows {
for col in 0..<cols {
if grid[row][col] == 1 && filledWater < capacity {
filledWater += 1
grid[row][col] = 0
}
}
}
lowerCount += 1
}
return lowerCount
}
```
grid[row][col] = 0 // cannot assign through subscript: 'grid' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filled = [[Bool]](repeating: [Bool](repeating: false, count: cols), count: rows)
for i in 0..<rows {
for j in 0..<cols {
if grid[i][j] == 1 {
totalWater += 1
}
}
}
var fills = 0
while totalWater > 0 {
fills += 1
for i in 0..<rows {
for j in 0..<cols {
if !filled[i][j] && grid[i][j] == 1 {
filled[i][j] = true
totalWater -= 1
if totalWater == 0 {
return fills
}
}
}
}
}
return fills
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filled = [[Bool]](repeating: [Bool](repeating: false, count: cols), count: rows)
for i in 0..<rows {
for j in 0..<cols {
if grid[i][j] == 1 {
totalWater += 1
}
}
}
var fills = 0
while totalWater > 0 {
fills += 1
for i in 0..<rows {
for j in 0..<cols {
if !filled[i][j] && grid[i][j] == 1 {
filled[i][j] = true
totalWater -= 1
if totalWater == 0 {
return fills
}
}
}
}
}
return fills
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var lowered = 0
while totalWater < rows * cols {
for i in 0..<rows {
for j in 0..<cols {
if grid[i][j] == 1 {
totalWater += 1
grid[i][j] = 0
if totalWater == rows * cols {
return lowered
}
}
}
}
lowered += 1
}
return lowered
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var lowered = 0
while totalWater < rows * cols {
for i in 0..<rows {
for j in 0..<cols {
if grid[i][j] == 1 {
totalWater += 1
grid[i][j] = 0
if totalWater == rows * cols {
return lowered
}
}
}
}
lowered += 1
}
return lowered
}
```
grid[i][j] = 0 // cannot assign through subscript: 'grid' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var filled = [[Int]](repeating: [Int](repeating: 0, count: cols), count: rows)
var times = 0
while filled != grid {
for i in 0..<rows {
for j in 0..<cols {
if grid[i][j] == 1 && filled[i][j] < capacity {
filled[i][j] += 1
}
}
}
times += 1
}
return times
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var filled = [[Int]](repeating: [Int](repeating: 0, count: cols), count: rows)
var times = 0
while filled != grid {
for i in 0..<rows {
for j in 0..<cols {
if grid[i][j] == 1 && filled[i][j] < capacity {
filled[i][j] += 1
}
}
}
times += 1
}
return times
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filled = [[Bool]](repeating: [Bool](repeating: false, count: cols), count: rows)
for i in 0..<rows {
for j in 0..<cols {
totalWater += grid[i][j]
}
}
var filledWater = 0
var times = 0
while filledWater < totalWater {
for i in 0..<rows {
for j in 0..<cols {
if !filled[i][j] && grid[i][j] > 0 {
filled[i][j] = true
filledWater += 1
if filledWater == totalWater {
return times
}
}
}
}
times += 1
}
return times
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filled = [[Bool]](repeating: [Bool](repeating: false, count: cols), count: rows)
for i in 0..<rows {
for j in 0..<cols {
totalWater += grid[i][j]
}
}
var filledWater = 0
var times = 0
while filledWater < totalWater {
for i in 0..<rows {
for j in 0..<cols {
if !filled[i][j] && grid[i][j] > 0 {
filled[i][j] = true
filledWater += 1
if filledWater == totalWater {
return times
}
}
}
}
times += 1
}
return times
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filled = [[Bool]](repeating: [Bool](repeating: false, count: cols), count: rows)
for row in 0..<rows {
for col in 0..<cols {
if grid[row][col] == 1 {
totalWater += 1
}
}
}
var lowered = 0
while totalWater > 0 {
for row in 0..<rows {
for col in 0..<cols {
if !filled[row][col] && grid[row][col] == 1 {
filled[row][col] = true
totalWater -= 1
if totalWater == 0 {
return lowered
}
}
}
}
lowered += 1
}
return lowered
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var totalWater = 0
var filled = [[Bool]](repeating: [Bool](repeating: false, count: cols), count: rows)
for row in 0..<rows {
for col in 0..<cols {
if grid[row][col] == 1 {
totalWater += 1
}
}
}
var lowered = 0
while totalWater > 0 {
for row in 0..<rows {
for col in 0..<cols {
if !filled[row][col] && grid[row][col] == 1 {
filled[row][col] = true
totalWater -= 1
if totalWater == 0 {
return lowered
}
}
}
}
lowered += 1
}
return lowered
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var filled = [[Int]](repeating: [Int](repeating: 0, count: cols), count: rows)
var times = 0
while filled != grid {
times += 1
for row in 0..<rows {
for col in 0..<cols {
if grid[row][col] == 1 && filled[row][col] < capacity {
filled[row][col] += 1
}
}
}
}
return times
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0<end_of_turn>
<start_of_turn>model
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var filled = [[Int]](repeating: [Int](repeating: 0, count: cols), count: rows)
var times = 0
while filled != grid {
times += 1
for row in 0..<rows {
for col in 0..<cols {
if grid[row][col] == 1 && filled[row][col] < capacity {
filled[row][col] += 1
}
}
}
}
return times
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnesCount = Int(String(a, radix: 2).filter { $0 == "1" }.count)
let bOnesCount = Int(String(b, radix: 2).filter { $0 == "1" }.count)
if aOnesCount == bOnesCount {
return a > b
}
return aOnesCount < bOnesCount
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnesCount = Int(String(a, radix: 2).filter { $0 == "1" }.count)
let bOnesCount = Int(String(b, radix: 2).filter { $0 == "1" }.count)
if aOnesCount == bOnesCount {
return a > b
}
return aOnesCount < bOnesCount
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted(by: { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a < b
}
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted(by: { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a < b
}
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
})
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnesCount = Int(String(a, radix: 2).filter { $0 == "1" }.count)
let bOnesCount = Int(String(b, radix: 2).filter { $0 == "1" }.count)
if aOnesCount == bOnesCount {
return a > b
}
return aOnesCount < bOnesCount
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnesCount = Int(String(a, radix: 2).filter { $0 == "1" }.count)
let bOnesCount = Int(String(b, radix: 2).filter { $0 == "1" }.count)
if aOnesCount == bOnesCount {
return a > b
}
return aOnesCount < bOnesCount
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted(by: { (a: Int, b: Int) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a > b
} else {
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
}
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted(by: { (a: Int, b: Int) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a > b
} else {
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
}
})
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aCount = countBits(a)
let bCount = countBits(b)
if aCount == bCount {
return a < b
}
return aCount < bCount
}
}
func countBits(_ n: Int) -> Int {
var count = 0
var num = n
while num > 0 {
count += num & 1
num >>= 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aCount = countBits(a)
let bCount = countBits(b)
if aCount == bCount {
return a < b
}
return aCount < bCount
}
}
func countBits(_ n: Int) -> Int {
var count = 0
var num = n
while num > 0 {
count += num & 1
num >>= 1
}
return count
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aCount = countBits(a)
let bCount = countBits(b)
return aCount == bCount ? a < b : aCount < bCount
}
}
func countBits(_ number: Int) -> Int {
var count = 0
var num = number
while num > 0 {
count += num & 1
num >>= 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aCount = countBits(a)
let bCount = countBits(b)
return aCount == bCount ? a < b : aCount < bCount
}
}
func countBits(_ number: Int) -> Int {
var count = 0
var num = number
while num > 0 {
count += num & 1
num >>= 1
}
return count
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aCount = countBits(a)
let bCount = countBits(b)
return aCount == bCount ? a > b : aCount < bCount
}
}
func countBits(_ num: Int) -> Int {
var count = 0
var n = num
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aCount = countBits(a)
let bCount = countBits(b)
return aCount == bCount ? a > b : aCount < bCount
}
}
func countBits(_ num: Int) -> Int {
var count = 0
var n = num
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted(by: { (a: Int, b: Int) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a > b
} else {
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
}
})
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted(by: { (a: Int, b: Int) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a > b
} else {
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
}
})
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a > b
}
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a > b
}
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a > b
} else {
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]<end_of_turn>
<start_of_turn>model
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
if aBinary.filter({ $0 == "1" }).count == bBinary.filter({ $0 == "1" }).count {
return a > b
} else {
return aBinary.filter({ $0 == "1" }).count < bBinary.filter({ $0 == "1" }).count
}
}
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map { String($0) }
return words.filter { word in
var consonantsCount = 0
for char in word {
if !["a", "e", "i", "o", "u"].contains(String(char).lowercased()) {
consonantsCount += 1
}
}
return consonantsCount == n
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map { String($0) }
return words.filter { word in
var consonantsCount = 0
for char in word {
if !["a", "e", "i", "o", "u"].contains(String(char).lowercased()) {
consonantsCount += 1
}
}
return consonantsCount == n
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map(String.init)
return words.filter { word in
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
return consonants == n
}
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map(String.init)
return words.filter { word in
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
return consonants == n
}
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map { String($0) }
return words.filter { word in
var consonantsCount = 0
for char in word {
if !["a", "e", "i", "o", "u"].contains(String(char).lowercased()) {
consonantsCount += 1
}
}
return consonantsCount == n
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map { String($0) }
return words.filter { word in
var consonantsCount = 0
for char in word {
if !["a", "e", "i", "o", "u"].contains(String(char).lowercased()) {
consonantsCount += 1
}
}
return consonantsCount == n
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
return words.filter { word in
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
return consonants == n
}
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
return words.filter { word in
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
return consonants == n
}
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map(String.init)
return words.filter { word in
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
return consonants == n
}
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map(String.init)
return words.filter { word in
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
return consonants == n
}
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map { String($0) }
return words.filter { word in
word.filter { !$0.isLetter() || $0.isConsonant() }.count == n
}
}
extension Character {
func isConsonant() -> Bool {
return !["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map { String($0) }
return words.filter { word in
word.filter { !$0.isLetter() || $0.isConsonant() }.count == n
}
}
extension Character {
func isConsonant() -> Bool {
return !["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
```
word.filter { !$0.isLetter() || $0.isConsonant() }.count == n // trailing closure passed to parameter of type 'Predicate<String.Element>' (aka 'Predicate<Character>') that does not accept a closure
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map { String($0) }
return words.filter { word in
var consonantsCount = 0
for char in word {
if !["a", "e", "i", "o", "u"].contains(String(char).lowercased()) {
consonantsCount += 1
}
}
return consonantsCount == n
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map { String($0) }
return words.filter { word in
var consonantsCount = 0
for char in word {
if !["a", "e", "i", "o", "u"].contains(String(char).lowercased()) {
consonantsCount += 1
}
}
return consonantsCount == n
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map(String.init)
return words.filter { word in
var consonants = 0
for letter in word {
if !"aeiouAEIOU".contains(letter) {
consonants += 1
}
}
return consonants == n
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ").map(String.init)
return words.filter { word in
var consonants = 0
for letter in word {
if !"aeiouAEIOU".contains(letter) {
consonants += 1
}
}
return consonants == n
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
return words.filter { word in
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
return consonants == n
}
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
return words.filter { word in
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
return consonants == n
}
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(String(self).lowercased())
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word {
if char.isLetter && !char.isWhitespace {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]<end_of_turn>
<start_of_turn>model
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word {
if char.isLetter && !char.isWhitespace {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let characters = Array(word.lowercased())
var consonantsCount = 0
var closestVowel: String?
for i in stride(from: characters.count - 1, through: 0, by: -1) {
if vowels.contains(characters[i]) {
closestVowel = characters[i]
break
} else if !vowels.contains(characters[i]) {
consonantsCount += 1
if consonantsCount == 2 {
break
}
}
}
return closestVowel ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let characters = Array(word.lowercased())
var consonantsCount = 0
var closestVowel: String?
for i in stride(from: characters.count - 1, through: 0, by: -1) {
if vowels.contains(characters[i]) {
closestVowel = characters[i]
break
} else if !vowels.contains(characters[i]) {
consonantsCount += 1
if consonantsCount == 2 {
break
}
}
}
return closestVowel ?? ""
}
```
if vowels.contains(characters[i]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
closestVowel = characters[i] // cannot assign value of type 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') to type 'String'
closestVowel = characters[i] // no exact matches in call to subscript
} else if !vowels.contains(characters[i]) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let letters = Array(word.lowercased())
for (index, letter) in letters.enumerated() {
if vowels.contains(letter) {
if letters[max(0, index - 1)] != letters[index] && letters[min(letters.count - 1, index + 1)] != letters[index] {
return String(letter)
}
}
}
return ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let letters = Array(word.lowercased())
for (index, letter) in letters.enumerated() {
if vowels.contains(letter) {
if letters[max(0, index - 1)] != letters[index] && letters[min(letters.count - 1, index + 1)] != letters[index] {
return String(letter)
}
}
}
return ""
}
```
if vowels.contains(letter) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel = ""
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if letter.isVowel {
if consonantsCount >= 2 {
closestVowel = letter.description
break
}
consonantsCount = 0
} else {
consonantsCount += 1
}
}
return closestVowel
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(self.lowercased())
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel = ""
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if letter.isVowel {
if consonantsCount >= 2 {
closestVowel = letter.description
break
}
consonantsCount = 0
} else {
consonantsCount += 1
}
}
return closestVowel
}
extension Character {
var isVowel: Bool {
return ["a", "e", "i", "o", "u"].contains(self.lowercased())
}
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel = ""
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if letter == "a" || letter == "e" || letter == "i" || letter == "o" || letter == "u" {
continue
} else if letter.isLetter {
consonantsCount += 1
if consonantsCount == 2 {
closestVowel = String(letter)
break
}
}
}
return closestVowel
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel = ""
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if letter == "a" || letter == "e" || letter == "i" || letter == "o" || letter == "u" {
continue
} else if letter.isLetter {
consonantsCount += 1
if consonantsCount == 2 {
closestVowel = String(letter)
break
}
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
let letters = Array(word.lowercased())
var consonantsCount = 0
var closestVowel: Character?
for i in stride(from: letters.count - 1, through: 0, by: -1) {
if vowels.contains(letters[i]) {
closestVowel = letters[i]
break
} else if !vowels.contains(letters[i]) {
consonantsCount += 1
}
if consonantsCount == 2 {
return String(closestVowel!)
}
}
return ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
let letters = Array(word.lowercased())
var consonantsCount = 0
var closestVowel: Character?
for i in stride(from: letters.count - 1, through: 0, by: -1) {
if vowels.contains(letters[i]) {
closestVowel = letters[i]
break
} else if !vowels.contains(letters[i]) {
consonantsCount += 1
}
if consonantsCount == 2 {
return String(closestVowel!)
}
}
return ""
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel: Character?
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if isVowel(letter) {
closestVowel = letter
continue
}
if isConsonant(letter) {
consonantsCount += 1
if consonantsCount == 2 {
return String(closestVowel!)
}
}
}
return ""
}
func isVowel(_ letter: Character) -> Bool {
return ["a", "e", "i", "o", "u"].contains(String(letter).lowercased())
}
func isConsonant(_ letter: Character) -> Bool {
return !isVowel(letter)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel: Character?
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if isVowel(letter) {
closestVowel = letter
continue
}
if isConsonant(letter) {
consonantsCount += 1
if consonantsCount == 2 {
return String(closestVowel!)
}
}
}
return ""
}
func isVowel(_ letter: Character) -> Bool {
return ["a", "e", "i", "o", "u"].contains(String(letter).lowercased())
}
func isConsonant(_ letter: Character) -> Bool {
return !isVowel(letter)
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel = ""
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if letter == "a" || letter == "e" || letter == "i" || letter == "o" || letter == "u" {
if consonantsCount >= 2 {
closestVowel = letter
break
}
consonantsCount += 1
} else if letter != "a" && letter != "e" && letter != "i" && letter != "o" && letter != "u" {
consonantsCount += 1
}
}
return closestVowel
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel = ""
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if letter == "a" || letter == "e" || letter == "i" || letter == "o" || letter == "u" {
if consonantsCount >= 2 {
closestVowel = letter
break
}
consonantsCount += 1
} else if letter != "a" && letter != "e" && letter != "i" && letter != "o" && letter != "u" {
consonantsCount += 1
}
}
return closestVowel
}
```
closestVowel = letter // cannot assign value of type 'String.Element' (aka 'Character') to type 'String'
func getClosestVowel(word: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
let letters = Array(word.lowercased())
var consonantsCount = 0
var closestVowel: Character?
for i in stride(from: letters.count - 1, through: 0, by: -1) {
if vowels.contains(letters[i]) {
closestVowel = letters[i]
break
} else if !vowels.contains(letters[i]) {
consonantsCount += 1
}
if consonantsCount == 2 {
return String(closestVowel!)
