Metadata
Key | Value |
---|---|
engine | transformers |
prompt | default |
temp | 0.2 |
top_p | 0.95 |
max_new_tokens | 1024 |
n_completions | 10 |
Solutions
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else if !isInGroup {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else if !isInGroup {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var isInsideGroup = false
for char in parenString {
if char == "(" {
if !isInsideGroup {
isInsideGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInsideGroup {
isInsideGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var isInsideGroup = false
for char in parenString {
if char == "(" {
if !isInsideGroup {
isInsideGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInsideGroup {
isInsideGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
for char in parenString {
if char == "(" {
currentGroup += char
} else if char == ")" {
currentGroup += char
result.append(currentGroup)
currentGroup = ""
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
for char in parenString {
if char == "(" {
currentGroup += char
} else if char == ")" {
currentGroup += char
result.append(currentGroup)
currentGroup = ""
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var isInGroup = false
for char in parenString {
if char == "(" {
if !isInGroup {
isInGroup = true
currentGroup = ""
} else {
currentGroup += char
}
} else if char == ")" {
if isInGroup {
isInGroup = false
currentGroup += char
result.append(currentGroup)
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimals = number - Double(integerPart)
return decimals
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
if operation < 0 {
balance -= operation
if balance < 0 {
return true
}
} else {
balance += operation
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
if operation < 0 {
balance -= operation
if balance < 0 {
return true
}
} else {
balance += operation
}
}
return false
}
```
// XCTAssertTrue failed
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
return numbers.map({ abs($0 - mean) }).reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var previousLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
}
if currentLevel > previousLevel {
result.append(currentLevel)
}
previousLevel = currentLevel
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var previousLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
}
if currentLevel > previousLevel {
result.append(currentLevel)
}
previousLevel = currentLevel
}
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var currentGroup = ""
for char in parenString {
if char == "(" {
currentLevel += 1
currentGroup += char
} else if char == ")" {
currentLevel -= 1
currentGroup += char
if currentLevel == 0 {
result.append(currentGroup.count)
currentGroup = ""
}
} else {
currentGroup += char
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var previousLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
}
if currentLevel > previousLevel {
result.append(currentLevel)
}
previousLevel = currentLevel
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var previousLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
}
if currentLevel > previousLevel {
result.append(currentLevel)
}
previousLevel = currentLevel
}
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var previousLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
}
if currentLevel > previousLevel {
result.append(currentLevel)
}
previousLevel = currentLevel
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
var currentLevel = 0
var previousLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
}
if currentLevel > previousLevel {
result.append(currentLevel)
}
previousLevel = currentLevel
}
return result
}
```
// XCTAssertTrue failed
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max > num ? max : num
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max > num ? max : num
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max > num ? max : num
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max > num ? max : num
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max > num ? max : num
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max > num ? max : num
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max < num ? num : max
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max < num ? num : max
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max > number ? max : number
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max > num ? max : num
result.append(max)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for num in numbers {
max = max > num ? max : num
result.append(max)
}
return result
}
```
func makePalindrome(string: String) -> String {
let palindromeSuffix = string.suffix(while: { $0 == string.last })
let prefix = string.prefix(upTo: string.index(before: string.endIndex))
return string + prefix.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let palindromeSuffix = string.suffix(while: { $0 == string.last })
let prefix = string.prefix(upTo: string.index(before: string.endIndex))
return string + prefix.reversed()
}
```
let palindromeSuffix = string.suffix(while: { $0 == string.last }) // no exact matches in call to instance method 'suffix'
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.longestPalindromeSuffix
let reversePrefix = string.prefix(upTo: longestPalindromeSuffix.startIndex).reversed()
return string + reversePrefix
}
extension String {
var longestPalindromeSuffix: Substring {
var longestSuffix = ""
for i in 0..<count {
let suffix = self[index(startIndex, offsetBy: i)...]
if suffix.isPalindrome {
longestSuffix = suffix
} else {
break
}
}
return longestSuffix
}
}
extension Substring {
var isPalindrome: Bool {
return String(self).isPalindrome
}
}
extension String {
var isPalindrome: Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.longestPalindromeSuffix
let reversePrefix = string.prefix(upTo: longestPalindromeSuffix.startIndex).reversed()
return string + reversePrefix
}
extension String {
var longestPalindromeSuffix: Substring {
var longestSuffix = ""
for i in 0..<count {
let suffix = self[index(startIndex, offsetBy: i)...]
if suffix.isPalindrome {
longestSuffix = suffix
} else {
break
}
}
return longestSuffix
}
}
extension Substring {
var isPalindrome: Bool {
return String(self).isPalindrome
}
}
extension String {
var isPalindrome: Bool {
return self == String(self.reversed())
}
}
```
longestSuffix = suffix // cannot assign value of type 'String.SubSequence' (aka 'Substring') to type 'String'
return longestSuffix // cannot convert return expression of type 'String' to return type 'Substring'
func makePalindrome(string: String) -> String {
var longestPalindromeSuffix = ""
for i in 0..<string.count {
let suffix = string[string.index(string.startIndex, offsetBy: i)...]
if suffix == suffix.reversed() {
longestPalindromeSuffix = suffix
}
}
let prefix = string[string.startIndex..<string.index(string.startIndex, offsetBy: longestPalindromeSuffix.count)]
return string + prefix.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
var longestPalindromeSuffix = ""
for i in 0..<string.count {
let suffix = string[string.index(string.startIndex, offsetBy: i)...]
if suffix == suffix.reversed() {
longestPalindromeSuffix = suffix
}
}
let prefix = string[string.startIndex..<string.index(string.startIndex, offsetBy: longestPalindromeSuffix.count)]
return string + prefix.reversed()
}
```
if suffix == suffix.reversed() { // cannot convert value of type '[Substring.Element]' (aka 'Array<Character>') to expected argument type 'String.SubSequence' (aka 'Substring')
longestPalindromeSuffix = suffix // cannot assign value of type 'String.SubSequence' (aka 'Substring') to type 'String'
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last })
let reversePrefix = string.prefix(upTo: longestPalindromeSuffix.startIndex).reversed()
return string + reversePrefix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last })
let reversePrefix = string.prefix(upTo: longestPalindromeSuffix.startIndex).reversed()
return string + reversePrefix
}
```
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last }) // no exact matches in call to instance method 'suffix'
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last })
let reversePrefix = String(string.prefix(upTo: string.index(before: string.endIndex)).reversed())
return string + reversePrefix + longestPalindromeSuffix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last })
let reversePrefix = String(string.prefix(upTo: string.index(before: string.endIndex)).reversed())
return string + reversePrefix + longestPalindromeSuffix
}
```
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last }) // no exact matches in call to instance method 'suffix'
func makePalindrome(string: String) -> String {
let palindromeSuffix = string.suffix(while: { $0 == string.last })
let prefix = string.prefix(string.count - palindromeSuffix.count)
return "\(prefix)\(String(prefix.reversed()))\(palindromeSuffix)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let palindromeSuffix = string.suffix(while: { $0 == string.last })
let prefix = string.prefix(string.count - palindromeSuffix.count)
return "\(prefix)\(String(prefix.reversed()))\(palindromeSuffix)"
}
```
let palindromeSuffix = string.suffix(while: { $0 == string.last }) // no exact matches in call to instance method 'suffix'
func makePalindrome(string: String) -> String {
let palindromeSuffix = string.suffix(while: { $0 == string.last })
let prefix = string.prefix(upTo: palindromeSuffix.startIndex)
return string + prefix.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let palindromeSuffix = string.suffix(while: { $0 == string.last })
let prefix = string.prefix(upTo: palindromeSuffix.startIndex)
return string + prefix.reversed()
}
```
let palindromeSuffix = string.suffix(while: { $0 == string.last }) // no exact matches in call to instance method 'suffix'
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last })
let reversePrefix = String(string.prefix(upTo: string.index(before: string.endIndex)).reversed())
return string + reversePrefix + longestPalindromeSuffix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last })
let reversePrefix = String(string.prefix(upTo: string.index(before: string.endIndex)).reversed())
return string + reversePrefix + longestPalindromeSuffix
}
```
let longestPalindromeSuffix = string.suffix(while: { $0 == string.last }) // no exact matches in call to instance method 'suffix'
func makePalindrome(string: String) -> String {
let palindromeSuffix = string.suffix(while: { $0 == string.last })
let prefix = string.prefix(upTo: palindromeSuffix.startIndex)
return string + prefix.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let palindromeSuffix = string.suffix(while: { $0 == string.last })
let prefix = string.prefix(upTo: palindromeSuffix.startIndex)
return string + prefix.reversed()
}
```
let palindromeSuffix = string.suffix(while: { $0 == string.last }) // no exact matches in call to instance method 'suffix'
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.suffix(while: { $0 == $0.last })
let reversePrefix = string.prefix(upTo: longestPalindromeSuffix.startIndex).reversed()
return string + reversePrefix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let longestPalindromeSuffix = string.suffix(while: { $0 == $0.last })
let reversePrefix = string.prefix(upTo: longestPalindromeSuffix.startIndex).reversed()
return string + reversePrefix
}
```
let longestPalindromeSuffix = string.suffix(while: { $0 == $0.last }) // enum case 'last' cannot be used as an instance member
let longestPalindromeSuffix = string.suffix(while: { $0 == $0.last }) // no exact matches in call to instance method 'suffix'
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
if a[i] == b[i] {
result += "0"
} else {
result += "1"
}
}
return result
}
```
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if a[i] == b[i] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings.first
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings.first
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
if string.count > longestString.count { // value of optional type 'String?' must be unwrapped to refer to member 'count' of wrapped base type 'String'
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings.first
var longestLength = longestString?.count ?? 0
for string in strings {
let length = string.count
if length > longestLength {
longestString = string
longestLength = length
} else if length == longestLength {
return string
}
}
return longestString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
var longestString = strings.first
var longestLength = longestString?.count ?? 0
for string in strings {
let length = string.count
if length > longestLength {
longestString = string
longestLength = length
} else if length == longestLength {
return string
}
}
return longestString
}
```
// XCTAssertTrue failed
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
let longestString = strings.max(by: { $0.count < $1.count })
return longestString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
let longestString = strings.max(by: { $0.count < $1.count })
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string.prefix(upTo: i))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string.prefix(upTo: i))
}
return prefixes
}
```
prefixes.append(string.prefix(upTo: i)) // cannot convert value of type 'Int' to expected argument type 'String.Index'
prefixes.append(string.prefix(upTo: i)) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string.prefix(i))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string.prefix(i))
}
return prefixes
}
```
prefixes.append(string.prefix(i)) // no exact matches in call to instance method 'append'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
```
// XCTAssertTrue failed
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: i)))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: i)))
}
return prefixes
}
```
prefixes.append(String(string.prefix(upTo: i))) // cannot convert value of type 'Int' to expected argument type 'String.Index'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: i)))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: i)))
}
return prefixes
}
```
prefixes.append(String(string.prefix(upTo: i))) // cannot convert value of type 'Int' to expected argument type 'String.Index'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
```
// XCTAssertTrue failed
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: i)))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: i)))
}
return prefixes
}
```
prefixes.append(String(string.prefix(upTo: i))) // cannot convert value of type 'Int' to expected argument type 'String.Index'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: i)))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: i)))
}
return prefixes
}
```
prefixes.append(String(string.prefix(upTo: i))) // cannot convert value of type 'Int' to expected argument type 'String.Index'
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i)))
}
return prefixes
}
```
// XCTAssertTrue failed
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: string.index(string.startIndex, offsetBy: i))))
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(upTo: string.index(string.startIndex, offsetBy: i))))
}
return prefixes
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string {
distinctChars.insert(char)
}
return distinctChars.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string {
distinctChars.insert(char)
}
return distinctChars.count
}
```
// XCTAssertTrue failed
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string {
distinctChars.insert(char)
}
return distinctChars.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string {
distinctChars.insert(char)
}
return distinctChars.count
}
```
// XCTAssertTrue failed
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
// XCTAssertTrue failed