}
}
return ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
let letters = Array(word.lowercased())
var consonantsCount = 0
var closestVowel: Character?
for i in stride(from: letters.count - 1, through: 0, by: -1) {
if vowels.contains(letters[i]) {
closestVowel = letters[i]
break
} else if !vowels.contains(letters[i]) {
consonantsCount += 1
}
if consonantsCount == 2 {
return String(closestVowel!)
}
}
return ""
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel: Character?
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if letter == "a" || letter == "e" || letter == "i" || letter == "o" || letter == "u" {
closestVowel = letter
} else if letter != "a" && letter != "e" && letter != "i" && letter != "o" && letter != "u" {
consonantsCount += 1
}
if consonantsCount == 2 {
return String(closestVowel!)
}
}
return ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let letters = Array(word)
var consonantsCount = 0
var closestVowel: Character?
for i in stride(from: letters.count - 1, through: 0, by: -1) {
let letter = letters[i]
if letter == "a" || letter == "e" || letter == "i" || letter == "o" || letter == "u" {
closestVowel = letter
} else if letter != "a" && letter != "e" && letter != "i" && letter != "o" && letter != "u" {
consonantsCount += 1
}
if consonantsCount == 2 {
return String(closestVowel!)
}
}
return ""
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let characters = Array(word.lowercased())
for i in stride(from: characters.count - 1, through: 1, by: -1) {
if vowels.contains(String(characters[i])) {
var leftConsonantFound = false
var rightConsonantFound = false
for j in stride(from: i - 1, through: 0, by: -1) {
if !vowels.contains(String(characters[j])) {
leftConsonantFound = true
break
}
}
for j in stride(from: i + 1, through: characters.count - 1, by: 1) {
if !vowels.contains(String(characters[j])) {
rightConsonantFound = true
break
}
}
if leftConsonantFound && rightConsonantFound {
return String(characters[i])
}
}
}
return ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""<end_of_turn>
<start_of_turn>model
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let characters = Array(word.lowercased())
for i in stride(from: characters.count - 1, through: 1, by: -1) {
if vowels.contains(String(characters[i])) {
var leftConsonantFound = false
var rightConsonantFound = false
for j in stride(from: i - 1, through: 0, by: -1) {
if !vowels.contains(String(characters[j])) {
leftConsonantFound = true
break
}
}
for j in stride(from: i + 1, through: characters.count - 1, by: 1) {
if !vowels.contains(String(characters[j])) {
rightConsonantFound = true
break
}
}
if leftConsonantFound && rightConsonantFound {
return String(characters[i])
}
}
}
return ""
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for i in lst {
for j in i {
if j == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for i in lst {
for j in i {
if j == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for i in lst {
for j in i {
if j == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for i in lst {
for j in i {
if j == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for i in lst {
for j in i {
if j == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for i in lst {
for j in i {
if j == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
if count == 0 {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"<end_of_turn>
<start_of_turn>model
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for char in lst.joined() {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
```
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
```
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
```
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
```
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result[0..<k])
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]<end_of_turn>
<start_of_turn>model
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
return arr.sorted(by: >).prefix(k).sorted()
}
```
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.offset % 2 == 0 && $0.element % 2 != 0 }
.map { $0.element }
.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.offset % 2 == 0 && $0.element % 2 != 0 }
.map { $0.element }
.reduce(0, +)
}
```
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.offset % 2 == 0 && $0.element % 2 != 0 }
.map { $0.element }
.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.offset % 2 == 0 && $0.element % 2 != 0 }
.map { $0.element }
.reduce(0, +)
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.offset % 2 == 0 && $0.element % 2 != 0 }
.map { $0.element }
.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.offset % 2 == 0 && $0.element % 2 != 0 }
.map { $0.element }
.reduce(0, +)
}
```
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.element % 2 != 0 && $0.offset % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.element % 2 != 0 && $0.offset % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.element % 2 != 0 && $0.offset % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.element % 2 != 0 && $0.offset % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.element % 2 != 0 && $0.offset % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0<end_of_turn>
<start_of_turn>model
```swift
func solution(lst: [Int]) -> Int {
return lst.enumerated()
.filter { $0.element % 2 != 0 && $0.offset % 2 == 0 }
.map { $0.element }
.reduce(0, +)
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<min(k, arr.count) {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<min(k, arr.count) {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
return arr.prefix(k).filter { $0 < 100 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
return arr.prefix(k).filter { $0 < 100 }.reduce(0, +)
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
return arr[0..<k].filter { $0 < 100 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
return arr[0..<k].filter { $0 < 100 }.reduce(0, +)
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
return arr[0..<k].filter { $0 < 100 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
return arr[0..<k].filter { $0 < 100 }.reduce(0, +)
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
return arr[0..<k].filter { $0 < 100 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24<end_of_turn>
<start_of_turn>model
```swift
func addElements(arr: [Int], k: Int) -> Int {
return arr[0..<k].filter { $0 < 100 }.reduce(0, +)
}
```
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [Int]()
var number = n
while number != 1 {
if number % 2 == 0 {
number /= 2
} else {
number = 3 * number + 1
}
sequence.append(number)
}
return sequence.filter { $0 % 2 != 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [Int]()
var number = n
while number != 1 {
if number % 2 == 0 {
number /= 2
} else {
number = 3 * number + 1
}
sequence.append(number)
}
return sequence.filter { $0 % 2 != 0 }
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 != 0 {
result.append(current)
}
current = current % 2 == 0 ? current / 2 : 3 * current + 1
}
return result.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 != 0 {
result.append(current)
}
current = current % 2 == 0 ? current / 2 : 3 * current + 1
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 != 0 {
result.append(current)
}
current = current % 2 == 0 ? current / 2 : 3 * current + 1
}
return result.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 != 0 {
result.append(current)
}
current = current % 2 == 0 ? current / 2 : 3 * current + 1
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 1 {
result.append(current)
current = 3 * current + 1
} else {
current /= 2
}
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 1 {
result.append(current)
current = 3 * current + 1
} else {
current /= 2
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 1 {
result.append(current)
current = 3 * current + 1
} else {
current /= 2
}
}
result.append(1)
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 1 {
result.append(current)
current = 3 * current + 1
} else {
current /= 2
}
}
result.append(1)
return result.reversed()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]<end_of_turn>
<start_of_turn>model
```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
sequence.append(current)
}
return sequence.filter { $0 % 2 != 0 }
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard let month = month, let day = day, let year = year else {
return false
}
guard !date.isEmpty else {
return false
}
guard day >= 1 && day <= 31 {
switch month {
case 1, 3, 5, 7, 8, 10, 12:
break
case 4, 6, 9, 11:
guard day <= 30 else {
return false
}
case 2:
guard year % 4 == 0 && (year % 100 != 0 || year % 400 == 0) && day <= 29 else {
guard day <= 28 else {
return false
}
}
default:
return false
}
} else {
return false
}
guard month >= 1 && month <= 12 else {
return false
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard let month = month, let day = day, let year = year else {
return false
}
guard !date.isEmpty else {
return false
}
guard day >= 1 && day <= 31 {
switch month {
case 1, 3, 5, 7, 8, 10, 12:
break
case 4, 6, 9, 11:
guard day <= 30 else {
return false
}
case 2:
guard year % 4 == 0 && (year % 100 != 0 || year % 400 == 0) && day <= 29 else {
guard day <= 28 else {
return false
}
}
default:
return false
}
} else {
return false
}
guard month >= 1 && month <= 12 else {
return false
}
return true
}
```
guard day >= 1 && day <= 31 { // expected 'else' after 'guard' condition
} else { // consecutive statements on a line must be separated by ';'
} else { // expected expression
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(abbreviation: "UTC")
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(abbreviation: "UTC")
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
// Check if the date string is not empty
if dateComponents.isEmpty {
return false
}
// Extract the month, day, and year from the date string
guard let month = Int(dateComponents[0]), let day = Int(dateComponents[1]), let year = Int(dateComponents[2]) else {
return false
}
// Validate the month
if month < 1 || month > 12 {
return false
}
// Validate the day
switch month {
case 1, 3, 5, 7, 8, 10, 12:
if day < 1 || day > 31 {
return false
}
case 4, 6, 9, 11:
if day < 1 || day > 30 {
return false
}
case 2:
if day < 1 || day > 29 {
return false
}
default:
return false
}
// Validate the year
if year < 1 {
return false
}
// All validations passed, return true
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
// Check if the date string is not empty
if dateComponents.isEmpty {
return false
}
// Extract the month, day, and year from the date string
guard let month = Int(dateComponents[0]), let day = Int(dateComponents[1]), let year = Int(dateComponents[2]) else {
return false
}
// Validate the month
if month < 1 || month > 12 {
return false
}
// Validate the day
switch month {
case 1, 3, 5, 7, 8, 10, 12:
if day < 1 || day > 31 {
return false
}
case 4, 6, 9, 11:
if day < 1 || day > 30 {
return false
}
case 2:
if day < 1 || day > 29 {
return false
}
default:
return false
}
// Validate the year
if year < 1 {
return false
}
// All validations passed, return true
return true
}
```
// Fatal error: Index out of range
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
if date.isEmpty {
return false
}
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
if date.isEmpty {
return false
}
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
if dateComponents.count != 3 {
return false
}
guard let month = Int(dateComponents[0]), let day = Int(dateComponents[1]), let year = Int(dateComponents[2]) else {
return false
}
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if [4, 6, 9, 11].contains(month) {
if day > 30 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
if dateComponents.count != 3 {
return false
}
guard let month = Int(dateComponents[0]), let day = Int(dateComponents[1]), let year = Int(dateComponents[2]) else {
return false
}
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if [4, 6, 9, 11].contains(month) {
if day > 30 {
return false
}
}
return true
}
```
guard let month = Int(dateComponents[0]), let day = Int(dateComponents[1]), let year = Int(dateComponents[2]) else { // immutable value 'year' was never used; consider replacing with '_' or removing it
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
if date.isEmpty {
return false
}
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
if date.isEmpty {
return false
}
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateComponents = date.split(separator: "-")
guard dateComponents.count == 3,
let month = Int(dateComponents[0]),
let day = Int(dateComponents[1]),
let year = Int(dateComponents[2]) else {
return false
}
if month < 1 || month > 12 {
return false
}
let daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
if day < 1 || day > daysInMonth[month - 1] {
return false
}
if month == 2 && day > 29 {
return false
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateComponents = date.split(separator: "-")
guard dateComponents.count == 3,
let month = Int(dateComponents[0]),
let day = Int(dateComponents[1]),
let year = Int(dateComponents[2]) else {
return false
}
if month < 1 || month > 12 {
return false
}
let daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
if day < 1 || day > daysInMonth[month - 1] {
return false
}
if month == 2 && day > 29 {
return false
}
return true
}
```
let year = Int(dateComponents[2]) else { // immutable value 'year' was never used; consider replacing with '_' or removing it
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard let month = month, let day = day, let year = year else {
return false
}
if month < 1 || month > 12 {
return false
}
let daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
if month == 2 {
if year % 4 == 0 && (year % 100 != 0 || year % 400 == 0) {
if day < 1 || day > 29 {
return false
}
} else {
if day < 1 || day > 28 {
return false
}
}
} else {
if day < 1 || day > daysInMonth[month - 1] {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard let month = month, let day = day, let year = year else {
return false
}
if month < 1 || month > 12 {
return false
}
let daysInMonth = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
if month == 2 {
if year % 4 == 0 && (year % 100 != 0 || year % 400 == 0) {
if day < 1 || day > 29 {
return false
}
} else {
if day < 1 || day > 28 {
return false
}
}
} else {
if day < 1 || day > daysInMonth[month - 1] {
return false
}
}
return true
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
if date.isEmpty {
return false
}
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
if date.isEmpty {
return false
}
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
if date.isEmpty {
return false
}
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false<end_of_turn>
<start_of_turn>model
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "mm-dd-yyyy"
if date.isEmpty {
return false
}
if let _ = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for (i, char) in txt.enumerated() where char.isLowercase && i % 2 == 1 {
count += 1
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for (i, char) in txt.enumerated() where char.isLowercase && i % 2 == 1 {
count += 1
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
} else if let words = txt.split(separator: ",").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ") {
return .success(words.map { String($0) })
} else if let words = txt.split(separator: ",") {
return .success(words.map { String($0) })
} else {
var count = 0
for char in txt.lowercased() {
if char.asciiValue! % 2 == 1 {
count += 1
}
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ") {
return .success(words.map { String($0) })
} else if let words = txt.split(separator: ",") {
return .success(words.map { String($0) })
} else {
var count = 0
for char in txt.lowercased() {
if char.asciiValue! % 2 == 1 {
count += 1
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
} else if let words = txt.split(separator: ",") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for (i, c) in txt.lowercased().enumerated() where i % 2 == 1 {
count += c.asciiValue! - "a".asciiValue!
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for (i, c) in txt.lowercased().enumerated() where i % 2 == 1 {
count += c.asciiValue! - "a".asciiValue!