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var beats = [Int]()
for char in musicString {
switch char {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i < string.count {
if string[i..<i+substring.count] == substring {
count += 1
i += substring.count
} else {
i += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = 0
while i < string.count {
if string[i..<i+substring.count] == substring {
count += 1
i += substring.count
} else {
i += 1
}
}
return count
}
```
if string[i..<i+substring.count] == substring { // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let sortedNumbers = numbers.split(separator: " ").sorted(by: <)
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let sortedNumbers = numbers.split(separator: " ").sorted(by: <)
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted(by: <)
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted(by: <)
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let sortedNumbers = numbers.split(separator: " ")
.sorted(by: { $0 < $1 })
.joined(separator: " ")
return sortedNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let sortedNumbers = numbers.split(separator: " ")
.sorted(by: { $0 < $1 })
.joined(separator: " ")
return sortedNumbers
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted(by: <)
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted(by: <)
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted { $0 < $1 }
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted(by: <)
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedNumbers = numberArray.sorted(by: <)
return sortedNumbers.joined(separator: " ")
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
smallestDifference = difference
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
smallestDifference = difference
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
```
smallestDifference = difference // cannot assign to value: 'smallestDifference' is a 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let closestPairs = sortedNumbers.enumerated().filter { index, number in
guard index > 0 else { return false }
let previousNumber = sortedNumbers[index - 1]
return abs(previousNumber - number) < abs(previousNumber - sortedNumbers[index + 1])
}
return (closestPairs[0].number, closestPairs[1].number)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let closestPairs = sortedNumbers.enumerated().filter { index, number in
guard index > 0 else { return false }
let previousNumber = sortedNumbers[index - 1]
return abs(previousNumber - number) < abs(previousNumber - sortedNumbers[index + 1])
}
return (closestPairs[0].number, closestPairs[1].number)
}
```
return (closestPairs[0].number, closestPairs[1].number) // value of tuple type 'EnumeratedSequence<[Double]>.Element' (aka '(offset: Int, element: Double)') has no member 'number'
return (closestPairs[0].number, closestPairs[1].number) // value of tuple type 'EnumeratedSequence<[Double]>.Element' (aka '(offset: Int, element: Double)') has no member 'number'
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let closestPairs = [sortedNumbers[0], sortedNumbers[1]]
for i in 2..<sortedNumbers.count {
let currentPair = [sortedNumbers[i - 1], sortedNumbers[i]]
if abs(currentPair[0] - currentPair[1]) < abs(closestPairs[0] - closestPairs[1]) {
closestPairs = currentPair
}
}
return closestPairs
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let closestPairs = [sortedNumbers[0], sortedNumbers[1]]
for i in 2..<sortedNumbers.count {
let currentPair = [sortedNumbers[i - 1], sortedNumbers[i]]
if abs(currentPair[0] - currentPair[1]) < abs(closestPairs[0] - closestPairs[1]) {
closestPairs = currentPair
}
}
return closestPairs
}
```
closestPairs = currentPair // cannot assign to value: 'closestPairs' is a 'let' constant
return closestPairs // cannot convert return expression of type '[Double]' to return type '(Double, Double)'
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let closestPairs = [sortedNumbers[0], sortedNumbers[1]]
for i in 2..<sortedNumbers.count {
let currentPair = [sortedNumbers[i - 1], sortedNumbers[i]]
if abs(currentPair[0] - currentPair[1]) < abs(closestPairs[0] - closestPairs[1]) {
closestPairs = currentPair
}
}
return closestPairs
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let closestPairs = [sortedNumbers[0], sortedNumbers[1]]
for i in 2..<sortedNumbers.count {
let currentPair = [sortedNumbers[i - 1], sortedNumbers[i]]
if abs(currentPair[0] - currentPair[1]) < abs(closestPairs[0] - closestPairs[1]) {
closestPairs = currentPair
}
}
return closestPairs
}
```
closestPairs = currentPair // cannot assign to value: 'closestPairs' is a 'let' constant
return closestPairs // cannot convert return expression of type '[Double]' to return type '(Double, Double)'
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var smallestDifferenceIndex = 0
for i in 1..<sortedNumbers.count - 1 {
let difference = sortedNumbers[i + 1] - sortedNumbers[i]
if difference < smallestDifference {
smallestDifference = difference
smallestDifferenceIndex = i
}
}
return (sortedNumbers[smallestDifferenceIndex], sortedNumbers[smallestDifferenceIndex + 1])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var smallestDifferenceIndex = 0
for i in 1..<sortedNumbers.count - 1 {
let difference = sortedNumbers[i + 1] - sortedNumbers[i]
if difference < smallestDifference {
smallestDifference = difference
smallestDifferenceIndex = i
}
}
return (sortedNumbers[smallestDifferenceIndex], sortedNumbers[smallestDifferenceIndex + 1])
}
```
smallestDifference = difference // cannot assign to value: 'smallestDifference' is a 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var smallestDifferenceIndex = 0
for i in 1..<sortedNumbers.count - 1 {
let difference = sortedNumbers[i + 1] - sortedNumbers[i]
if difference < smallestDifference {
smallestDifference = difference
smallestDifferenceIndex = i
}
}
return (sortedNumbers[smallestDifferenceIndex], sortedNumbers[smallestDifferenceIndex + 1])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var smallestDifferenceIndex = 0
for i in 1..<sortedNumbers.count - 1 {
let difference = sortedNumbers[i + 1] - sortedNumbers[i]
if difference < smallestDifference {
smallestDifference = difference
smallestDifferenceIndex = i
}
}
return (sortedNumbers[smallestDifferenceIndex], sortedNumbers[smallestDifferenceIndex + 1])
}
```
smallestDifference = difference // cannot assign to value: 'smallestDifference' is a 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
smallestDifference = difference
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
smallestDifference = difference
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
```
smallestDifference = difference // cannot assign to value: 'smallestDifference' is a 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
smallestDifference = difference
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
smallestDifference = difference
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
```
smallestDifference = difference // cannot assign to value: 'smallestDifference' is a 'let' constant
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
let smallestDifference = sortedNumbers[1] - sortedNumbers[0]
var closestPairs = (sortedNumbers[0], sortedNumbers[1])
for i in 2..<sortedNumbers.count {
let difference = sortedNumbers[i] - sortedNumbers[i - 1]
if difference < smallestDifference {
closestPairs = (sortedNumbers[i - 1], sortedNumbers[i])
}
}
return closestPairs
}
```
// XCTAssertTrue failed
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let range = maxValue - minValue
return numbers.map { (number) -> Double in
(number - minValue) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let range = maxValue - minValue
return numbers.map { (number) -> Double in
(number - minValue) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
return (number - min) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
return (number - min) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let range = maxValue - minValue
return numbers.map { (number) -> Double in
(number - minValue) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let range = maxValue - minValue
return numbers.map { (number) -> Double in
(number - minValue) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let range = maxValue - minValue
return numbers.map { (number) -> Double in
(number - minValue) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let range = maxValue - minValue
return numbers.map { (number) -> Double in
(number - minValue) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let range = maxValue - minValue
return numbers.map { (number) -> Double in
(number - minValue) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minValue = numbers.min()!
let maxValue = numbers.max()!