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
} else if let words = txt.split(separator: ",").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
count += c.asciiValue! - "a".asciiValue! // cannot convert value of type 'UInt8' to expected argument type 'Int'
count += c.asciiValue! - "a".asciiValue! // cannot convert value of type 'UInt8' to expected argument type 'Int'
count += c.asciiValue! - "a".asciiValue! // value of type 'String' has no member 'asciiValue'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ") {
return .success(words.map { String($0) })
} else if let words = txt.split(separator: ",") {
return .success(words.map { String($0) })
} else {
var count = 0
for char in txt where char.isLowercase {
if (Int(char.asciiValue!) % 2) == 1 {
count += 1
}
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ") {
return .success(words.map { String($0) })
} else if let words = txt.split(separator: ",") {
return .success(words.map { String($0) })
} else {
var count = 0
for char in txt where char.isLowercase {
if (Int(char.asciiValue!) % 2) == 1 {
count += 1
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
} else if let words = txt.split(separator: ",") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ") {
return .success(words.map { String($0) })
} else if let words = txt.split(separator: ",") {
return .success(words.map { String($0) })
} else {
var count = 0
for char in txt {
if char.isLowercase && (char.asciiValue! % 2) == 1 {
count += 1
}
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ") {
return .success(words.map { String($0) })
} else if let words = txt.split(separator: ",") {
return .success(words.map { String($0) })
} else {
var count = 0
for char in txt {
if char.isLowercase && (char.asciiValue! % 2) == 1 {
count += 1
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
} else if let words = txt.split(separator: ",") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for char in txt.lowercased() {
if char.asciiValue! % 2 == 1 {
count += 1
}
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for char in txt.lowercased() {
if char.asciiValue! % 2 == 1 {
count += 1
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
} else if let words = txt.split(separator: ",").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for i in 0..<txt.count {
let letter = txt[txt.index(txt.startIndex, offsetBy: i)]
if letter.isLowercase && i % 2 != 0 {
count += 1
}
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for i in 0..<txt.count {
let letter = txt[txt.index(txt.startIndex, offsetBy: i)]
if letter.isLowercase && i % 2 != 0 {
count += 1
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
} else if let words = txt.split(separator: ",").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for i in 0..<txt.count {
if txt[txt.index(txt.startIndex, offsetBy: i)].isLowercase {
count += i % 2 == 1 ? 1 : 0
}
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for i in 0..<txt.count {
if txt[txt.index(txt.startIndex, offsetBy: i)].isLowercase {
count += i % 2 == 1 ? 1 : 0
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
} else if let words = txt.split(separator: ",").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for char in txt {
if char.isLowercase && char.asciiValue! % 2 == 1 {
count += 1
}
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for char in txt {
if char.isLowercase && char.asciiValue! % 2 == 1 {
count += 1
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
} else if let words = txt.split(separator: ",").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for i in 0..<txt.count {
let letter = txt[txt.index(txt.startIndex, offsetBy: i)]
if letter.isLowercase && i % 2 == 1 {
count += 1
}
}
return .failure(count)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)<end_of_turn>
<start_of_turn>model
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let words = txt.split(separator: " ").map(String.init) {
return .success(words)
} else if let words = txt.split(separator: ",").map(String.init) {
return .success(words)
} else {
var count = 0
for i in 0..<txt.count {
let letter = txt[txt.index(txt.startIndex, offsetBy: i)]
if letter.isLowercase && i % 2 == 1 {
count += 1
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
} else if let words = txt.split(separator: ",").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var lastValue = Int.min
for value in lst {
if seen.contains(value) {
return false
}
seen.insert(value)
if value < lastValue {
return false
}
lastValue = value
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var lastValue = Int.min
for value in lst {
if seen.contains(value) {
return false
}
seen.insert(value)
if value < lastValue {
return false
}
lastValue = value
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] {
return false
}
if seen.contains(lst[i]) {
return false
}
seen.insert(lst[i])
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] {
return false
}
if seen.contains(lst[i]) {
return false
}
seen.insert(lst[i])
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] {
return false
}
if seen.contains(lst[i]) {
return false
}
seen.insert(lst[i])
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] {
return false
}
if seen.contains(lst[i]) {
return false
}
seen.insert(lst[i])
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var previous = Int.min
for num in lst {
if seen.contains(num) {
return false
}
seen.insert(num)
if num < previous {
return false
}
previous = num
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var previous = Int.min
for num in lst {
if seen.contains(num) {
return false
}
seen.insert(num)
if num < previous {
return false
}
previous = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var lastValue = Int.min
for value in lst {
if value <= lastValue {
return false
}
if seen.contains(value) {
return false
}
seen.insert(value)
lastValue = value
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var lastValue = Int.min
for value in lst {
if value <= lastValue {
return false
}
if seen.contains(value) {
return false
}
seen.insert(value)
lastValue = value
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var previous = Int.min
for num in lst {
if seen.contains(num) {
return false
}
seen.insert(num)
if num <= previous {
return false
}
previous = num
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var previous = Int.min
for num in lst {
if seen.contains(num) {
return false
}
seen.insert(num)
if num <= previous {
return false
}
previous = num
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] {
return false
}
if seen.contains(lst[i]) {
return false
}
seen.insert(lst[i])
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] {
return false
}
if seen.contains(lst[i]) {
return false
}
seen.insert(lst[i])
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] { return false }
if seen.contains(lst[i]) { return false }
seen.insert(lst[i])
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] { return false }
if seen.contains(lst[i]) { return false }
seen.insert(lst[i])
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] {
return false
}
if seen.contains(lst[i]) {
return false
}
seen.insert(lst[i])
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
for i in 0..<lst.count - 1 {
if lst[i] > lst[i + 1] {
return false
}
if seen.contains(lst[i]) {
return false
}
seen.insert(lst[i])
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var prev = Int.min
for num in lst {
if num <= prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false<end_of_turn>
<start_of_turn>model
```swift
func isSorted(lst: [Int]) -> Bool {
var seen = Set<Int>()
var prev = Int.min
for num in lst {
if num <= prev {
return false
}
if seen.contains(num) {
return false
}
seen.insert(num)
prev = num
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
if isPrime(length) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
if isPrime(length) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
if isPrime(length) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
if isPrime(length) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
if isPrime(number: length) {
return "YES"
} else {
return "NO"
}
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(min(end1, end2) - max(start1, start2) + 1, 0)
if isPrime(number: length) {
return "YES"
} else {
return "NO"
}
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
if isPrime(length) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
if isPrime(length) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"<end_of_turn>
<start_of_turn>model
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let length = max(0, min(end1, end2) - max(start1, start2) + 1)
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty { return nil }
var product = 1
var sum = 0
for num in arr {
product *= (num > 0) ? 1 : (num < 0) ? -1 : 0
sum += abs(num)
}
return product * sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty { return nil }
var product = 1
var sum = 0
for num in arr {
product *= (num > 0) ? 1 : (num < 0) ? -1 : 0
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= (num > 0 ? 1 : (num < 0 ? -1 : 0))
sum += abs(num)
}
return product * sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= (num > 0 ? 1 : (num < 0 ? -1 : 0))
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= (num > 0) ? 1 : (num < 0) ? -1 : 0
sum += abs(num)
}
return product * sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= (num > 0) ? 1 : (num < 0) ? -1 : 0
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= (num > 0 ? 1 : (num < 0 ? -1 : 0))
sum += abs(num)
}
return product * sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= (num > 0 ? 1 : (num < 0 ? -1 : 0))
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= (num > 0) ? 1 : (num < 0) ? -1 : 0
sum += abs(num)
}
return product * sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= (num > 0) ? 1 : (num < 0) ? -1 : 0
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= sign(num)
sum += abs(num)
}
return product * sum
}
func sign(_ num: Int) -> Int {
if num > 0 {
return 1
} else if num < 0 {
return -1
} else {
return 0
}
}
func abs(_ num: Int) -> Int {
if num < 0 {
return -num
} else {
return num
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= sign(num)
sum += abs(num)
}
return product * sum
}
func sign(_ num: Int) -> Int {
if num > 0 {
return 1
} else if num < 0 {
return -1
} else {
return 0
}
}
func abs(_ num: Int) -> Int {
if num < 0 {
return -num
} else {
return num
}
}
```
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num > 0 ? 1 : -1
sum += abs(num)
}
return product * sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num > 0 ? 1 : -1
sum += abs(num)
}
return product * sum
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= (num > 0 ? 1 : (num < 0 ? -1 : 0))
sum += abs(num)
}
return product * sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
if arr.isEmpty {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= (num > 0 ? 1 : (num < 0 ? -1 : 0))
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= sign(num)
sum += abs(num)
}
return product * sum
}
func sign(_ num: Int) -> Int {
if num > 0 {
return 1
} else if num < 0 {
return -1
} else {
return 0
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= sign(num)
sum += abs(num)
}
return product * sum
}
func sign(_ num: Int) -> Int {
if num > 0 {
return 1
} else if num < 0 {
return -1
} else {
return 0
}
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= num > 0 ? 1 : (num < 0 ? -1 : 0)
sum += abs(num)
}
return product * sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil<end_of_turn>
<start_of_turn>model
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else {
return nil
}
var product = 1
var sum = 0
for num in arr {
product *= num > 0 ? 1 : (num < 0 ? -1 : 0)
sum += abs(num)
}
return product * sum
}
```
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
func dfs(row: Int, col: Int, count: Int) {
if count == k {
path = visited.flatMap { row in row }
return
}
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(0, 1), (1, 0), (0, -1), (-1, 0)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol] {
dfs(row: nextRow, col: nextCol, count: count + 1)
}
}
visited[row][col] = false
path.removeLast()
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, count: 0)
}
}
return path
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
func dfs(row: Int, col: Int, count: Int) {
if count == k {
path = visited.flatMap { row in row }
return
}
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(0, 1), (1, 0), (0, -1), (-1, 0)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol] {
dfs(row: nextRow, col: nextCol, count: count + 1)
}
}
visited[row][col] = false
path.removeLast()
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, count: 0)
}
}
return path
}
```
path = visited.flatMap { row in row } // cannot assign value of type 'Array<Array<Bool>.Element>' to type 'Array<Int>'
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, grid[i][j]))
}
}
while !queue.isEmpty {
let (row, col, value) = queue.removeFirst()
if visited[row][col] { continue }
visited[row][col] = true
path.append(value)
if path.count == k { return path }
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n {
queue.append((nextRow, nextCol, grid[nextRow][nextCol]))
}
}
}
return []
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, grid[i][j]))
}
}
while !queue.isEmpty {
let (row, col, value) = queue.removeFirst()
if visited[row][col] { continue }
visited[row][col] = true
path.append(value)
if path.count == k { return path }
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n {
queue.append((nextRow, nextCol, grid[nextRow][nextCol]))
}
}
}
return []
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
func dfs(row: Int, col: Int, count: Int) {
if count == k {
path = path + [grid[row][col]]
return
}
visited[row][col] = true
path = path + [grid[row][col]]
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if 0 <= nextRow && nextRow < n && 0 <= nextCol && nextCol < n && !visited[nextRow][nextCol] {
dfs(row: nextRow, col: nextCol, count: count + 1)
}
}
visited[row][col] = false
path.removeLast()
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, count: 0)
}
}
return path
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
func dfs(row: Int, col: Int, count: Int) {
if count == k {
path = path + [grid[row][col]]
return
}
visited[row][col] = true
path = path + [grid[row][col]]
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if 0 <= nextRow && nextRow < n && 0 <= nextCol && nextCol < n && !visited[nextRow][nextCol] {
dfs(row: nextRow, col: nextCol, count: count + 1)
}
}
visited[row][col] = false
path.removeLast()
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, count: 0)
}
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
queue.append((0, 0, 0))
visited[0][0] = true
while !queue.isEmpty {
let (row, col, steps) = queue.removeFirst()
if steps == k {
path = (0..<k).map { path[$0] }
break
}
path.append(grid[row][col])
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol] {
visited[nextRow][nextCol] = true
queue.append((nextRow, nextCol, steps + 1))
}
}
}
return path
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
queue.append((0, 0, 0))
visited[0][0] = true
while !queue.isEmpty {
let (row, col, steps) = queue.removeFirst()
if steps == k {
path = (0..<k).map { path[$0] }
break
}
path.append(grid[row][col])
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol] {
visited[nextRow][nextCol] = true
queue.append((nextRow, nextCol, steps + 1))
}
}
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, grid[i][j]))
visited[i][j] = true
}
}
while !queue.isEmpty {
let (x, y, val) = queue.removeFirst()
path.append(val)
if path.count == k {
return path
}
for (dx, dy) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
queue.append((nx, ny, grid[nx][ny]))
visited[nx][ny] = true
}
}
}
return []
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, grid[i][j]))
visited[i][j] = true
}
}
while !queue.isEmpty {
let (x, y, val) = queue.removeFirst()
path.append(val)
if path.count == k {
return path
}
for (dx, dy) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
queue.append((nx, ny, grid[nx][ny]))
visited[nx][ny] = true
}
}
}
return []
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var minPath = Array(repeating: Int.max, count: k)
func dfs(row: Int, col: Int, currentPath: [Int]) {
if currentPath.count == k {
if currentPath < minPath {
minPath = currentPath
}
return
}
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if (0..<n).contains(nextRow) && (0..<n).contains(nextCol) && !visited[nextRow][nextCol] {
dfs(row: nextRow, col: nextCol, currentPath: currentPath + [grid[nextRow][nextCol]])
}
}
visited[row][col] = false
path.removeLast()
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, currentPath: [])
}
}
return minPath
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var minPath = Array(repeating: Int.max, count: k)
func dfs(row: Int, col: Int, currentPath: [Int]) {
if currentPath.count == k {
if currentPath < minPath {
minPath = currentPath
}
return
}
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if (0..<n).contains(nextRow) && (0..<n).contains(nextCol) && !visited[nextRow][nextCol] {
dfs(row: nextRow, col: nextCol, currentPath: currentPath + [grid[nextRow][nextCol]])
}
}
visited[row][col] = false
path.removeLast()
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, currentPath: [])
}
}
return minPath
}
```
if currentPath < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, 0))
}
}
while !queue.isEmpty {
let (row, col, steps) = queue.removeFirst()
if steps == k {
return path
}
if visited[row][col] { continue }
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nr = row + dr
let nc = col + dc
if nr >= 0 && nr < n && nc >= 0 && nc < n {
queue.append((nr, nc, steps + 1))
}
}
}
return []
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, 0))
}
}
while !queue.isEmpty {
let (row, col, steps) = queue.removeFirst()
if steps == k {
return path
}
if visited[row][col] { continue }
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nr = row + dr
let nc = col + dc
if nr >= 0 && nr < n && nc >= 0 && nc < n {
queue.append((nr, nc, steps + 1))
}
}
}
return []
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var minPath = Array(repeating: 0, count: k)
func dfs(row: Int, col: Int, depth: Int) {
if depth == k {
if path.count > 0 && path < minPath {
minPath = path
}
return
}
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol] {
dfs(row: nextRow, col: nextCol, depth: depth + 1)
}
}
path.removeLast()
visited[row][col] = false
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, depth: 0)
}
}
return minPath
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var minPath = Array(repeating: 0, count: k)
func dfs(row: Int, col: Int, depth: Int) {
if depth == k {
if path.count > 0 && path < minPath {
minPath = path
}
return
}
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol] {
dfs(row: nextRow, col: nextCol, depth: depth + 1)
}
}
path.removeLast()
visited[row][col] = false
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, depth: 0)
}
}
return minPath
}
```
if path.count > 0 && path < minPath { // binary operator '<' cannot be applied to two '[Int]' operands
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var minPath = Array(repeating: 0, count: k)
func dfs(row: Int, col: Int, step: Int) {
if step == k {
path = minPath
return
}
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(0, 1), (1, 0), (0, -1), (-1, 0)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol] {
minPath[step] = grid[nextRow][nextCol]
dfs(row: nextRow, col: nextCol, step: step + 1)
path.removeLast()
visited[nextRow][nextCol] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
minPath[0] = grid[i][j]
dfs(row: i, col: j, step: 1)
}
}
return path
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var minPath = Array(repeating: 0, count: k)
func dfs(row: Int, col: Int, step: Int) {
if step == k {
path = minPath
return
}
visited[row][col] = true
path.append(grid[row][col])
for (dr, dc) in [(0, 1), (1, 0), (0, -1), (-1, 0)] {
let nextRow = row + dr
let nextCol = col + dc
if nextRow >= 0 && nextRow < n && nextCol >= 0 && nextCol < n && !visited[nextRow][nextCol] {
minPath[step] = grid[nextRow][nextCol]
dfs(row: nextRow, col: nextCol, step: step + 1)
path.removeLast()
visited[nextRow][nextCol] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
minPath[0] = grid[i][j]
dfs(row: i, col: j, step: 1)
}
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, grid[i][j]))
}
}
while !queue.isEmpty {
let (row, col, value) = queue.removeFirst()
if visited[row][col] { continue }
visited[row][col] = true
path.append(value)
if path.count == k { return path }
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nr = row + dr
let nc = col + dc
if nr < 0 || nr >= n || nc < 0 || nc >= n { continue }
queue.append((nr, nc, grid[nr][nc]))
}
}
return []
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]<end_of_turn>
<start_of_turn>model
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var path = [Int]()
var queue = [(Int, Int, Int)]()
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, grid[i][j]))
}
}
while !queue.isEmpty {
let (row, col, value) = queue.removeFirst()
if visited[row][col] { continue }
visited[row][col] = true
path.append(value)
if path.count == k { return path }
for (dr, dc) in [(1, 0), (-1, 0), (0, 1), (0, -1)] {
let nr = row + dr
let nc = col + dc
if nr < 0 || nr >= n || nc < 0 || nc >= n { continue }
queue.append((nr, nc, grid[nr][nc]))
}
}
return []
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n + 1)
result[0] = 1
result[1] = 3
for i in 2..<n + 1 {
if i % 2 == 0 {
result[i] = 1 + i / 2
} else {
result[i] = result[i - 1] + result[i - 2] + result[i + 1]
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n + 1)
result[0] = 1
result[1] = 3
for i in 2..<n + 1 {
if i % 2 == 0 {
result[i] = 1 + i / 2
} else {
result[i] = result[i - 1] + result[i - 2] + result[i + 1]
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i <= 2 {
result.append(i == 0 ? 0 : i == 1 ? 3 : 1)
} else {
let odd = i % 2 != 0
result.append(odd ? result[i-1] + result[i-2] + result[i-3] : Int(Double(i)/2) + 1)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i <= 2 {
result.append(i == 0 ? 0 : i == 1 ? 3 : 1)
} else {
let odd = i % 2 != 0
result.append(odd ? result[i-1] + result[i-2] + result[i-3] : Int(Double(i)/2) + 1)
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i <= 2 {
result.append(i == 0 ? 0 : i == 1 ? 3 : 1)
} else {
let last = result[result.count - 1]
let secondLast = result[result.count - 2]
let thirdLast = result[result.count - 3]
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(last + secondLast + thirdLast)
}
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i <= 2 {
result.append(i == 0 ? 0 : i == 1 ? 3 : 1)
} else {
let last = result[result.count - 1]
let secondLast = result[result.count - 2]
let thirdLast = result[result.count - 3]
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(last + secondLast + thirdLast)
}
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i <= 2 {
result.append(i == 0 ? 0 : 3)
} else {
result.append(i % 2 == 0 ? 1 + i / 2 : result[i - 1] + result[i - 2] + result[i - 3])
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i <= 2 {
result.append(i == 0 ? 0 : 3)
} else {
result.append(i % 2 == 0 ? 1 + i / 2 : result[i - 1] + result[i - 2] + result[i - 3])
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
switch i {
case 0:
result.append(1)
case 1:
result.append(3)
case 2:
result.append(2)
default:
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
switch i {
case 0:
result.append(1)
case 1:
result.append(3)
case 2:
result.append(2)
default:
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n + 1)
result[0] = 1
result[1] = 3
for i in 2..<n + 1 {
if i % 2 == 0 {
result[i] = 1 + i / 2
} else {
result[i] = result[i - 1] + result[i - 2] + result[i + 1]
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n + 1)
result[0] = 1
result[1] = 3
for i in 2..<n + 1 {
if i % 2 == 0 {
result[i] = 1 + i / 2
} else {
result[i] = result[i - 1] + result[i - 2] + result[i + 1]
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i == 0 {
result.append(1)
} else if i == 1 {
result.append(3)
} else if i == 2 {
result.append(2)
} else {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i - 3])
}
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i == 0 {
result.append(1)
} else if i == 1 {
result.append(3)
} else if i == 2 {
result.append(2)
} else {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i - 3])
}
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
switch i {
case 0:
result.append(1)
case 1:
result.append(3)
case 2:
result.append(2)
default:
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
switch i {
case 0:
result.append(1)
case 1:
result.append(3)
case 2:
result.append(2)
default:
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n + 1)
result[0] = 1
result[1] = 3
for i in 2..<n + 1 {
if i % 2 == 0 {
result[i] = 1 + i / 2
} else {
result[i] = result[i - 1] + result[i - 2] + result[i + 1]
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n + 1)
result[0] = 1
result[1] = 3
for i in 2..<n + 1 {
if i % 2 == 0 {
result[i] = 1 + i / 2
} else {
result[i] = result[i - 1] + result[i - 2] + result[i + 1]
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i <= 2 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]<end_of_turn>
<start_of_turn>model
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 0...n {
if i <= 2 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
result *= digit
}
number /= 10
}
return result == 1 ? 0 : result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
result *= digit
}
number /= 10
}
return result == 1 ? 0 : result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
product *= digit
}
number /= 10
}
return product
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
product *= digit
}
number /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
result *= digit
}
number /= 10
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
result *= digit
}
number /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var num = n
var product = 1
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
}
num /= 10
}
return product
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var num = n
var product = 1
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
}
num /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
result *= digit
}
number /= 10
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
result *= digit
}
number /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var num = n
var product = 1
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
}
num /= 10
}
return product
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var num = n
var product = 1
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
}
num /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var num = n
var product = 1
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
}
num /= 10
}
return product
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var num = n
var product = 1
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
}
num /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
product *= digit
}
number /= 10
}
return product
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
product *= digit
}
number /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
result *= digit
}
number /= 10
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
result *= digit
}
number /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var num = n
var product = 1
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
}
num /= 10
}
return product
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15<end_of_turn>
<start_of_turn>model
```swift
func digits(n: Int) -> Int {
var num = n
var product = 1
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
}
num /= 10
}
return product
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty && !string.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty && !string.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack: [Character] = []
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty && !string.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack: [Character] = []
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty && !string.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack: [Character] = []
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack: [Character] = []
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty && !string.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty && !string.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true<end_of_turn>
<start_of_turn>model
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
```
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
```
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
```
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
```
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +)
}
```
return lst.map { Int(ceil($0)) ** 2 }.reduce(0, +) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func sumSquares(lst: [Double]) -> Int {
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded()
}
```
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded() // cannot convert return expression of type 'Double' to return type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded()
}
```
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded() // cannot convert return expression of type 'Double' to return type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6<end_of_turn>
<start_of_turn>model
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded()
}
```
return lst.map { Double(ceil($0)).squareRoot() }.reduce(0, +).rounded() // cannot convert return expression of type 'Double' to return type 'Int'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !txt.contains(" ") { lastChar in lastChar != " " }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !txt.contains(" ") { lastChar in lastChar != " " }
}
```
return lastChar.isLetter && !txt.contains(" ") { lastChar in lastChar != " " } // extra trailing closure passed in call
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isAlphabetical = CharacterSet.letters.contains(lastChar)
let isNotPartOfWord = txt.trimmingTrailingSpaces().last == lastChar
return isAlphabetical && isNotPartOfWord
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isAlphabetical = CharacterSet.letters.contains(lastChar)
let isNotPartOfWord = txt.trimmingTrailingSpaces().last == lastChar
return isAlphabetical && isNotPartOfWord
}
```
let isAlphabetical = CharacterSet.letters.contains(lastChar) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Unicode.Scalar'
let isNotPartOfWord = txt.trimmingTrailingSpaces().last == lastChar // value of type 'String' has no member 'trimmingTrailingSpaces'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.contains(" ") {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.contains(" ") {
return true
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.components(separatedBy: " ").last!.contains(lastChar) {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.components(separatedBy: " ").last!.contains(lastChar) {
return true
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotWordBoundary = (txt.dropLast().split(separator: " ").last?.contains(lastChar) == false)
return isLetter && isNotWordBoundary
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotWordBoundary = (txt.dropLast().split(separator: " ").last?.contains(lastChar) == false)
return isLetter && isNotWordBoundary
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.contains(" ") {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.contains(" ") {
return true
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.trimmingTrailingSpaces().contains(" ") {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.trimmingTrailingSpaces().contains(" ") {
return true
}
return false
}
```
if lastChar.isLetter && !txt.trimmingTrailingSpaces().contains(" ") { // value of type 'String' has no member 'trimmingTrailingSpaces'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.contains(" ") {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.contains(" ") {
return true
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.contains(" ") {
return true
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
if lastChar.isLetter && !txt.contains(" ") {
return true
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotWordChar = !txt.dropLast().contains(lastChar)
return isLetter && isNotWordChar
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false<end_of_turn>
<start_of_turn>model
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotWordChar = !txt.dropLast().contains(lastChar)
return isLetter && isNotWordChar
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1<end_of_turn>
<start_of_turn>model
```swift
func canArrange(arr: [Int]) -> Int {
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
return i - 1
}
}
return -1
}
```
// XCTAssertTrue failed
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)<end_of_turn>
<start_of_turn>model
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
largestNegative = max(largestNegative ?? num, num)
} else if num > 0 {
smallestPositive = min(smallestPositive ?? num, num)
}
}
return (largestNegative, smallestPositive)
}
```
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
}
return a > b ? a : b
default:
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
}
return a > b ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
}
default:
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
}
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let bDouble = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return aDouble > bDouble ? a : b
case _ where a == b:
return nil
default:
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let bDouble = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return aDouble > bDouble ? a : b
case _ where a == b:
return nil
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return aDouble > bDouble ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
let aValue = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let bValue = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return aValue > bValue ? .stringValue(a) : .stringValue(b)
case (.intValue(_), .doubleValue(_)) where a > b:
return a
case (.intValue(_), .doubleValue(_)) where b > a:
return b
case (.stringValue(_), .doubleValue(_)) where a > b:
return a
case (.stringValue(_), .doubleValue(_)) where b > a:
return b
case (.doubleValue(_), .stringValue(_)) where a > b:
return a
case (.doubleValue(_), .stringValue(_)) where b > a:
return b
default:
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
let aValue = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let bValue = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return aValue > bValue ? .stringValue(a) : .stringValue(b)
case (.intValue(_), .doubleValue(_)) where a > b:
return a
case (.intValue(_), .doubleValue(_)) where b > a:
return b
case (.stringValue(_), .doubleValue(_)) where a > b:
return a
case (.stringValue(_), .doubleValue(_)) where b > a:
return b
case (.doubleValue(_), .stringValue(_)) where a > b:
return a
case (.doubleValue(_), .stringValue(_)) where b > a:
return b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
case (.intValue(_), .doubleValue(_)) where a > b: // binary operator '>' cannot be applied to two 'Value' operands
case (.intValue(_), .doubleValue(_)) where b > a: // binary operator '>' cannot be applied to two 'Value' operands
case (.stringValue(_), .doubleValue(_)) where a > b: // binary operator '>' cannot be applied to two 'Value' operands
case (.stringValue(_), .doubleValue(_)) where b > a: // binary operator '>' cannot be applied to two 'Value' operands
case (.doubleValue(_), .stringValue(_)) where a > b: // binary operator '>' cannot be applied to two 'Value' operands
case (.doubleValue(_), .stringValue(_)) where b > a: // binary operator '>' cannot be applied to two 'Value' operands
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
}
default:
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
}
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")), let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return a > b ? a : b
}
case _ where a == b:
return nil
default:
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")), let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return a > b ? a : b
}
case _ where a == b:
return nil
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")), let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return a > b ? a : b
}
case (a, b) where a == b:
return nil
default:
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")), let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return a > b ? a : b
}
case (a, b) where a == b:
return nil
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let bDouble = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return aDouble > bDouble ? a : b
default:
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let bDouble = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return aDouble > bDouble ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return aDouble > bDouble ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return a > b ? a : b
}
case let (.intValue(a), .doubleValue(b)):
return b
case let (.doubleValue(a), .intValue(b)):
return a
case let (.stringValue(a), .intValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")) {
return a > Double(b) ? a : Double(b)
} else {
return nil
}
case let (.intValue(a), .stringValue(b)):
if let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return nil
}
case let (.stringValue(a), .stringValue(b)):
if a == b {
return nil
} else {
return b
}
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return a > b ? a : b
}
case let (.intValue(a), .doubleValue(b)):
return b
case let (.doubleValue(a), .intValue(b)):
return a
case let (.stringValue(a), .intValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")) {
return a > Double(b) ? a : Double(b)
} else {
return nil
}
case let (.intValue(a), .stringValue(b)):
if let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return nil
}
case let (.stringValue(a), .stringValue(b)):
if a == b {
return nil
} else {
return b
}
}
}
```
switch (a, b) { // switch must be exhaustive
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
return b // cannot convert return expression of type 'Double' to return type 'Value?'
return a // cannot convert return expression of type 'Double' to return type 'Value?'
return a > Double(b) ? a : Double(b) // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert value of type 'Double' to expected argument type 'Int'
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
case let (.stringValue(a), .stringValue(b)): // case is already handled by previous patterns; consider removing it
return b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return a > b ? a : b
}
case (.intValue, _), (_, .intValue):
return nil
case (.doubleValue, _), (_, .doubleValue):
return nil
case (.stringValue, _), (_, .stringValue):
return nil
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil<end_of_turn>
<start_of_turn>model
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
if let a = Double(a.replacingOccurrences(of: ",", with: ".")),
let b = Double(b.replacingOccurrences(of: ",", with: ".")) {
return a > b ? a : b
} else {
return a > b ? a : b
}
case (.intValue, _), (_, .intValue):
return nil
case (.doubleValue, _), (_, .doubleValue):
return nil
case (.stringValue, _), (_, .stringValue):
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
var number = n
while number > 0 {
if number % 2 == 0 {
sum += number
count += 1
if count == 4 {
return true
}
}
number -= 1
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
var number = n
while number > 0 {
if number % 2 == 0 {
sum += number
count += 1
if count == 4 {
return true
}
}
number -= 1
}
return false
}
```
func isEqualToSumEven(n: Int) -> Bool {
guard n % 2 == 0 else { return false }
var sum = 0
var count = 0
var number = n
while number > 0 {
if number % 2 == 0 {
sum += number
count += 1
if count == 4 { return true }
}
number -= 1
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
guard n % 2 == 0 else { return false }
var sum = 0
var count = 0
var number = n
while number > 0 {
if number % 2 == 0 {
sum += number
count += 1
if count == 4 { return true }
}
number -= 1
}
return false
}
```
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
for i in stride(from: n, to: 0, by: -2) {
sum += i
count += 1
if sum == n && count == 4 {
return true
} else if sum > n {
return false
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
for i in stride(from: n, to: 0, by: -2) {
sum += i
count += 1
if sum == n && count == 4 {
return true
} else if sum > n {
return false
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
var i = 2
while sum < n {
sum += i
count += 1
i += 2
}
return sum == n && count == 4
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
var i = 2
while sum < n {
sum += i
count += 1
i += 2
}
return sum == n && count == 4
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
guard n % 2 == 0 else { return false }
var sum = 0
var count = 0
var number = n
while number > 0 {
if number % 2 == 0 {
sum += number
count += 1
}
number -= 1
}
return count == 4 && sum == n
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
guard n % 2 == 0 else { return false }
var sum = 0
var count = 0
var number = n
while number > 0 {
if number % 2 == 0 {
sum += number
count += 1
}
number -= 1
}
return count == 4 && sum == n
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
for i in stride(from: n, to: 0, by: -2) {
sum += i
count += 1
if count == 4 {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
for i in stride(from: n, to: 0, by: -2) {
sum += i
count += 1
if count == 4 {
return true
}
}
return false
}
```
func isEqualToSumEven(n: Int) -> Bool {
guard n % 2 == 0 else { return false }
var sum = 0
var count = 0
var i = 2
while sum < n {
if i % 2 == 0 {
sum += i
count += 1
}
i += 1
}
return count == 4 && sum == n
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
guard n % 2 == 0 else { return false }
var sum = 0
var count = 0
var i = 2
while sum < n {
if i % 2 == 0 {
sum += i
count += 1
}
i += 1
}
return count == 4 && sum == n
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
var number = n
while number > 0 {
if number % 2 == 0 {
sum += number
count += 1
if count == 4 {
return true
}
}
number -= 1
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
var number = n
while number > 0 {
if number % 2 == 0 {
sum += number
count += 1
if count == 4 {
return true
}
}
number -= 1
}
return false
}
```
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
var i = 2
while sum < n {
sum += i
count += 1
i += 2
}
return sum == n && count == 4
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
var i = 2
while sum < n {
sum += i
count += 1
i += 2
}
return sum == n && count == 4
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
for i in stride(from: n, to: 0, by: -2) {
sum += i
count += 1
if sum == n && count == 4 {
return true
}
if sum > n || count > 4 {
return false
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true<end_of_turn>
<start_of_turn>model
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 2 != 0 {
return false
}
var sum = 0
var count = 0
for i in stride(from: n, to: 0, by: -2) {
sum += i
count += 1
if sum == n && count == 4 {
return true
}
if sum > n || count > 4 {
return false
}
}
return false
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = n!
for i in stride(from: n - 1, to: 1, by: -1) {
result *= i!
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = n!
for i in stride(from: n - 1, to: 1, by: -1) {
result *= i!
}
return result
}
```
var result = n! // cannot force unwrap value of non-optional type 'Int'
result *= i! // cannot force unwrap value of non-optional type 'Int'
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = n!
for i in stride(from: n - 1, to: 1, by: -1) {
result *= i!
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = n!
for i in stride(from: n - 1, to: 1, by: -1) {
result *= i!