let range = maxValue - minValue
return numbers.map { (number) -> Double in
(number - minValue) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { (number) -> Double in
(number - min) / range
}
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func largestDivisor(n: Int) -> Int {
for i in (1...n).reversed() where n % i == 0 {
return i
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
for i in (1...n).reversed() where n % i == 0 {
return i
}
return 1
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor < n {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor < n {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var i = n - 1
while i > 0 {
if n % i == 0 {
return i
}
i -= 1
}
return 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var i = n - 1
while i > 0 {
if n % i == 0 {
return i
}
i -= 1
}
return 0
}
```
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor < n {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor < n {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return n
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor < n {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor < n {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor < n {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor < n {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return n
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor <= n / 2 {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor <= n / 2 {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var i = n - 1
while i > 0 {
if n % i == 0 {
return i
}
i -= 1
}
return 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var i = n - 1
while i > 0 {
if n % i == 0 {
return i
}
i -= 1
}
return 0
}
```
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor * divisor <= n {
divisor += 1
}
return divisor - 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor * divisor <= n {
divisor += 1
}
return divisor - 1
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor <= n / 2 {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
while divisor <= n / 2 {
if n % divisor == 0 {
return divisor
}
divisor += 1
}
return 1
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for num in numbers {
if !result.contains(num) {
result.append(num)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for num in numbers {
if !result.contains(num) {
result.append(num)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 0, to: result.count, by: 3) {
result[i] = result[i].sorted()
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 0, to: result.count, by: 3) {
result[i] = result[i].sorted()
}
return result
}
```
result[i] = result[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 3) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return l.sorted().reduce([Int]()) {
if !$0.contains($1) {
$0.append($1)
}
return $0
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return l.sorted().reduce([Int]()) {
if !$0.contains($1) {
$0.append($1)
}
return $0
}
}
```
$0.append($1) // cannot use mutating member on immutable value: '$0' is immutable
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return l.sorted().reduce([Int]()) {
$0.contains($1) ? $0 : $0 + [$1]
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return l.sorted().reduce([Int]()) {
$0.contains($1) ? $0 : $0 + [$1]
}
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l))
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return l.sorted().filter { (index, element) in
return index == 0 || l[index - 1] != element
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return l.sorted().filter { (index, element) in
return index == 0 || l[index - 1] != element
}
}
```
return l.sorted().filter { (index, element) in // contextual closure type '(Int) throws -> Bool' expects 1 argument, but 2 were used in closure body
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
```
if i.digits.contains(7) { // value of type 'Int' has no member 'digits'
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
```
if i.digits.contains(7) { // value of type 'Int' has no member 'digits'
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.toString().contains("7") {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.toString().contains("7") {
count += 1
}
}
}
return count
}
```
if i.toString().contains("7") { // value of type 'Int' has no member 'toString'
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
```
if i.digits.contains(7) { // value of type 'Int' has no member 'digits'
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.toString().contains("7") {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.toString().contains("7") {
count += 1
}
}
}
return count
}
```
if i.toString().contains("7") { // value of type 'Int' has no member 'toString'
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
```
if i.digits.contains(7) { // value of type 'Int' has no member 'digits'
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.digits.contains(7) {
count += 1
}
}
}
return count
}
```
if i.digits.contains(7) { // value of type 'Int' has no member 'digits'
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.toString().contains("7") {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if i.toString().contains("7") {
count += 1
}
}
}
return count
}
```
if i.toString().contains("7") { // value of type 'Int' has no member 'toString'
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if String(i).contains("7") {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if String(i).contains("7") {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if String(i).contains("7") {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
if String(i).contains("7") {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i].sorted()
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i].sorted()
}
return l
}
```
l[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i].sorted()
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i].sorted()
}
return l
}
```
l[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortEven(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 0, to: l.count, by: 2) {
result[i] = result[i].sorted()
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 0, to: l.count, by: 2) {
result[i] = result[i].sorted()
}
return result
}
```
result[i] = result[i].sorted() // value of type 'Int' has no member 'sorted'
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i].sorted()
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i].sorted()
}
return l
}
```
l[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortEven(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 2) {
lPrime[i] = l[i]
}
for i in stride(from: 1, to: l.count, by: 2) {
lPrime[i] = l[i]
lPrime.sort(by: <)
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 2) {
lPrime[i] = l[i]
}
for i in stride(from: 1, to: l.count, by: 2) {
lPrime[i] = l[i]
lPrime.sort(by: <)
}
return lPrime
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 2) {
lPrime[i] = l[i]
}
lPrime.sort()
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 2) {
lPrime[i] = l[i]
}
lPrime.sort()
return lPrime
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i].sorted()
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i].sorted()
}
return l
}
```
l[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortEven(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 2) {
lPrime[i] = l[i]
}
lPrime.sort(by: <)
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 2) {
lPrime[i] = l[i]
}
lPrime.sort(by: <)
return lPrime
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 0, to: l.count, by: 2) {
result[i] = l[i]
}
for i in stride(from: 1, to: l.count, by: 2) {
result[i] = l[i]
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 0, to: l.count, by: 2) {
result[i] = l[i]
}
for i in stride(from: 1, to: l.count, by: 2) {
result[i] = l[i]
}
return result
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 2) {
lPrime[i] = l[i]
}
for i in stride(from: 1, to: l.count, by: 2) {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var lPrime = l
for i in stride(from: 0, to: l.count, by: 2) {
lPrime[i] = l[i]
}
for i in stride(from: 1, to: l.count, by: 2) {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = 0
var i = 0
while i < n {
fib = fibonacci(i)
if isPrime(fib) {
return fib
}
i += 1
}
return -1
}
func fibonacci(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 1
} else {
return fibonacci(n-1) + fibonacci(n-2)
}
}
func isPrime(n: Int) -> Bool {
if n == 1 {
return false
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib = 0
var i = 0
while i < n {
fib = fibonacci(i)
if isPrime(fib) {
return fib
}
i += 1
}
return -1
}
func fibonacci(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 1
} else {
return fibonacci(n-1) + fibonacci(n-2)
}
}
func isPrime(n: Int) -> Bool {
if n == 1 {
return false
}
var i = 2
while i * i <= n {
if n % i == 0 {
return false
}
i += 1
}
return true
}
```
fib = fibonacci(i) // missing argument label 'n:' in call
if isPrime(fib) { // missing argument label 'n:' in call
return fibonacci(n-1) + fibonacci(n-2) // missing argument label 'n:' in call
return fibonacci(n-1) + fibonacci(n-2) // missing argument label 'n:' in call
func primeFib(n: Int) -> Int {
var a = 0
var b = 1
var c = 0
for _ in 1...n {
c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0
var b = 1
var c = 0
for _ in 1...n {
c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 0
var b = 1
var result = 0
for _ in 1...n {
result = a + b
if isPrime(result) {
return result
}
a = b
b = result
}
return result
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0
var b = 1
var result = 0
for _ in 1...n {
result = a + b
if isPrime(result) {
return result
}
a = b
b = result
}
return result
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 0
var b = 1
var c = 0
for _ in 1...n {