}
return result
}
```
var result = n! // cannot force unwrap value of non-optional type 'Int'
result *= i! // cannot force unwrap value of non-optional type 'Int'
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288<end_of_turn>
<start_of_turn>model
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else {
return 1
}
var result = 1
for i in stride(from: n, to: 1, by: -1) {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
.trimmingCharacters(in: .whitespaces)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
.trimmingCharacters(in: .whitespaces)
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
.trimmingCharacters(in: .whitespaces)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
.trimmingCharacters(in: .whitespaces)
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = text.replacingOccurrences(of: " ", with: "_")
result = result.replacingOccurrences(of: "__", with: "-")
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
var result = text.replacingOccurrences(of: " ", with: "_")
result = result.replacingOccurrences(of: "__", with: "-")
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = text
result = result.replacingOccurrences(of: " ", with: "_", options: .regularExpression)
result = result.replacingOccurrences(of: "_+", with: "-", options: .regularExpression)
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
var result = text
result = result.replacingOccurrences(of: " ", with: "_", options: .regularExpression)
result = result.replacingOccurrences(of: "_+", with: "-", options: .regularExpression)
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
.trimmingCharacters(in: .whitespaces)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
.trimmingCharacters(in: .whitespaces)
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
return text
.replacingOccurrences(of: " ", with: "-")
.replacingOccurrences(of: " ", with: "_")
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var fixedText = text.replacingOccurrences(of: " ", with: "_")
while fixedText.contains(" ") {
fixedText = fixedText.replacingOccurrences(of: " ", with: "-")
}
return fixedText
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
var fixedText = text.replacingOccurrences(of: " ", with: "_")
while fixedText.contains(" ") {
fixedText = fixedText.replacingOccurrences(of: " ", with: "-")
}
return fixedText
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var lastSpaceIndex = -1
for (index, char) in text.enumerated() {
if char == " " {
if index - lastSpaceIndex > 2 {
result += "-"
} else {
result += "_"
}
lastSpaceIndex = index
} else {
result.append(char)
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"<end_of_turn>
<start_of_turn>model
```swift
func fixSpaces(text: String) -> String {
var result = ""
var lastSpaceIndex = -1
for (index, char) in text.enumerated() {
if char == " " {
if index - lastSpaceIndex > 2 {
result += "-"
} else {
result += "_"
}
lastSpaceIndex = index
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if !prefix.range(of: "^[a-zA-Z]+", options: .regularExpression) != nil {
return "No"
}
if !["txt", "exe", "dll"].contains(suffix) {
return "No"
}
if prefix.filter({ $0.isNumber }).count > 3 {
return "No"
}
return "Yes"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if !prefix.range(of: "^[a-zA-Z]+", options: .regularExpression) != nil {
return "No"
}
if !["txt", "exe", "dll"].contains(suffix) {
return "No"
}
if prefix.filter({ $0.isNumber }).count > 3 {
return "No"
}
return "Yes"
}
```
if !prefix.range(of: "^[a-zA-Z]+", options: .regularExpression) != nil { // optional type 'Range<String.Index>?' cannot be used as a boolean; test for '== nil' instead
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if !prefix.matches(regex: "^[a-zA-Z]+") {
return "No"
}
if !suffix.matches(regex: "txt|exe|dll") {
return "No"
}
if prefix.matches(regex: "\\d{3,}") {
return "No"
}
return "Yes"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if !prefix.matches(regex: "^[a-zA-Z]+") {
return "No"
}
if !suffix.matches(regex: "txt|exe|dll") {
return "No"
}
if prefix.matches(regex: "\\d{3,}") {
return "No"
}
return "Yes"
}
```
if !prefix.matches(regex: "^[a-zA-Z]+") { // cannot convert value of type '[Regex<Output>.Match]' to expected argument type 'Bool'
if !prefix.matches(regex: "^[a-zA-Z]+") { // incorrect argument label in call (have 'regex:', expected 'of:')
if !prefix.matches(regex: "^[a-zA-Z]+") { // instance method 'matches(of:)' requires that 'String' conform to 'RegexComponent'
if !suffix.matches(regex: "txt|exe|dll") { // instance method 'matches(of:)' requires that 'String' conform to 'RegexComponent'
if !suffix.matches(regex: "txt|exe|dll") { // incorrect argument label in call (have 'regex:', expected 'of:')
if !suffix.matches(regex: "txt|exe|dll") { // cannot convert value of type '[Regex<Output>.Match]' to expected argument type 'Bool'
if prefix.matches(regex: "\\d{3,}") { // incorrect argument label in call (have 'regex:', expected 'of:')
if prefix.matches(regex: "\\d{3,}") { // cannot convert value of type '[Regex<Output>.Match]' to expected condition type 'Bool'
if prefix.matches(regex: "\\d{3,}") { // instance method 'matches(of:)' requires that 'String' conform to 'RegexComponent'
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if !prefix.range(of: "^[a-zA-Z][a-zA-Z0-9]*$", options: .regularExpression).map({ $0.isEmpty == false }) ?? false {
return "No"
}
if !["txt", "exe", "dll"].contains(suffix) {
return "No"
}
return "Yes"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if !prefix.range(of: "^[a-zA-Z][a-zA-Z0-9]*$", options: .regularExpression).map({ $0.isEmpty == false }) ?? false {
return "No"
}
if !["txt", "exe", "dll"].contains(suffix) {
return "No"
}
return "Yes"
}
```
if !prefix.range(of: "^[a-zA-Z][a-zA-Z0-9]*$", options: .regularExpression).map({ $0.isEmpty == false }) ?? false { // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if prefix.count > 3 || !prefix.rangeOfCharacter(from: CharacterSet.alphanumerics.inverted) == nil {
return "No"
}
if !["txt", "exe", "dll"].contains(suffix) {
return "No"
}
return "Yes"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if prefix.count > 3 || !prefix.rangeOfCharacter(from: CharacterSet.alphanumerics.inverted) == nil {
return "No"
}
if !["txt", "exe", "dll"].contains(suffix) {
return "No"
}
return "Yes"
}
```
if prefix.count > 3 || !prefix.rangeOfCharacter(from: CharacterSet.alphanumerics.inverted) == nil { // optional type 'Range<String.Index>?' cannot be used as a boolean; test for '== nil' instead
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else {
return "No"
}
let prefix = components[0]
let suffix = components[1]
guard prefix.rangeOfCharacter(from: CharacterSet.decimalDigits, options: .countMatches) <= 3 else {
return "No"
}
guard prefix.rangeOfCharacter(from: CharacterSet.letters) != nil else {
return "No"
}
guard ["txt", "exe", "dll"].contains(suffix) else {
return "No"
}
return "Yes"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else {
return "No"
}
let prefix = components[0]
let suffix = components[1]
guard prefix.rangeOfCharacter(from: CharacterSet.decimalDigits, options: .countMatches) <= 3 else {
return "No"
}
guard prefix.rangeOfCharacter(from: CharacterSet.letters) != nil else {
return "No"
}
guard ["txt", "exe", "dll"].contains(suffix) else {
return "No"
}
return "Yes"
}
```
guard prefix.rangeOfCharacter(from: CharacterSet.decimalDigits, options: .countMatches) <= 3 else { // type 'String.CompareOptions' (aka 'NSString.CompareOptions') has no member 'countMatches'
guard prefix.rangeOfCharacter(from: CharacterSet.decimalDigits, options: .countMatches) <= 3 else { // cannot convert value of type 'Range<String.Index>?' to expected argument type 'Int'
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if prefix.count > 3 || !prefix.rangeOfCharacter(from: CharacterSet.alphanumerics) == nil {
return "No"
}
if !["txt", "exe", "dll"].contains(suffix) {
return "No"
}
return "Yes"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if prefix.count > 3 || !prefix.rangeOfCharacter(from: CharacterSet.alphanumerics) == nil {
return "No"
}
if !["txt", "exe", "dll"].contains(suffix) {
return "No"
}
return "Yes"
}
```
if prefix.count > 3 || !prefix.rangeOfCharacter(from: CharacterSet.alphanumerics) == nil { // optional type 'Range<String.Index>?' cannot be used as a boolean; test for '== nil' instead
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else {
return "No"
}
let firstPart = components[0]
let secondPart = components[1]
if !firstPart.isEmpty && firstPart.first!.isLetter {
if secondPart == "txt" || secondPart == "exe" || secondPart == "dll" {
if firstPart.rangeOfCharacters(from: CharacterSet.decimalDigits) != nil {
if count(of: firstPart, where: { $0.isNumber }) <= 3 {
return "Yes"
}
}
}
}
return "No"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else {
return "No"
}
let firstPart = components[0]
let secondPart = components[1]
if !firstPart.isEmpty && firstPart.first!.isLetter {
if secondPart == "txt" || secondPart == "exe" || secondPart == "dll" {
if firstPart.rangeOfCharacters(from: CharacterSet.decimalDigits) != nil {
if count(of: firstPart, where: { $0.isNumber }) <= 3 {
return "Yes"
}
}
}
}
return "No"
}
```
if firstPart.rangeOfCharacters(from: CharacterSet.decimalDigits) != nil { // value of type 'String' has no member 'rangeOfCharacters'
if count(of: firstPart, where: { $0.isNumber }) <= 3 { // cannot find 'count' in scope
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if prefix.rangeOfCharacter(from: CharacterSet.decimalDigits) != nil {
return "No"
}
if prefix.isEmpty || !prefix.first!.isLetter {
return "No"
}
if suffix != "txt" && suffix != "exe" && suffix != "dll" {
return "No"
}
return "Yes"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if prefix.rangeOfCharacter(from: CharacterSet.decimalDigits) != nil {
return "No"
}
if prefix.isEmpty || !prefix.first!.isLetter {
return "No"
}
if suffix != "txt" && suffix != "exe" && suffix != "dll" {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else {
return "No"
}
let prefix = components[0]
let suffix = components[1]
guard prefix.range(of: "[a-zA-Z]+") != nil else {
return "No"
}
guard prefix.count <= 3, suffix == "txt" || suffix == "exe" || suffix == "dll" else {
return "No"
}
return "Yes"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else {
return "No"
}
let prefix = components[0]
let suffix = components[1]
guard prefix.range(of: "[a-zA-Z]+") != nil else {
return "No"
}
guard prefix.count <= 3, suffix == "txt" || suffix == "exe" || suffix == "dll" else {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if !prefix.isEmpty && prefix.rangeOfCharacter(from: CharacterSet.alphanumerics) == prefix.startIndex {
if suffix == "txt" || suffix == "exe" || suffix == "dll" {
return "Yes"
}
}
return "No"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"<end_of_turn>
<start_of_turn>model
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let prefix = components[0]
let suffix = components[1]
if !prefix.isEmpty && prefix.rangeOfCharacter(from: CharacterSet.alphanumerics) == prefix.startIndex {
if suffix == "txt" || suffix == "exe" || suffix == "dll" {
return "Yes"
}
}
return "No"
}
```
if !prefix.isEmpty && prefix.rangeOfCharacter(from: CharacterSet.alphanumerics) == prefix.startIndex { // cannot convert value of type 'Range<String.Index>?' to expected argument type 'String.Index'
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 { return false }
if number <= 3 { return true }
if number % 2 == 0 || number % 3 == 0 { return false }
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 { return false }
if number <= 3 { return true }
if number % 2 == 0 || number % 3 == 0 { return false }
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
return words.filter { primes.contains(Int($0.count)) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
return words.filter { primes.contains(Int($0.count)) }.joined(separator: " ")
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
return words.filter { isPrime($0.count) }.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
return words.filter { isPrime($0.count) }.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
return words.filter { primes.contains($0.count) }.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
return words.filter { primes.contains($0.count) }.joined(separator: " ")
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map(String.init)
return words.filter { word in
var i = 2
while i <= Int(word.count / 2) {
if Int(word.count) % i == 0 {
return false
}
i += 1
}
return true
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map(String.init)
return words.filter { word in
var i = 2
while i <= Int(word.count / 2) {
if Int(word.count) % i == 0 {
return false
}
i += 1
}
return true
}.joined(separator: " ")
}
```
// XCTAssertTrue failed
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map(String.init)
return words.filter { word in
var i = 2
while i <= Int(sqrt(Double(word.count))) {
if word.count % i == 0 {
return false
}
i += 1
}
return true
}.joined(separator: " ")
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map(String.init)
return words.filter { word in
var i = 2
while i <= Int(sqrt(Double(word.count))) {
if word.count % i == 0 {
return false
}
i += 1
}
return true
}.joined(separator: " ")
}
```
// XCTAssertTrue failed
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primes = words.filter { isPrime($0.count) }
return primes.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map { String($0) }
let primes = words.filter { isPrime($0.count) }
return primes.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map(String.init)
return words.filter { isPrime($0.count) }.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 { return false }
if number <= 3 { return true }
if number % 2 == 0 || number % 3 == 0 { return false }
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map(String.init)
return words.filter { isPrime($0.count) }.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 { return false }
if number <= 3 { return true }
if number % 2 == 0 || number % 3 == 0 { return false }
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map(String.init)
return words.filter { isPrime($0.count) }.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"<end_of_turn>
<start_of_turn>model
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ").map(String.init)
return words.filter { isPrime($0.count) }.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(string: x)
let nFraction = Fraction(string: n)
let result = xFraction * nFraction
return result.denominator % result.numerator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(string: String) {
let components = string.components(separatedBy: "/")
numerator = Int(components[0])!
denominator = Int(components[1])!
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(string: x)
let nFraction = Fraction(string: n)
let result = xFraction * nFraction
return result.denominator % result.numerator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(string: String) {
let components = string.components(separatedBy: "/")
numerator = Int(components[0])!
denominator = Int(components[1])!
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
```
func * (lhs: Fraction, rhs: Fraction) -> Fraction { // operator '*' declared in type 'Fraction' must be 'static'
Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // missing argument for parameter 'string' in call
Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // extra arguments at positions #1, #2 in call
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(string: x)
let nFraction = Fraction(string: n)
let result = xFraction * nFraction
return result.numerator % result.denominator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(numerator: Int, denominator: Int) {
self.numerator = numerator
self.denominator = denominator
}
init(string: String) {
let components = string.components(separatedBy: "/")
numerator = Int(components[0])!
denominator = Int(components[1])!
}
func simplify() -> Fraction {
let gcd = gcd(a: numerator, b: denominator)
return Fraction(numerator: numerator / gcd, denominator: denominator / gcd)
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
private func gcd(a: Int, b: Int) -> Int {
var temp: Int
var s = a
var t = b
while t != 0 {
temp = t
t = s % t
s = temp
}
return s
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(string: x)
let nFraction = Fraction(string: n)
let result = xFraction * nFraction
return result.numerator % result.denominator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(numerator: Int, denominator: Int) {
self.numerator = numerator
self.denominator = denominator
}
init(string: String) {
let components = string.components(separatedBy: "/")
numerator = Int(components[0])!
denominator = Int(components[1])!
}
func simplify() -> Fraction {
let gcd = gcd(a: numerator, b: denominator)
return Fraction(numerator: numerator / gcd, denominator: denominator / gcd)
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
private func gcd(a: Int, b: Int) -> Int {
var temp: Int
var s = a
var t = b
while t != 0 {
temp = t
t = s % t
s = temp
}
return s
}
}
```
func * (lhs: Fraction, rhs: Fraction) -> Fraction { // operator '*' declared in type 'Fraction' must be 'static'
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(string: x)
let nFraction = Fraction(string: n)
let result = xFraction * nFraction
return result.denominator % result.numerator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(string: String) {
let components = string.components(separatedBy: "/")
numerator = Int(components[0])!
denominator = Int(components[1])!
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(string: x)
let nFraction = Fraction(string: n)
let result = xFraction * nFraction
return result.denominator % result.numerator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(string: String) {
let components = string.components(separatedBy: "/")
numerator = Int(components[0])!
denominator = Int(components[1])!
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
```
func * (lhs: Fraction, rhs: Fraction) -> Fraction { // operator '*' declared in type 'Fraction' must be 'static'
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // missing argument for parameter 'string' in call
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // extra arguments at positions #1, #2 in call
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(x)
let nFraction = Fraction(n)
let result = xFraction * nFraction
return result.denominator % result.numerator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(_ fractionString: String) {
let components = fractionString.components(separatedBy: "/")
numerator = Int(components[0])!
denominator = Int(components[1])!
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(x)
let nFraction = Fraction(n)
let result = xFraction * nFraction
return result.denominator % result.numerator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(_ fractionString: String) {
let components = fractionString.components(separatedBy: "/")
numerator = Int(components[0])!
denominator = Int(components[1])!