c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0
var b = 1
var c = 0
for _ in 1...n {
c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let temp = a
a = b
b = temp + b
if isPrime(b) {
return b
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let temp = a
a = b
b = temp + b
if isPrime(b) {
return b
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 1...n {
let c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 1...n {
let c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 1...n {
let c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 1...n {
let c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var a = 0
var b = 1
var c = 0
for _ in 1...n {
c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var a = 0
var b = 1
var c = 0
for _ in 1...n {
c = a + b
a = b
b = c
if isPrime(c) {
return c
}
}
return -1
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count - 1 {
for j in i + 1..<l.count {
for k in j + 1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count - 1 {
for j in i + 1..<l.count {
for k in j + 1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count-2 {
for j in i+1..<l.count-1 {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count - 1 {
for j in i + 1..<l.count {
for k in j + 1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count - 1 {
for j in i + 1..<l.count {
for k in j + 1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar < rightToLeftCar {
leftToRightCars.append(leftToRightCar + 1)
collisions += 1
} else if leftToRightCar > rightToLeftCar {
rightToLeftCars.append(rightToLeftCar + 1)
collisions += 1
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar < rightToLeftCar {
leftToRightCars.append(leftToRightCar + 1)
collisions += 1
} else if leftToRightCar > rightToLeftCar {
rightToLeftCars.append(rightToLeftCar + 1)
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar < rightToLeftCar {
leftToRightCars.append(leftToRightCar + 1)
} else if leftToRightCar > rightToLeftCar {
rightToLeftCars.append(rightToLeftCar + 1)
} else {
collisions += 1
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar < rightToLeftCar {
leftToRightCars.append(leftToRightCar + 1)
} else if leftToRightCar > rightToLeftCar {
rightToLeftCars.append(rightToLeftCar + 1)
} else {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars[0] < rightToLeftCars[n - 1] {
for i in 0..<n {
if leftToRightCars[i] == rightToLeftCars[i] {
collisions += 1
}
}
for i in 0..<n {
leftToRightCars[i] += 1
rightToLeftCars[i] -= 1
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars[0] < rightToLeftCars[n - 1] {
for i in 0..<n {
if leftToRightCars[i] == rightToLeftCars[i] {
collisions += 1
}
}
for i in 0..<n {
leftToRightCars[i] += 1
rightToLeftCars[i] -= 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar < rightToLeftCar {
leftToRightCars.append(leftToRightCar + 1)
} else if leftToRightCar > rightToLeftCar {
rightToLeftCars.append(rightToLeftCar + 1)
} else {
collisions += 1
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar < rightToLeftCar {
leftToRightCars.append(leftToRightCar + 1)
} else if leftToRightCar > rightToLeftCar {
rightToLeftCars.append(rightToLeftCar + 1)
} else {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar < rightToLeftCar {
leftToRightCars.append(leftToRightCar + 1)
} else if leftToRightCar > rightToLeftCar {
rightToLeftCars.append(rightToLeftCar + 1)
} else {
collisions += 1
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar < rightToLeftCar {
leftToRightCars.append(leftToRightCar + 1)
} else if leftToRightCar > rightToLeftCar {
rightToLeftCars.append(rightToLeftCar + 1)
} else {
collisions += 1
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
```
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
```
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
```
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
```
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Int](repeating: 0, count: n)
var rightToLeftCars = [Int](repeating: 0, count: n)
var collisions = 0
for i in 0..<n {
leftToRightCars[i] = i
rightToLeftCars[i] = n - i - 1
}
while leftToRightCars.count > 0 && rightToLeftCars.count > 0 {
let leftToRightCar = leftToRightCars.removeFirst()
let rightToLeftCar = rightToLeftCars.removeFirst()
if leftToRightCar == rightToLeftCar {
collisions += 1
} else {
leftToRightCars.append(leftToRightCar)
rightToLeftCars.append(rightToLeftCar)
}
}
return collisions
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in (i + 1)..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
```
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
let temp = a
a = b
b = c
c = d
d = temp + b + c + d
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
let temp = a
a = b
b = c
c = d
d = temp + b + c + d
}
return d
}
```
for i in 0..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0, b = 0, c = 2, d = 0
for _ in 0..<n {
let temp = a
a = b
b = c
c = d
d = temp + b + c + d
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0, b = 0, c = 2, d = 0
for _ in 0..<n {
let temp = a
a = b
b = c
c = d
d = temp + b + c + d
}
return d
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
d = a + b + c
a = b
b = c
c = d
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
d = a + b + c
a = b
b = c
c = d
}
return d
}
```
for i in 0..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
d = a + b + c
a = b
b = c
c = d
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
d = a + b + c
a = b
b = c
c = d
}
return d
}
```
for i in 0..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
a = b
b = c
c = d
d = a + b + c
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
a = b
b = c
c = d
d = a + b + c
}
return d
}
```
for i in 0..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0, b = 0, c = 2, d = 0
for _ in 0..<n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0, b = 0, c = 2, d = 0
for _ in 0..<n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
a = b
b = c
c = d
d = a + b + c + d
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
a = b
b = c
c = d
d = a + b + c + d
}
return d
}
```
for i in 0..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0, b = 0, c = 2, d = 0
for _ in 0..<n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0, b = 0, c = 2, d = 0
for _ in 0..<n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
a = b
b = c
c = d
d = a + b + c
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
for i in 0..<n {
a = b
b = c
c = d
d = a + b + c
}
return d
}
```
for i in 0..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0, b = 0, c = 2, d = 0
for _ in 0..<n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0, b = 0, c = 2, d = 0
for _ in 0..<n {
(a, b, c, d) = (b, c, d, a + b + c + d)
}
return d
}
```
// XCTAssertTrue failed
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = sorted.count / 2
if sorted.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = sorted.count / 2
if sorted.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = sorted.count / 2
if sorted.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = sorted.count / 2
if sorted.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = sorted.count / 2
if sorted.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = sorted.count / 2
if sorted.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[mid] + sorted[mid - 1]) / 2
} else {
return Double(sorted[mid])
}
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func modp(n: Int, p: Int) -> Int {
return (2^n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2^n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2^n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2^n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2^n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2^n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (2 ^ n) % p
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
if !vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
if !vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
if !vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
if !vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
if !vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
if !vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
if !vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
if !vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = "aeiou"
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = "aeiou"
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
var result = ""
for char in text {
if !["a", "e", "i", "o", "u"].contains(char) {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
var result = ""
for char in text {
if !["a", "e", "i", "o", "u"].contains(char) {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num > t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num > t {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i > t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i > t {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i > t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i > t {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num > t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num > t {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i > t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i > t {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num > t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num > t {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num > t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num > t {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let set0 = Set(s0)
let set1 = Set(s1)
return set0 == set1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let set0 = Set(s0)
let set1 = Set(s1)
return set0 == set1
}
```
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
var charSet = Set<Character>()
for char in s0 {
charSet.insert(char)