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
```
func * (lhs: Fraction, rhs: Fraction) -> Fraction { // operator '*' declared in type 'Fraction' must be 'static'
Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // extra argument 'denominator' in call
Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // cannot convert value of type 'Int' to expected argument type 'String'
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let simplifiedNumerator = xNumerator * nNumerator
let simplifiedDenominator = xDenominator * nDenominator
return simplifiedNumerator % simplifiedDenominator == 0
}
func fraction(_ fraction: String) -> (Int, Int) {
let components = fraction.components(separatedBy: "/")
return (Int(components[0])!, Int(components[1])!)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let simplifiedNumerator = xNumerator * nNumerator
let simplifiedDenominator = xDenominator * nDenominator
return simplifiedNumerator % simplifiedDenominator == 0
}
func fraction(_ fraction: String) -> (Int, Int) {
let components = fraction.components(separatedBy: "/")
return (Int(components[0])!, Int(components[1])!)
}
```
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(fractionString: x)
let nFraction = Fraction(fractionString: n)
let simplified = xFraction * nFraction
return simplified.denominator % simplified.numerator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(fractionString: String) {
let parts = fractionString.split(separator: "/")
numerator = Int(parts[0])!
denominator = Int(parts[1])!
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(fractionString: x)
let nFraction = Fraction(fractionString: n)
let simplified = xFraction * nFraction
return simplified.denominator % simplified.numerator == 0
}
struct Fraction {
var numerator: Int
var denominator: Int
init(fractionString: String) {
let parts = fractionString.split(separator: "/")
numerator = Int(parts[0])!
denominator = Int(parts[1])!
}
func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
```
func * (lhs: Fraction, rhs: Fraction) -> Fraction { // operator '*' declared in type 'Fraction' must be 'static'
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // missing argument for parameter 'fractionString' in call
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // extra arguments at positions #1, #2 in call
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let simplifiedNumerator = xNumerator * nDenominator + nNumerator * xDenominator
let simplifiedDenominator = xDenominator * nDenominator
return Int(simplifiedNumerator) % Int(simplifiedDenominator) == 0
}
func fraction(_ fraction: String) -> (Int, Int) {
let parts = fraction.split(separator: "/")
let numerator = Int(parts[0])!
let denominator = Int(parts[1])!
return (numerator, denominator)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let simplifiedNumerator = xNumerator * nDenominator + nNumerator * xDenominator
let simplifiedDenominator = xDenominator * nDenominator
return Int(simplifiedNumerator) % Int(simplifiedDenominator) == 0
}
func fraction(_ fraction: String) -> (Int, Int) {
let parts = fraction.split(separator: "/")
let numerator = Int(parts[0])!
let denominator = Int(parts[1])!
return (numerator, denominator)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let resultNumerator = xNumerator * nDenominator + nNumerator * xDenominator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
func fraction(_ fraction: String) -> (Int, Int) {
let components = fraction.components(separatedBy: "/")
let numerator = Int(components[0])!
let denominator = Int(components[1])!
return (numerator, denominator)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let resultNumerator = xNumerator * nDenominator + nNumerator * xDenominator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
func fraction(_ fraction: String) -> (Int, Int) {
let components = fraction.components(separatedBy: "/")
let numerator = Int(components[0])!
let denominator = Int(components[1])!
return (numerator, denominator)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let simplifiedNumerator = xNumerator * nDenominator + nNumerator * xDenominator
let simplifiedDenominator = xDenominator * nDenominator
return Int(simplifiedNumerator) != nil && Int(simplifiedDenominator) != nil
}
func fraction(_ fractionString: String) -> (Int, Int) {
let components = fractionString.components(separatedBy: "/")
let numerator = Int(components[0])!
let denominator = Int(components[1])!
return (numerator, denominator)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let simplifiedNumerator = xNumerator * nDenominator + nNumerator * xDenominator
let simplifiedDenominator = xDenominator * nDenominator
return Int(simplifiedNumerator) != nil && Int(simplifiedDenominator) != nil
}
func fraction(_ fractionString: String) -> (Int, Int) {
let components = fractionString.components(separatedBy: "/")
let numerator = Int(components[0])!
let denominator = Int(components[1])!
return (numerator, denominator)
}
```
return Int(simplifiedNumerator) != nil && Int(simplifiedDenominator) != nil // comparing non-optional value of type 'Int' to 'nil' always returns true
return Int(simplifiedNumerator) != nil && Int(simplifiedDenominator) != nil // comparing non-optional value of type 'Int' to 'nil' always returns true
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
func fraction(_ fractionString: String) -> (Int, Int) {
let components = fractionString.split(separator: "/")
let numerator = Int(components[0])!
let denominator = Int(components[1])!
return (numerator, denominator)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false<end_of_turn>
<start_of_turn>model
```swift
func simplify(x: String, n: String) -> Bool {
let (xNumerator, xDenominator) = fraction(x)
let (nNumerator, nDenominator) = fraction(n)
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultDenominator % resultNumerator == 0
}
func fraction(_ fractionString: String) -> (Int, Int) {
let components = fractionString.split(separator: "/")
let numerator = Int(components[0])!
let denominator = Int(components[1])!
return (numerator, denominator)
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted(by: { (a, b) -> Bool in
let sumA = digitSum(num: a)
let sumB = digitSum(num: b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
})
}
func digitSum(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted(by: { (a, b) -> Bool in
let sumA = digitSum(num: a)
let sumB = digitSum(num: b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
})
}
func digitSum(num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted(by: { (a, b) -> Bool in
let sumA = calculateSum(of: a)
let sumB = calculateSum(of: b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
})
}
func calculateSum(of number: Int) -> Int {
var sum = 0
var n = number
while n != 0 {
sum += n % 10
n /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted(by: { (a, b) -> Bool in
let sumA = calculateSum(of: a)
let sumB = calculateSum(of: b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
})
}
func calculateSum(of number: Int) -> Int {
var sum = 0
var n = number
while n != 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
return sorted
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
return sorted
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digitsSum()
let sumB = b.digitsSum()
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
extension Int {
func digitsSum() -> Int {
var n = abs(self)
var sum = 0
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digitsSum()
let sumB = b.digitsSum()
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
extension Int {
func digitsSum() -> Int {
var n = abs(self)
var sum = 0
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted(by: { (a, b) -> Bool in
let sumA = sumOfDigits(num: a)
let sumB = sumOfDigits(num: b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
})
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted(by: { (a, b) -> Bool in
let sumA = sumOfDigits(num: a)
let sumB = sumOfDigits(num: b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
})
}
func sumOfDigits(num: Int) -> Int {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.sorted { (a, b) -> Bool in
let sumA = a.digitsSum()
let sumB = b.digitsSum()
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
return sorted
}
extension Int {
func digitsSum() -> Int {
var num = self
var sum = 0
while num != 0 {
sum += num % 10
num /= 10
}
return sum
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.sorted { (a, b) -> Bool in
let sumA = a.digitsSum()
let sumB = b.digitsSum()
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
return sorted
}
extension Int {
func digitsSum() -> Int {
var num = self
var sum = 0
while num != 0 {
sum += num % 10
num /= 10
}
return sum
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = calculateSum(num: a)
let sumB = calculateSum(num: b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
func calculateSum(num: Int) -> Int {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = calculateSum(num: a)
let sumB = calculateSum(num: b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
func calculateSum(num: Int) -> Int {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted(by: { (a, b) -> Bool in
let sumA = digitSum(a)
let sumB = digitSum(b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
})
}
func digitSum(_ num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted(by: { (a, b) -> Bool in
let sumA = digitSum(a)
let sumB = digitSum(b)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
})
}
func digitSum(_ num: Int) -> Int {
var sum = 0
var n = abs(num)
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter { num in
return num > 10 && num % 10 % 2 != 0 && num / 10 % 2 != 0
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter { num in
return num > 10 && num % 10 % 2 != 0 && num / 10 % 2 != 0
}.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter { $0 > 10 && ($0 / 10 % 2 != 0 && $0 % 10 % 2 != 0) }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter { $0 > 10 && ($0 / 10 % 2 != 0 && $0 % 10 % 2 != 0) }.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter { num in
return num > 10 && num % 10 % 2 == 1 && num / 10 % 2 == 1
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter { num in
return num > 10 && num % 10 % 2 == 1 && num / 10 % 2 == 1
}.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter {
$0 > 10 && ($0 / 10 % 2 != 0 && $0 % 10 % 2 != 0)
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter {
$0 > 10 && ($0 / 10 % 2 != 0 && $0 % 10 % 2 != 0)
}.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter { $0 > 10 && ($0 / 10 % 2 == 1 && $0 % 10 % 2 == 1) }.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter { $0 > 10 && ($0 / 10 % 2 == 1 && $0 % 10 % 2 == 1) }.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter {
$0 > 10 && ($0 / 10 % 2 == 1) && ($0 % 10 % 2 == 1)
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter {
$0 > 10 && ($0 / 10 % 2 == 1) && ($0 % 10 % 2 == 1)
}.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter { number in
number > 10 && number % 10 % 2 != 0 && number / 10 % 2 != 0
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter { number in
number > 10 && number % 10 % 2 != 0 && number / 10 % 2 != 0
}.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter {
$0 > 10 && ($0 / 10 % 2 == 1) && ($0 % 10 % 2 == 1)
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter {
$0 > 10 && ($0 / 10 % 2 == 1) && ($0 % 10 % 2 == 1)
}.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter { num in
return num > 10 && (num / 10 % 2 != 0) && (num % 10 % 2 != 0)
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter { num in
return num > 10 && (num / 10 % 2 != 0) && (num % 10 % 2 != 0)
}.count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
return nums.filter {
$0 > 10 && ($0 / 10 % 2 != 0 && $0 % 10 % 2 != 0)
}.count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2<end_of_turn>
<start_of_turn>model
```swift
func specialFilter(nums: [Int]) -> Int {
return nums.filter {
$0 > 10 && ($0 / 10 % 2 != 0 && $0 % 10 % 2 != 0)
}.count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n+1 {
a[i-1] = i*i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n+1 {
a[i-1] = i*i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n - 2 {
for j in i + 1..<n - 1 {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n - 2 {
for j in i + 1..<n - 1 {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n+1 {
a[i-1] = i*i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n+1 {
a[i-1] = i*i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n+1 {
a[i-1] = i*i - i + 1
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n+1 {
a[i-1] = i*i - i + 1
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n+1 {
a[i-1] = i*i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n+1 {
a[i-1] = i*i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1<end_of_turn>
<start_of_turn>model
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i - 1] = i * i - i + 1
}
var count = 0
for i in 0..<n {
for j in i + 1..<n {
for k in j + 1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]<end_of_turn>
<start_of_turn>model
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 })
}
```
return lst.filter { $0.count % 2 == 0 }.sorted(by: { $0.count == $1.count ? $0 < $1 : $0.count < $1 }) // binary operator '<' cannot be applied to operands of type 'Int' and 'String'
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
if isPrime {
return x
} else {
return y
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
if isPrime {
return x
} else {
return y
}
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
if isPrime {
return x
} else {
return y
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
if isPrime {
return x
} else {
return y
}
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
if isPrime {
return x
} else {
return y
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
if isPrime {
return x
} else {
return y
}
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5<end_of_turn>
<start_of_turn>model
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +)
}
extension Double {
var isOdd: Bool {
return self % 2 != 0
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +)
}
extension Double {
var isOdd: Bool {
return self % 2 != 0
}
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
return self % 2 != 0 // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +)
}
extension Double {
var isOdd: Bool {
return self % 2 != 0
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +)
}
extension Double {
var isOdd: Bool {
return self % 2 != 0
}
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
return self % 2 != 0 // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0 % 2 != 0 }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +)
}
extension Double {
var isOdd: Bool {
return self % 2 != 0
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0<end_of_turn>
<start_of_turn>model
```swift
func doubleTheDifference(lst: [Double]) -> Int {
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +)
}
extension Double {
var isOdd: Bool {
return self % 2 != 0
}
}
```
return lst.filter { $0 > 0 && $0.truncatingRemainder(dividingBy: 1) == 0 && $0.isOdd }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
return self % 2 != 0 // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { abs($0 - $1) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { abs($0 - $1) }
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { abs($0 - $1) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { abs($0 - $1) }
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return game.enumerated().map { index, score in
abs(score - guess[index])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return game.enumerated().map { index, score in
abs(score - guess[index])
}
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { (score, guess) in
abs(score - guess)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { (score, guess) in
abs(score - guess)
}
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { (score, guess) in
abs(score - guess)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { (score, guess) in
abs(score - guess)
}
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return game.enumerated().map {
abs($0.element - guess[$0.offset])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return game.enumerated().map {
abs($0.element - guess[$0.offset])
}
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { (score, guess) in
abs(score - guess)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { (score, guess) in
abs(score - guess)
}
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return game.enumerated().map { idx, score in
abs(score - guess[idx])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return game.enumerated().map { idx, score in
abs(score - guess[idx])
}
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return game.enumerated().map {
abs($0.element - guess[$0.offset])
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return game.enumerated().map {
abs($0.element - guess[$0.offset])
}
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { abs($0 - $1) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]<end_of_turn>
<start_of_turn>model
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
return zip(game, guess).map { abs($0 - $1) }
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.lowest
for extensionName in extensions {
let upperCaseCount = extensionName.filter { $0.isUppercase }.count
let lowerCaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Float(upperCaseCount) - Float(lowerCaseCount)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.lowest
for extensionName in extensions {
let upperCaseCount = extensionName.filter { $0.isUppercase }.count
let lowerCaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Float(upperCaseCount) - Float(lowerCaseCount)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
var strongestStrength = Float.lowest // type 'Float' has no member 'lowest'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.lowest
for extensionName in extensions {
let upperCaseCount = extensionName.filter { $0.isUppercase }.count
let lowerCaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Float(upperCaseCount) - Float(lowerCaseCount)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.lowest
for extensionName in extensions {
let upperCaseCount = extensionName.filter { $0.isUppercase }.count
let lowerCaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Float(upperCaseCount) - Float(lowerCaseCount)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
var strongestStrength = Float.lowest // type 'Float' has no member 'lowest'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let cap = extensionName.filter { $0.isUppercase }.count
let sm = extensionName.filter { $0.isLowercase }.count
let strength = Double(cap - sm)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let cap = extensionName.filter { $0.isUppercase }.count
let sm = extensionName.filter { $0.isLowercase }.count
let strength = Double(cap - sm)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let cap = extensionName.filter { $0.isUppercase }.count
let sm = extensionName.filter { $0.isLowercase }.count
let strength = Double(cap - sm)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let cap = extensionName.filter { $0.isUppercase }.count
let sm = extensionName.filter { $0.isLowercase }.count
let strength = Double(cap - sm)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let cap = extensionName.filter { $0.isUppercase }.count
let sm = extensionName.filter { $0.isLowercase }.count
let strength = Double(cap - sm)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let cap = extensionName.filter { $0.isUppercase }.count
let sm = extensionName.filter { $0.isLowercase }.count
let strength = Double(cap - sm)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let upperCaseCount = extensionName.filter { $0.isUppercase }.count
let lowerCaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Double(upperCaseCount) - Double(lowerCaseCount)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension.lowercased())"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let upperCaseCount = extensionName.filter { $0.isUppercase }.count
let lowerCaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Double(upperCaseCount) - Double(lowerCaseCount)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension.lowercased())"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.lowest
for extensionName in extensions {
let uppercaseLetters = extensionName.filter { $0.isUppercase }
let lowercaseLetters = extensionName.filter { $0.isLowercase }
let strength = Float(uppercaseLetters.count) - Float(lowercaseLetters.count)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.lowest
for extensionName in extensions {
let uppercaseLetters = extensionName.filter { $0.isUppercase }
let lowercaseLetters = extensionName.filter { $0.isLowercase }
let strength = Float(uppercaseLetters.count) - Float(lowercaseLetters.count)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
var strongestStrength = Float.lowest // type 'Float' has no member 'lowest'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.greatestFiniteMagnitude
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Float(uppercaseCount) - Float(lowercaseCount)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.greatestFiniteMagnitude
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Float(uppercaseCount) - Float(lowercaseCount)
if strength > strongestStrength {
strongestExtension = extensionName
strongestStrength = strength
} else if strength == strongestStrength && extensionName < strongestExtension {
strongestExtension = extensionName
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let uppercaseLetters = extensionName.filter { $0.isUppercase }
let lowercaseLetters = extensionName.filter { $0.isLowercase }
let strength = Double(uppercaseLetters.count) - Double(lowercaseLetters.count)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = -1.0
for extensionName in extensions {
let uppercaseLetters = extensionName.filter { $0.isUppercase }
let lowercaseLetters = extensionName.filter { $0.isLowercase }
let strength = Double(uppercaseLetters.count) - Double(lowercaseLetters.count)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.greatestFiniteMagnitude
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Float(uppercaseCount) - Float(lowercaseCount)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"<end_of_turn>
<start_of_turn>model
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Float.greatestFiniteMagnitude
for extensionName in extensions {
let uppercaseCount = extensionName.filter { $0.isUppercase }.count
let lowercaseCount = extensionName.filter { $0.isLowercase }.count
let strength = Float(uppercaseCount) - Float(lowercaseCount)
if strength > strongestStrength || (strength == strongestStrength && extensionName < strongestExtension) {
strongestExtension = extensionName
strongestStrength = strength
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
var rotatedB = b
for _ in 0..<b.count {
rotatedB = rotatedB.dropLast() + rotatedB.first!