}
for char in s1 {
if !charSet.contains(char) {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
```
func fib(n: Int) -> Int {
if n == 1 || n == 2 {
return 1
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n == 1 || n == 2 {
return 1
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n == 1 || n == 2 {
return 1
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n == 1 || n == 2 {
return 1
}
return fib(n: n-1) + fib(n: n-2)
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "<" {
openingBrackets += 1
} else if char == ">" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i-1] {
isIncreasing = false
}
if l[i] > l[i-1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i-1] {
isIncreasing = false
}
if l[i] > l[i-1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i - 1] + 1 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i - 1] + 1 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
var isIncreasing = true
var isDecreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
isIncreasing = false
}
if l[i] > l[i - 1] {
isDecreasing = false
}
}
return isIncreasing || isDecreasing
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
return l1.intersection(l2).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
return l1.intersection(l2).sorted()
}
```
return l1.intersection(l2).sorted() // value of type '[Int]' has no member 'intersection'
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).union(Set(l2))
return Array(uniqueElements).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).union(Set(l2))
return Array(uniqueElements).sorted()
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let sortedL1 = l1.sorted()
let sortedL2 = l2.sorted()
var result = [Int]()
for i in 0..<sortedL1.count {
for j in 0..<sortedL2.count {
if sortedL1[i] == sortedL2[j] {
result.append(sortedL1[i])
break
}
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let sortedL1 = l1.sorted()
let sortedL2 = l2.sorted()
var result = [Int]()
for i in 0..<sortedL1.count {
for j in 0..<sortedL2.count {
if sortedL1[i] == sortedL2[j] {
result.append(sortedL1[i])
break
}
}
}
return result.sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let uniqueElements = Set(l1).intersection(Set(l2))
return Array(uniqueElements).sorted()
}
```
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
n = n / i
} else {
i += 1
}
}
return n
}
```
n = n / i // cannot assign to value: 'n' is a 'let' constant
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
if openingBrackets < 0 {
return false
}
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
if openingBrackets < 0 {
return false
}
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
if openingBrackets < 0 {
return false
}
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
if openingBrackets < 0 {
return false
}
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
if openingBrackets < 0 {
return false
}
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
if openingBrackets < 0 {
return false
}
}
}
return openingBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var openingBrackets = 0
for char in brackets {
if char == "(" {
openingBrackets += 1
} else if char == ")" {
openingBrackets -= 1
}
if openingBrackets < 0 {
return false
}
}
return openingBrackets == 0
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
var a = 0
var b = 0
var c = 1
for i in 2..<n {
a = b
b = c
c = a + b + c
}
return c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
var a = 0
var b = 0
var c = 1
for i in 2..<n {
a = b
b = c
c = a + b + c
}
return c
}
```
for i in 2..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
var a = 0
var b = 0
var c = 1
for i in 2...n {
a = b
b = c
c = a + b + c
}
return c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
var a = 0
var b = 0
var c = 1
for i in 2...n {
a = b
b = c
c = a + b + c
}
return c
}
```
for i in 2...n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
if n <= 2 {
return n
}
return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return n
}
return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
if n <= 2 {
return n
}
return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return n
}
return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
var a = 0
var b = 0
var c = 1
for i in 2...n {
a = b
b = c
c = a + b + c
}
return c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
}
var a = 0
var b = 0
var c = 1
for i in 2...n {
a = b
b = c
c = a + b + c
}
return c
}
```
for i in 2...n { // immutable value 'i' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for c in s {
if c == "a" || c == "e" || c == "i" || c == "o" || c == "u" || (c == "y" && s.index(of: c) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for c in s {
if c == "a" || c == "e" || c == "i" || c == "o" || c == "u" || (c == "y" && s.index(of: c) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if c == "a" || c == "e" || c == "i" || c == "o" || c == "u" || (c == "y" && s.index(of: c) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
var count = 0
for char in s {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) {
count += 1
}
}
return count
}
```
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" || (char == "y" && s.index(of: char) == s.endIndex - 1) { // binary operator '-' cannot be applied to operands of type 'String.Index' and 'Int'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = Array(digits.suffix(shift)) + Array(digits.prefix(shift))
return shiftedDigits.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = Array(digits.suffix(shift)) + Array(digits.prefix(shift))
return shiftedDigits.joined()
}
```
return shiftedDigits.joined() // no exact matches in call to instance method 'joined'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = digits.suffix(shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = digits.suffix(shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = digits.suffix(shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = digits.suffix(shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = digits.suffix(shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = digits.suffix(shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = digits.suffix(shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let shiftedDigits = digits.suffix(shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { $0 }
let numDigits = digits.count
let shiftedDigits = digits.suffix(numDigits - shift) + digits.prefix(shift)
return String(shiftedDigits)
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for char in s.uppercased() {
sum += Int(char.asciiValue ?? 0)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s.uppercased() {
sum += Int(char.asciiValue ?? 0)
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s.uppercased() {
sum += Int(char.asciiValue ?? 0)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s.uppercased() {
sum += Int(char.asciiValue ?? 0)
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
sum += Int(c.asciiValue ?? 0)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
sum += Int(c.asciiValue ?? 0)
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s where char.isUppercase {
sum += Int(char.asciiValue!)
}
return sum
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let apples = s.components(separatedBy: "apples").first ?? 0
let oranges = s.components(separatedBy: "oranges").first ?? 0
return n - (apples + oranges)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let apples = s.components(separatedBy: "apples").first ?? 0
let oranges = s.components(separatedBy: "oranges").first ?? 0
return n - (apples + oranges)
}
```
let apples = s.components(separatedBy: "apples").first ?? 0 // cannot convert value of type 'Int' to expected argument type 'String'
let oranges = s.components(separatedBy: "oranges").first ?? 0 // cannot convert value of type 'Int' to expected argument type 'String'
return n - (apples + oranges) // cannot convert value of type 'String' to expected argument type 'Int'
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: "and")
let apples = Int(fruits[0])!
let oranges = Int(fruits[1])!
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: "and")
let apples = Int(fruits[0])!
let oranges = Int(fruits[1])!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[1]) ?? 0
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[1]) ?? 0
return n - apples - oranges
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0])!
let oranges = Int(components[1])!
return n - apples - oranges
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[1]) ?? 0
return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: "and")
let apples = Int(components[0]) ?? 0
let oranges = Int(components[1]) ?? 0
return n - apples - oranges
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestIndex == nil || index < smallestIndex { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue {
return [smallestEvenValue, smallestEvenIndex!]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue {
return [smallestEvenValue, smallestEvenIndex!]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestIndex == nil || index < smallestIndex { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestIndex == nil || index < smallestIndex { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestIndex == nil || index < smallestIndex { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
var smallestIndex: Int?
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestIndex == nil || index < smallestIndex {
smallestIndex = index
}
}
if smallestEvenValue != nil {
return [smallestEvenValue!, smallestEvenIndex!]
} else if smallestIndex != nil {
return [arr[smallestIndex!], smallestIndex!]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestIndex == nil || index < smallestIndex { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue: Int?
var smallestEvenIndex: Int?
for (index, value) in arr.enumerated() where value % 2 == 0 {
if smallestEvenValue == nil || value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if let smallestEvenValue = smallestEvenValue, let smallestEvenIndex = smallestEvenIndex {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
```
if smallestEvenValue == nil || value < smallestEvenValue { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for value in lst {
let frequency = lst.filter { $0 == value }.count
if frequency > maxFrequency && frequency >= value {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for value in lst {
let frequency = lst.filter { $0 == value }.count
if frequency > maxFrequency && frequency >= value {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
if i > 0 && lst.filter({ $0 == i }).count >= i {
if lst.filter({ $0 == i }).count > maxFrequency {
maxFrequency = lst.filter({ $0 == i }).count
maxValue = i
}
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
if i > 0 && lst.filter({ $0 == i }).count >= i {
if lst.filter({ $0 == i }).count > maxFrequency {
maxFrequency = lst.filter({ $0 == i }).count
maxValue = i
}
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in 0..<lst.count {
let frequency = lst.filter { $0 == lst[i] }.count
if frequency >= lst[i] && frequency > maxFrequency {
maxFrequency = frequency
maxValue = lst[i]
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in 0..<lst.count {
let frequency = lst.filter { $0 == lst[i] }.count
if frequency >= lst[i] && frequency > maxFrequency {
maxFrequency = frequency
maxValue = lst[i]
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for value in lst {
let frequency = lst.filter { $0 == value }.count
if frequency > maxFrequency && frequency >= value {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for value in lst {
let frequency = lst.filter { $0 == value }.count
if frequency > maxFrequency && frequency >= value {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
if i > 0 && lst.filter({ $0 == i }).count >= i {
if lst.filter({ $0 == i }).count > maxFrequency {
maxFrequency = lst.filter({ $0 == i }).count
maxValue = i
}
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
if i > 0 && lst.filter({ $0 == i }).count >= i {
if lst.filter({ $0 == i }).count > maxFrequency {
maxFrequency = lst.filter({ $0 == i }).count
maxValue = i
}
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
let frequency = lst.filter { $0 == i }.count
if frequency > maxFrequency && frequency >= i {
maxFrequency = frequency
maxValue = i
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
let frequency = lst.filter { $0 == i }.count
if frequency > maxFrequency && frequency >= i {
maxFrequency = frequency
maxValue = i
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
let frequency = lst.filter { $0 == i }.count
if frequency > maxFrequency && frequency >= i {
maxFrequency = frequency
maxValue = i
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
let frequency = lst.filter { $0 == i }.count
if frequency > maxFrequency && frequency >= i {
maxFrequency = frequency
maxValue = i
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for value in lst {
let frequency = lst.filter { $0 == value }.count
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for value in lst {
let frequency = lst.filter { $0 == value }.count
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
let frequency = lst.filter { $0 == i }.count
if frequency > maxFrequency && frequency >= i {
maxFrequency = frequency
maxValue = i
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
let frequency = lst.filter { $0 == i }.count
if frequency > maxFrequency && frequency >= i {
maxFrequency = frequency
maxValue = i
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
if i > 0 && lst.filter({ $0 == i }).count >= i {
if lst.filter({ $0 == i }).count > maxFrequency {
maxFrequency = lst.filter({ $0 == i }).count
maxValue = i
}
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = 0
var maxValue = -1
for i in lst {
if i > 0 && lst.filter({ $0 == i }).count >= i {
if lst.filter({ $0 == i }).count > maxFrequency {
maxFrequency = lst.filter({ $0 == i }).count
maxValue = i
}
}
}
return maxValue
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
```
lst.remove(at: lst.firstIndex(of: min!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
lst.remove(at: lst.firstIndex(of: max!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil || max != nil {
if min != nil && max != nil {
if min! < max! {
result.append(min!)
min = lst.firstIndex(of: min!)
} else {
result.append(max!)
max = lst.firstIndex(of: max!)
}
} else if min != nil {
result.append(min!)
min = lst.firstIndex(of: min!)
} else {
result.append(max!)
max = lst.firstIndex(of: max!)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil || max != nil {
if min != nil && max != nil {
if min! < max! {
result.append(min!)
min = lst.firstIndex(of: min!)
} else {
result.append(max!)
max = lst.firstIndex(of: max!)
}
} else if min != nil {
result.append(min!)
min = lst.firstIndex(of: min!)
} else {
result.append(max!)
max = lst.firstIndex(of: max!)
}
}
return result
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
```
lst.remove(at: lst.firstIndex(of: min!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
lst.remove(at: lst.firstIndex(of: max!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil || max != nil {
if min != nil && max != nil {
if min! < max! {
result.append(min!)
min = lst.first(where: { $0 > min! })
} else {
result.append(max!)
max = lst.first(where: { $0 < max! })
}
} else if min != nil {
result.append(min!)
min = nil
} else {
result.append(max!)
max = nil
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil || max != nil {
if min != nil && max != nil {
if min! < max! {
result.append(min!)
min = lst.first(where: { $0 > min! })
} else {
result.append(max!)
max = lst.first(where: { $0 < max! })
}
} else if min != nil {
result.append(min!)
min = nil
} else {
result.append(max!)
max = nil
}
}
return result
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
```
lst.remove(at: lst.firstIndex(of: min!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
lst.remove(at: lst.firstIndex(of: max!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
```
lst.remove(at: lst.firstIndex(of: min!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
lst.remove(at: lst.firstIndex(of: max!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
```
lst.remove(at: lst.firstIndex(of: min!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
lst.remove(at: lst.firstIndex(of: max!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil || max != nil {
if min != nil && max != nil {
if min! < max! {
result.append(min!)
min = lst.first(where: { $0 > min! })
} else {
result.append(max!)
max = lst.first(where: { $0 < max! })
}
} else if min != nil {
result.append(min!)
min = nil
} else {
result.append(max!)
max = nil
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil || max != nil {
if min != nil && max != nil {
if min! < max! {
result.append(min!)
min = lst.first(where: { $0 > min! })
} else {
result.append(max!)
max = lst.first(where: { $0 < max! })
}
} else if min != nil {
result.append(min!)
min = nil
} else {
result.append(max!)
max = nil
}
}
return result
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil && max != nil {
result.append(min!)
result.append(max!)
lst.remove(at: lst.firstIndex(of: min!)!)
lst.remove(at: lst.firstIndex(of: max!)!)
min = lst.min()
max = lst.max()
}
result.append(contentsOf: lst)
return result
}
```
lst.remove(at: lst.firstIndex(of: min!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
lst.remove(at: lst.firstIndex(of: max!)!) // cannot use mutating member on immutable value: 'lst' is a 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil || max != nil {
if min != nil && max != nil {
if min! < max! {
result.append(min!)
min = lst.dropFirst().min()
} else {
result.append(max!)
max = lst.dropFirst().max()
}
} else if min != nil {
result.append(min!)
min = nil
} else {
result.append(max!)
max = nil
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var min = lst.min()
var max = lst.max()
while min != nil || max != nil {
if min != nil && max != nil {
if min! < max! {
result.append(min!)
min = lst.dropFirst().min()
} else {
result.append(max!)
max = lst.dropFirst().max()
}
} else if min != nil {
result.append(min!)
min = nil
} else {
result.append(max!)