if a.contains(rotatedB) {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
var rotatedB = b
for _ in 0..<b.count {
rotatedB = rotatedB.dropLast() + rotatedB.first!
if a.contains(rotatedB) {
return true
}
}
return false
}
```
rotatedB = rotatedB.dropLast() + rotatedB.first! // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
var temp = a
for _ in 0..<n {
let lastChar = temp.removeLast()
temp = lastChar + temp
if temp.contains(b) {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
var temp = a
for _ in 0..<n {
let lastChar = temp.removeLast()
temp = lastChar + temp
if temp.contains(b) {
return true
}
}
return false
}
```
temp = lastChar + temp // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
var str = a
for _ in 0..<n {
let lastChar = str.removeLast()
str = lastChar + str
if str.contains(b) {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
var str = a
for _ in 0..<n {
let lastChar = str.removeLast()
str = lastChar + str
if str.contains(b) {
return true
}
}
return false
}
```
str = lastChar + str // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
var bRotations = [String]()
var aSubstring = a
for _ in 0..<n {
bRotations.append(b)
b = String(b.dropFirst()) + String(b.prefix(1))
}
for _ in 0..<n {
if bRotations.contains(aSubstring) {
return true
}
aSubstring = String(aSubstring.dropLast()) + String(aSubstring.prefix(1))
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
var bRotations = [String]()
var aSubstring = a
for _ in 0..<n {
bRotations.append(b)
b = String(b.dropFirst()) + String(b.prefix(1))
}
for _ in 0..<n {
if bRotations.contains(aSubstring) {
return true
}
aSubstring = String(aSubstring.dropLast()) + String(aSubstring.prefix(1))
}
return false
}
```
b = String(b.dropFirst()) + String(b.prefix(1)) // cannot assign to value: 'b' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.map { String($0) }
let b = b.map { String($0) }
var rotations = [String]()
for _ in 0..<a.count {
a.append(a.removeFirst())
rotations.append(a.joined())
}
return rotations.contains(b.joined())
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.map { String($0) }
let b = b.map { String($0) }
var rotations = [String]()
for _ in 0..<a.count {
a.append(a.removeFirst())
rotations.append(a.joined())
}
return rotations.contains(b.joined())
}
```
a.append(a.removeFirst()) // cannot use mutating member on immutable value: 'a' is a 'let' constant
a.append(a.removeFirst()) // cannot use mutating member on immutable value: 'a' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
var bRotations = [String]()
for i in 0..<n {
let rotation = b.suffix(n - i) + b.prefix(i)
bRotations.append(rotation)
}
return bRotations.contains { a.contains($0) }
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
var bRotations = [String]()
for i in 0..<n {
let rotation = b.suffix(n - i) + b.prefix(i)
bRotations.append(rotation)
}
return bRotations.contains { a.contains($0) }
}
```
bRotations.append(rotation) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
for i in 0..<a.count {
var rotated = a[a.index(a.startIndex, offsetBy: i)..<a.endIndex] + a[a.startIndex..<a.index(a.startIndex, offsetBy: i)]
if rotated.contains(b) {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
for i in 0..<a.count {
var rotated = a[a.index(a.startIndex, offsetBy: i)..<a.endIndex] + a[a.startIndex..<a.index(a.startIndex, offsetBy: i)]
if rotated.contains(b) {
return true
}
}
return false
}
```
var rotated = a[a.index(a.startIndex, offsetBy: i)..<a.endIndex] + a[a.startIndex..<a.index(a.startIndex, offsetBy: i)] // variable 'rotated' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
if a.contains(b) {
return true
}
var rotatedB = b
for _ in 1..<b.count {
rotatedB = String(rotatedB.dropFirst()) + String(rotatedB.first!)
if a.contains(rotatedB) {
return true
}
}
return false
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
if a.contains(b) {
return true
}
var rotatedB = b
for _ in 1..<b.count {
rotatedB = String(rotatedB.dropFirst()) + String(rotatedB.first!)
if a.contains(rotatedB) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.map { String($0) }
let b = b.map { String($0) }
var rotations = [String]()
for i in 0..<a.count {
rotations.append(a[i..<a.count] + a[0..<i])
}
return rotations.contains(b)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.map { String($0) }
let b = b.map { String($0) }
var rotations = [String]()
for i in 0..<a.count {
rotations.append(a[i..<a.count] + a[0..<i])
}
return rotations.contains(b)
}
```
rotations.append(a[i..<a.count] + a[0..<i]) // no exact matches in call to instance method 'append'
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
var bRotations = [String]()
for i in 0..<b.count {
bRotations.append(String(b.suffix(b.count - i) + b.prefix(i)))
}
return bRotations.contains(where: { a.contains($0) })
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true<end_of_turn>
<start_of_turn>model
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = a.lowercased()
let b = b.lowercased()
var bRotations = [String]()
for i in 0..<b.count {
bRotations.append(String(b.suffix(b.count - i) + b.prefix(i)))
}
return bRotations.contains(where: { a.contains($0) })
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var n = abs(num)
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
n /= 10
}
return (even, odd)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var n = abs(num)
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
n /= 10
}
return (even, odd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var n = abs(num)
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
n /= 10
}
return (even, odd)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var n = abs(num)
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
n /= 10
}
return (even, odd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var n = abs(num)
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
n /= 10
}
return (even, odd)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var n = abs(num)
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
n /= 10
}
return (even, odd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var n = abs(num)
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
n /= 10
}
return (even, odd)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var n = abs(num)
while n > 0 {
let digit = n % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
n /= 10
}
return (even, odd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
number /= 10
}
return (even, odd)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var even = 0
var odd = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
even += 1
} else {
odd += 1
}
number /= 10
}
return (even, odd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)<end_of_turn>
<start_of_turn>model
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = abs(num)
while number > 0 {
let digit = number % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var result = ""
var num = number
let numerals: [(Int, String)] = [(1000, "m"), (900, "cm"), (500, "d"), (400, "cd"),
(100, "c"), (90, "xc"), (50, "l"), (40, "xl"),
(10, "x"), (9, "ix"), (5, "v"), (4, "iv"),
(1, "i")]
for (value, symbol) in numerals {
while num >= value {
result += symbol
num -= value
}
}
return result.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var result = ""
var num = number
let numerals: [(Int, String)] = [(1000, "m"), (900, "cm"), (500, "d"), (400, "cd"),
(100, "c"), (90, "xc"), (50, "l"), (40, "xl"),
(10, "x"), (9, "ix"), (5, "v"), (4, "iv"),
(1, "i")]
for (value, symbol) in numerals {
while num >= value {
result += symbol
num -= value
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
for (index, value) in values.enumerated() {
while num >= value {
roman += symbols[index]
num -= value
}
}
return roman.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
for (index, value) in values.enumerated() {
while num >= value {
roman += symbols[index]
num -= value
}
}
return roman.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var result = ""
var num = number
let numerals = [
1000: "m",
900: "cm",
500: "d",
400: "cd",
100: "c",
90: "xc",
50: "l",
40: "xl",
10: "x",
9: "ix",
5: "v",
4: "iv",
1: "i"
]
for (value, symbol) in numerals {
while num >= value {
result += symbol
num -= value
}
}
return result.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var result = ""
var num = number
let numerals = [
1000: "m",
900: "cm",
500: "d",
400: "cd",
100: "c",
90: "xc",
50: "l",
40: "xl",
10: "x",
9: "ix",
5: "v",
4: "iv",
1: "i"
]
for (value, symbol) in numerals {
while num >= value {
result += symbol
num -= value
}
}
return result.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
for (index, value) in values.enumerated() {
while num >= value {
result += symbols[index]
num -= value
}
}
return result.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
for (index, value) in values.enumerated() {
while num >= value {
result += symbols[index]
num -= value
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var result = ""
var num = number
let numerals = [
1000: "m",
900: "cm",
500: "d",
400: "cd",
100: "c",
90: "xc",
50: "l",
40: "xl",
10: "x",
9: "ix",
5: "v",
4: "iv",
1: "i"
]
for (value, numeral) in numerals.sorted(by: >) {
while num >= value {
result += numeral
num -= value
}
}
return result.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var result = ""
var num = number
let numerals = [
1000: "m",
900: "cm",
500: "d",
400: "cd",
100: "c",
90: "xc",
50: "l",
40: "xl",
10: "x",
9: "ix",
5: "v",
4: "iv",
1: "i"
]
for (value, numeral) in numerals.sorted(by: >) {
while num >= value {
result += numeral
num -= value
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
var i = 0
while num > 0 {
while num >= values[i] {
roman.append(symbols[i])
num -= values[i]
}
i += 1
}
return roman.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
var i = 0
while num > 0 {
while num >= values[i] {
roman.append(symbols[i])
num -= values[i]
}
i += 1
}
return roman.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var result = ""
var num = number
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
for (index, value) in values.enumerated() {
while num >= value {
result += symbols[index]
num -= value
}
}
return result.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var result = ""
var num = number
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
for (index, value) in values.enumerated() {
while num >= value {
result += symbols[index]
num -= value
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
var i = 0
while num > 0 {
while num >= values[i] {
roman.append(symbols[i])
num -= values[i]
}
i += 1
}
return roman.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
var i = 0
while num > 0 {
while num >= values[i] {
roman.append(symbols[i])
num -= values[i]
}
i += 1
}
return roman.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals: [(Int, String)] = [(1000, "m"), (900, "cm"), (500, "d"), (400, "cd"), (100, "c"), (90, "xc"), (50, "l"), (40, "xl"), (10, "x"), (9, "ix"), (5, "v"), (4, "iv"), (1, "i")]
for (value, numeral) in romanNumerals {
while num >= value {
result.append(numeral)
num -= value
}
}
return result.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var result = ""
let romanNumerals: [(Int, String)] = [(1000, "m"), (900, "cm"), (500, "d"), (400, "cd"), (100, "c"), (90, "xc"), (50, "l"), (40, "xl"), (10, "x"), (9, "ix"), (5, "v"), (4, "iv"), (1, "i")]
for (value, numeral) in romanNumerals {
while num >= value {
result.append(numeral)
num -= value
}
}
return result.lowercased()
}
```
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
for (index, value) in values.enumerated() {
while num >= value {
roman.append(symbols[index])
num -= value
}
}
return roman.lowercased()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"<end_of_turn>
<start_of_turn>model
```swift
func intToMiniRoman(number: Int) -> String {
var num = number
var roman = ""
let values = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
let symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]
for (index, value) in values.enumerated() {
while num >= value {
roman.append(symbols[index])
num -= value
}
}
return roman.lowercased()
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return (a*a + b*b == c*c) || (a*a + c*c == b*b) || (b*b + c*c == a*a)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return (a*a + b*b == c*c) || (a*a + c*c == b*b) || (b*b + c*c == a*a)
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[2] * sides[2] == sides[0] * sides[0] + sides[1] * sides[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[2] * sides[2] == sides[0] * sides[0] + sides[1] * sides[1]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return (a*a + b*b == c*c) || (a*a + c*c == b*b) || (b*b + c*c == a*a)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return (a*a + b*b == c*c) || (a*a + c*c == b*b) || (b*b + c*c == a*a)
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let hypotenuse = sides.max()!
let otherSides = sides.filter { $0 != hypotenuse }
return otherSides.reduce(0, +) * otherSides.reduce(0, +) == hypotenuse * hypotenuse
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let hypotenuse = sides.max()!
let otherSides = sides.filter { $0 != hypotenuse }
return otherSides.reduce(0, +) * otherSides.reduce(0, +) == hypotenuse * hypotenuse
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[2] * sides[2] == sides[0] * sides[0] + sides[1] * sides[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[2] * sides[2] == sides[0] * sides[0] + sides[1] * sides[1]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[2] * sides[2] == sides[0] * sides[0] + sides[1] * sides[1]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[2] * sides[2] == sides[0] * sides[0] + sides[1] * sides[1]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let hypotenuse = sides.max()!
let otherSides = sides.filter { $0 != hypotenuse }
return hypotenuse * hypotenuse == otherSides.reduce(0, +) * otherSides.reduce(0, +)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let hypotenuse = sides.max()!
let otherSides = sides.filter { $0 != hypotenuse }
return hypotenuse * hypotenuse == otherSides.reduce(0, +) * otherSides.reduce(0, +)
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return (a * a + b * b == c * c) || (b * b + c * c == a * a) || (c * c + a * a == b * b)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return (a * a + b * b == c * c) || (b * b + c * c == a * a) || (c * c + a * a == b * b)
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return (a * a + b * b == c * c) || (b * b + c * c == a * a) || (c * c + a * a == b * b)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return (a * a + b * b == c * c) || (b * b + c * c == a * a) || (c * c + a * a == b * b)
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let hypotenuse = sides.max()!
let otherSides = sides.filter { $0 != hypotenuse }
return otherSides.reduce(0, +) * otherSides.reduce(0, +) == hypotenuse * hypotenuse
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false<end_of_turn>
<start_of_turn>model
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let hypotenuse = sides.max()!
let otherSides = sides.filter { $0 != hypotenuse }
return otherSides.reduce(0, +) * otherSides.reduce(0, +) == hypotenuse * hypotenuse
}
```
// XCTAssertTrue failed
func findMax(words: [String]) -> String {
return words.max(by: { (word1, word2) -> Bool in
if word1.count(of: CharacterSet.init(charactersIn: word1)) == word2.count(of: CharacterSet.init(charactersIn: word2)) {
return word1 > word2
}
return word1.count(of: CharacterSet.init(charactersIn: word1)) > word2.count(of: CharacterSet.init(charactersIn: word2))
})!
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max(by: { (word1, word2) -> Bool in
if word1.count(of: CharacterSet.init(charactersIn: word1)) == word2.count(of: CharacterSet.init(charactersIn: word2)) {
return word1 > word2
}
return word1.count(of: CharacterSet.init(charactersIn: word1)) > word2.count(of: CharacterSet.init(charactersIn: word2))
})!
}
```
if word1.count(of: CharacterSet.init(charactersIn: word1)) == word2.count(of: CharacterSet.init(charactersIn: word2)) { // cannot call value of non-function type 'Int'
if word1.count(of: CharacterSet.init(charactersIn: word1)) == word2.count(of: CharacterSet.init(charactersIn: word2)) { // cannot call value of non-function type 'Int'
func findMax(words: [String]) -> String {
return words.max(by: { (word1, word2) -> Bool in
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) {
return word1 < word2
}
return word1.count(uniqueElements: .init()) > word2.count(uniqueElements: .init())
}) ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max(by: { (word1, word2) -> Bool in
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) {
return word1 < word2
}
return word1.count(uniqueElements: .init()) > word2.count(uniqueElements: .init())
}) ?? ""
}
```
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) { // cannot call value of non-function type 'Int'
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) { // cannot infer contextual base in reference to member 'init'
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) { // cannot infer contextual base in reference to member 'init'
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) { // cannot call value of non-function type 'Int'
func findMax(words: [String]) -> String {
return words.max(by: { (word1, word2) -> Bool in
if word1.count(of: CharacterSet.init(charactersIn: word1)) == word2.count(of: CharacterSet.init(charactersIn: word2)) {
return word1 > word2
} else {
return word1.count(of: CharacterSet.init(charactersIn: word1)) > word2.count(of: CharacterSet.init(charactersIn: word2))
}
}) ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max(by: { (word1, word2) -> Bool in
if word1.count(of: CharacterSet.init(charactersIn: word1)) == word2.count(of: CharacterSet.init(charactersIn: word2)) {
return word1 > word2
} else {
return word1.count(of: CharacterSet.init(charactersIn: word1)) > word2.count(of: CharacterSet.init(charactersIn: word2))
}
}) ?? ""
}
```
if word1.count(of: CharacterSet.init(charactersIn: word1)) == word2.count(of: CharacterSet.init(charactersIn: word2)) { // cannot call value of non-function type 'Int'
if word1.count(of: CharacterSet.init(charactersIn: word1)) == word2.count(of: CharacterSet.init(charactersIn: word2)) { // cannot call value of non-function type 'Int'
func findMax(words: [String]) -> String {
return words.max(by: { (word1, word2) -> Bool in
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) {
return word1 > word2
} else {
return word1.count(uniqueElements: .init()) > word2.count(uniqueElements: .init())
}
}) ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max(by: { (word1, word2) -> Bool in
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) {
return word1 > word2
} else {
return word1.count(uniqueElements: .init()) > word2.count(uniqueElements: .init())
}
}) ?? ""
}
```
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) { // cannot call value of non-function type 'Int'
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) { // cannot infer contextual base in reference to member 'init'
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) { // cannot infer contextual base in reference to member 'init'
if word1.count(uniqueElements: .init()) == word2.count(uniqueElements: .init()) { // cannot call value of non-function type 'Int'
func findMax(words: [String]) -> String {
return words.max { word1, word2 in
if word1.count(of: CharacterSet.union(.letters)) == word2.count(of: CharacterSet.union(.letters)) {
return word1 > word2
} else {
return word1.count(of: CharacterSet.union(.letters)) > word2.count(of: CharacterSet.union(.letters))
}
} ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max { word1, word2 in
if word1.count(of: CharacterSet.union(.letters)) == word2.count(of: CharacterSet.union(.letters)) {
return word1 > word2
} else {
return word1.count(of: CharacterSet.union(.letters)) > word2.count(of: CharacterSet.union(.letters))
}
} ?? ""
}
```
if word1.count(of: CharacterSet.union(.letters)) == word2.count(of: CharacterSet.union(.letters)) { // cannot call value of non-function type 'Int'
if word1.count(of: CharacterSet.union(.letters)) == word2.count(of: CharacterSet.union(.letters)) { // cannot call value of non-function type 'Int'
func findMax(words: [String]) -> String {
return words.max { (word1, word2) in
word1.unicodeScalars.count == word2.unicodeScalars.count ? word1 < word2 : word1.unicodeScalars.count > word2.unicodeScalars.count
} ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max { (word1, word2) in
word1.unicodeScalars.count == word2.unicodeScalars.count ? word1 < word2 : word1.unicodeScalars.count > word2.unicodeScalars.count
} ?? ""
}
```
// XCTAssertTrue failed
func findMax(words: [String]) -> String {
return words.max { (word1, word2) -> Bool in
if word1.count(excluding: Character("")) == word2.count(excluding: Character("")) {
return word1 > word2
} else {
return word1.count(excluding: Character("")) > word2.count(excluding: Character(""))
}
} ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max { (word1, word2) -> Bool in
if word1.count(excluding: Character("")) == word2.count(excluding: Character("")) {
return word1 > word2
} else {
return word1.count(excluding: Character("")) > word2.count(excluding: Character(""))
}
} ?? ""
}
```
if word1.count(excluding: Character("")) == word2.count(excluding: Character("")) { // cannot call value of non-function type 'Int'
if word1.count(excluding: Character("")) == word2.count(excluding: Character("")) { // cannot call value of non-function type 'Int'
func findMax(words: [String]) -> String {
return words.max { a, b in
let uniqueCharsInA = Set(a).count
let uniqueCharsInB = Set(b).count
if uniqueCharsInA == uniqueCharsInB {
return a < b
}
return uniqueCharsInA > uniqueCharsInB
} ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max { a, b in
let uniqueCharsInA = Set(a).count
let uniqueCharsInB = Set(b).count
if uniqueCharsInA == uniqueCharsInB {
return a < b
}
return uniqueCharsInA > uniqueCharsInB
} ?? ""
}
```
// XCTAssertTrue failed
func findMax(words: [String]) -> String {
return words.max { word1, word2 in
if word1.count(of: CharacterSet(charactersIn: word1)) == word2.count(of: CharacterSet(charactersIn: word2)) {
return word1 < word2
}
return word1.count(of: CharacterSet(charactersIn: word1)) > word2.count(of: CharacterSet(charactersIn: word2))
} ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max { word1, word2 in
if word1.count(of: CharacterSet(charactersIn: word1)) == word2.count(of: CharacterSet(charactersIn: word2)) {
return word1 < word2
}
return word1.count(of: CharacterSet(charactersIn: word1)) > word2.count(of: CharacterSet(charactersIn: word2))
} ?? ""
}
```
if word1.count(of: CharacterSet(charactersIn: word1)) == word2.count(of: CharacterSet(charactersIn: word2)) { // cannot call value of non-function type 'Int'
if word1.count(of: CharacterSet(charactersIn: word1)) == word2.count(of: CharacterSet(charactersIn: word2)) { // cannot call value of non-function type 'Int'
func findMax(words: [String]) -> String {
return words.max { a, b in
let aSet = Set(a)
let bSet = Set(b)
if aSet.count == bSet.count {
return a < b
}
return aSet.count > bSet.count
} ?? ""
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"<end_of_turn>
<start_of_turn>model
```swift
func findMax(words: [String]) -> String {
return words.max { a, b in
let aSet = Set(a)
let bSet = Set(b)
if aSet.count == bSet.count {
return a < b
}
return aSet.count > bSet.count
} ?? ""
}
```
// XCTAssertTrue failed
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots < need - number {
totalEaten += remainingCarrots
remainingCarrots = 0
} else {
totalEaten += need - number
remainingCarrots -= need - number
}
return [totalEaten, remainingCarrots]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots < need - number {
totalEaten += remainingCarrots
remainingCarrots = 0
} else {
totalEaten += need - number
remainingCarrots -= need - number
}
return [totalEaten, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if remaining >= need - number {
carrotsLeft -= need - number
} else {
totalEaten += remaining
carrotsLeft = 0
}
return [totalEaten, carrotsLeft]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if remaining >= need - number {
carrotsLeft -= need - number
} else {
totalEaten += remaining
carrotsLeft = 0
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots >= need {
totalEaten += need
remainingCarrots -= need
} else {
totalEaten += remainingCarrots
remainingCarrots = 0
}
return [totalEaten, remainingCarrots]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots >= need {
totalEaten += need
remainingCarrots -= need
} else {
totalEaten += remainingCarrots
remainingCarrots = 0
}
return [totalEaten, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if remaining >= need {
carrotsLeft -= need
} else {
totalEaten += remaining
carrotsLeft = 0
}
return [totalEaten, carrotsLeft]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if remaining >= need {
carrotsLeft -= need
} else {
totalEaten += remaining
carrotsLeft = 0
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots < need - number {
totalEaten += remainingCarrots
remainingCarrots = 0
} else {
totalEaten += need - number
remainingCarrots -= need - number
}
return [totalEaten, remainingCarrots]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots < need - number {
totalEaten += remainingCarrots
remainingCarrots = 0
} else {
totalEaten += need - number
remainingCarrots -= need - number
}
return [totalEaten, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if need > remaining {
carrotsLeft = 0
totalEaten += remaining
} else {
carrotsLeft -= need
totalEaten += need
}
return [totalEaten, carrotsLeft]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if need > remaining {
carrotsLeft = 0
totalEaten += remaining
} else {
carrotsLeft -= need
totalEaten += need
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots < need {
totalEaten += remainingCarrots
remainingCarrots = 0
} else {
totalEaten += need
remainingCarrots -= need
}
return [totalEaten, remainingCarrots]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots < need {
totalEaten += remainingCarrots
remainingCarrots = 0
} else {
totalEaten += need
remainingCarrots -= need
}
return [totalEaten, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if remaining < need - number {
totalEaten += remaining
carrotsLeft = 0
} else {
totalEaten += need
carrotsLeft = remaining - (need - number)
}
return [totalEaten, carrotsLeft]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if remaining < need - number {
totalEaten += remaining
carrotsLeft = 0
} else {
totalEaten += need
carrotsLeft = remaining - (need - number)
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots < need {
totalEaten += remainingCarrots
remainingCarrots = 0
} else {
totalEaten += need
remainingCarrots -= need
}
return [totalEaten, remainingCarrots]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots < need {
totalEaten += remainingCarrots
remainingCarrots = 0
} else {
totalEaten += need
remainingCarrots -= need
}
return [totalEaten, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots >= need {
totalEaten += need
remainingCarrots -= need
} else {
totalEaten += remainingCarrots
remainingCarrots = 0
}
return [totalEaten, remainingCarrots]
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]<end_of_turn>
<start_of_turn>model
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var remainingCarrots = remaining
if remainingCarrots >= need {
totalEaten += need
remainingCarrots -= need
} else {
totalEaten += remainingCarrots
remainingCarrots = 0
}
return [totalEaten, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.<end_of_turn>
<start_of_turn>model
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return String(result)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return String(result)
}
```
result.append(char.isLowercase ? char.uppercased() : char.lowercased()) // no exact matches in call to instance method 'append'
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return result
}
```
if char.isLetter() { // cannot call value of non-function type 'Bool'
result.append(char.isLower() ? char.uppercased() : char.lowercased()) // value of type 'Character' has no member 'isLower'
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
} else {
return String(result)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
} else {
return String(result)
}
}
```
result.append(char.isLowercase ? char.uppercased() : char.lowercased()) // no exact matches in call to instance method 'append'
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return String(result)
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return String(result)
}
```
result.append(char.isLowercase ? char.uppercased() : char.lowercased()) // no exact matches in call to instance method 'append'
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
} else {
return String(result)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
} else {
return String(result)
}
}
```
if char.isLetter() { // cannot call value of non-function type 'Bool'
result.append(char.isLower() ? char.uppercased() : char.lowercased()) // missing argument label 'contentsOf:' in call
result.append(char.isLower() ? char.uppercased() : char.lowercased()) // value of type 'Character' has no member 'isLower'
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().reduce("", { $0 + String($1) })
} else {
return result
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().reduce("", { $0 + String($1) })
} else {
return result
}
}
```
if char.isLetter() { // cannot call value of non-function type 'Bool'
result.append(char.isLower() ? char.uppercased() : char.lowercased()) // value of type 'Character' has no member 'isLower'
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
} else {
return String(result)
}
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
} else {
return String(result)
}
}
```
result.append(char.isLowercase ? char.uppercased() : char.lowercased()) // no exact matches in call to instance method 'append'
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().reduce("", +)
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().reduce("", +)
}
return result
}
```
if char.isLetter() { // cannot call value of non-function type 'Bool'
result.append(char.isLower() ? char.uppercased() : char.lowercased()) // value of type 'Character' has no member 'isLower'
return s.reversed().reduce("", +) // no exact matches in reference to operator function '+'
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return result
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter() {
result.append(char.isLower() ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return result
}
```
if char.isLetter() { // cannot call value of non-function type 'Bool'
result.append(char.isLower() ? char.uppercased() : char.lowercased()) // value of type 'Character' has no member 'isLower'
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter() {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return result.map { String($0) }.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"<end_of_turn>
<start_of_turn>model
```swift
func solve(s: String) -> String {
var result = [Character]()
for char in s {
if char.isLetter() {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
if result.isEmpty {
return s.reversed().map { String($0) }.joined()
}
return result.map { String($0) }.joined()
}
```
if char.isLetter() { // cannot call value of non-function type 'Bool'
result.append(char.isLowercase ? char.uppercased() : char.lowercased()) // no exact matches in call to instance method 'append'
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let digest = Insecure.MD5.hash(data: data)
let hexString = digest.map { String(format: "%02x", $0) }.joined()
return hexString
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let digest = Insecure.MD5.hash(data: data)
let hexString = digest.map { String(format: "%02x", $0) }.joined()
return hexString
}
```
let digest = Insecure.MD5.hash(data: data) // cannot find 'Insecure' in scope
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let digest = Insecure.MD5.hash(data: data)
let md5String = digest.map { String(format: "%02x", $0) }.joined()
return md5String
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let digest = Insecure.MD5.hash(data: data)
let md5String = digest.map { String(format: "%02x", $0) }.joined()
return md5String
}
```
let digest = Insecure.MD5.hash(data: data) // cannot find 'Insecure' in scope
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> String in
let buffer = UnsafeMutablePointer<UInt8>.allocate(capacity: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress!, CC_LONG(data.count), buffer)
return buffer.map { String(format: "%02x", $0) }.joined()
}
return hash
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> String in
let buffer = UnsafeMutablePointer<UInt8>.allocate(capacity: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress!, CC_LONG(data.count), buffer)
return buffer.map { String(format: "%02x", $0) }.joined()
}
return hash
}
```
return buffer.map { String(format: "%02x", $0) }.joined() // value of type 'UnsafeMutablePointer<UInt8>' has no member 'map'
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
let digest = Insecure.MD5.hash(data: data)
let hash = digest.map { String(format: "%02x", $0) }.joined()
return hash
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
let digest = Insecure.MD5.hash(data: data)
let hash = digest.map { String(format: "%02x", $0) }.joined()
return hash
}
```
let digest = Insecure.MD5.hash(data: data) // cannot find 'Insecure' in scope
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let digest = Insecure.MD5.hash(data: data)
return digest.map { String(format: "%02x", $0) }.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let digest = Insecure.MD5.hash(data: data)
return digest.map { String(format: "%02x", $0) }.joined()
}
```
let digest = Insecure.MD5.hash(data: data) // cannot find 'Insecure' in scope
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(data, CC_LONG(data.count), &digest)
return digest.map { String(format: "%02x", $0) }.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
var digest = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(data, CC_LONG(data.count), &digest)
return digest.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(data, CC_LONG(data.count), &digest) // cannot convert value of type 'Data' to expected argument type 'UnsafeRawPointer?'
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> String in
let buffer = UnsafeMutablePointer<UInt8>.allocate(capacity: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), buffer)
var hashString = ""
for i in 0..<Int(CC_MD5_DIGEST_LENGTH) {
hashString += String(format: "%02x", buffer[i])
}
buffer.deallocate()
return hashString
}
return hash
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> String in
let buffer = UnsafeMutablePointer<UInt8>.allocate(capacity: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), buffer)
var hashString = ""
for i in 0..<Int(CC_MD5_DIGEST_LENGTH) {
hashString += String(format: "%02x", buffer[i])
}
buffer.deallocate()
return hashString
}
return hash
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), buffer) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { bytes in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { bytes in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
let hash = data.withUnsafeBytes { bytes in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5(bytes, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { bytes in
var md5Hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes, CC_LONG(data.count), &md5Hash)
return md5Hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { bytes in
var md5Hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes, CC_LONG(data.count), &md5Hash)
return md5Hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
let hash = data.withUnsafeBytes { bytes in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5(bytes, CC_LONG(data.count), &md5Hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { bytes in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"<end_of_turn>
<start_of_turn>model
```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { bytes in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
let hash = data.withUnsafeBytes { bytes in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5(bytes, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result.sorted()
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result.sorted()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result.sorted()
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
<start_of_turn>user
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]<end_of_turn>
<start_of_turn>model
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in stride(from: a, through: b, by: 2) {
result.append(i)
}
return result.reversed()
}
```
// XCTAssertTrue failed