max = nil
}
}
return result
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let s = (a + b + c) / 2
let area = sqrt(s * (s - a) * (s - b) * (s - c))
return area.rounded(toPlaces: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let s = (a + b + c) / 2
let area = sqrt(s * (s - a) * (s - b) * (s - c))
return area.rounded(toPlaces: 2)
}
```
let area = sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && b + c > a && a + c > b {
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && b + c > a && a + c > b {
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
} else {
return -1
}
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || b + c <= a || c + a <= b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || b + c <= a || c + a <= b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || b + c <= a || c + a <= b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b <= c || b + c <= a || c + a <= b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && b + c > a && a + c > b {
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && b + c > a && a + c > b {
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
} else {
return -1
}
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b < c || b + c < a || c + a < b {
return -1
}
let s = (a + b + c) / 2
return sqrt(s * (s - a) * (s - b) * (s - c))
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
if !isBalanced(q) {
return false
}
// Check if the sum of the elements is less than or equal to the maximum weight
let sum = q.reduce(0, +)
if sum > w {
return false
}
return true
}
func isBalanced(_ q: [Int]) -> Bool {
// Check if the array is a palindrome
if !isPalindrome(q) {
return false
}
// Check if the array is balanced
let mid = q.count / 2
for i in 0..<mid {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
func isPalindrome(_ q: [Int]) -> Bool {
// Check if the array is a palindrome
for i in 0..<q.count {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
if !isBalanced(q) {
return false
}
// Check if the sum of the elements is less than or equal to the maximum weight
let sum = q.reduce(0, +)
if sum > w {
return false
}
return true
}
func isBalanced(_ q: [Int]) -> Bool {
// Check if the array is a palindrome
if !isPalindrome(q) {
return false
}
// Check if the array is balanced
let mid = q.count / 2
for i in 0..<mid {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
func isPalindrome(_ q: [Int]) -> Bool {
// Check if the array is a palindrome
for i in 0..<q.count {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
```
func willItFly(q: [Int], w: Int) -> Bool {
guard q.count > 0 else { return false }
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
guard q.count > 0 else { return false }
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 0 {
return false
}
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var isBalanced = true
for i in 0..<q.count {
if q[i] != q[q.count - i - 1] {
isBalanced = false
break
}
}
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 0 {
return false
}
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var isBalanced = true
for i in 0..<q.count {
if q[i] != q[q.count - i - 1] {
isBalanced = false
break
}
}
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 0 {
return false
}
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var left = 0
var right = q.count - 1
while left < right {
if q[left] != q[right] {
return false
}
left += 1
right -= 1
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 0 {
return false
}
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var left = 0
var right = q.count - 1
while left < right {
if q[left] != q[right] {
return false
}
left += 1
right -= 1
}
return true
}
```
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
if !isBalanced(q) {
return false
}
// Check if the sum of the elements is less than or equal to the maximum weight
let sum = q.reduce(0, +)
if sum > w {
return false
}
return true
}
func isBalanced(_ q: [Int]) -> Bool {
// Check if the array is a palindrome
if !isPalindrome(q) {
return false
}
// Check if the array is balanced
let mid = q.count / 2
for i in 0..<mid {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
func isPalindrome(_ q: [Int]) -> Bool {
// Check if the array is a palindrome
for i in 0..<q.count {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
// Check if the array is balanced
if !isBalanced(q) {
return false
}
// Check if the sum of the elements is less than or equal to the maximum weight
let sum = q.reduce(0, +)
if sum > w {
return false
}
return true
}
func isBalanced(_ q: [Int]) -> Bool {
// Check if the array is a palindrome
if !isPalindrome(q) {
return false
}
// Check if the array is balanced
let mid = q.count / 2
for i in 0..<mid {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
func isPalindrome(_ q: [Int]) -> Bool {
// Check if the array is a palindrome
for i in 0..<q.count {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let isBalanced = q.isPalindrome
let sum = q.reduce(0, +)
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let isBalanced = q.isPalindrome
let sum = q.reduce(0, +)
return isBalanced && sum <= w
}
```
let isBalanced = q.isPalindrome // value of type '[Int]' has no member 'isPalindrome'
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindromic(q)
}
func isPalindromic(_ q: [Int]) -> Bool {
let reversed = q.reversed()
return q == reversed
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindromic(q)
}
func isPalindromic(_ q: [Int]) -> Bool {
let reversed = q.reversed()
return q == reversed
}
```
return q == reversed // cannot convert value of type 'ReversedCollection<[Int]>' to expected argument type '[Int]'
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
var previousIndex = arr.count - 1
while !palindrome && currentIndex < previousIndex {
if arr[currentIndex] == arr[previousIndex] {
currentIndex += 1
previousIndex -= 1
} else {
minChanges += 1
currentIndex += 1
previousIndex -= 1
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
var previousIndex = arr.count - 1
while !palindrome && currentIndex < previousIndex {
if arr[currentIndex] == arr[previousIndex] {
currentIndex += 1
previousIndex -= 1
} else {
minChanges += 1
currentIndex += 1
previousIndex -= 1
}
}
return minChanges
}
```
var palindrome = false // variable 'palindrome' was never mutated; consider changing to 'let' constant
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
var previousIndex = arr.count - 1
while !palindrome && currentIndex < previousIndex {
if arr[currentIndex] == arr[previousIndex] {
currentIndex += 1
previousIndex -= 1
} else {
minChanges += 1
currentIndex += 1
previousIndex -= 1
}
}
if currentIndex == previousIndex {
palindrome = true
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
var previousIndex = arr.count - 1
while !palindrome && currentIndex < previousIndex {
if arr[currentIndex] == arr[previousIndex] {
currentIndex += 1
previousIndex -= 1
} else {
minChanges += 1
currentIndex += 1
previousIndex -= 1
}
}
if currentIndex == previousIndex {
palindrome = true
}
return minChanges
}
```
func smallestChange(arr: [Int]) -> Int {
var minChanges = 0
var seen = Set<Int>()
for i in 0..<arr.count {
let num = arr[i]
if seen.contains(num) {
continue
}
seen.insert(num)
for j in i+1..<arr.count {
let otherNum = arr[j]
if num == otherNum {
continue
}
if seen.contains(otherNum) {
minChanges += 1
break
}
seen.insert(otherNum)
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var minChanges = 0
var seen = Set<Int>()
for i in 0..<arr.count {
let num = arr[i]
if seen.contains(num) {
continue
}
seen.insert(num)
for j in i+1..<arr.count {
let otherNum = arr[j]
if num == otherNum {
continue
}
if seen.contains(otherNum) {
minChanges += 1
break
}
seen.insert(otherNum)
}
}
return minChanges
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var minChanges = 0
var seen = Set<Int>()
for i in 0..<arr.count {
if seen.contains(arr[i]) {
minChanges += 1
} else {
seen.insert(arr[i])
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var minChanges = 0
var seen = Set<Int>()
for i in 0..<arr.count {
if seen.contains(arr[i]) {
minChanges += 1
} else {
seen.insert(arr[i])
}
}
return minChanges
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var minChanges = 0
var palindrome = false
while !palindrome {
minChanges += 1
for i in 0..<arr.count {
if arr[i] != arr[arr.count - i - 1] {
palindrome = true
break
}
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var minChanges = 0
var palindrome = false
while !palindrome {
minChanges += 1
for i in 0..<arr.count {
if arr[i] != arr[arr.count - i - 1] {
palindrome = true
break
}
}
}
return minChanges
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
while !palindrome && currentIndex < arr.count {
if arr[currentIndex] == arr[arr.count - currentIndex - 1] {
currentIndex += 1
} else {
minChanges += 1
currentIndex += 1
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
while !palindrome && currentIndex < arr.count {
if arr[currentIndex] == arr[arr.count - currentIndex - 1] {
currentIndex += 1
} else {
minChanges += 1
currentIndex += 1
}
}
return minChanges
}
```
var palindrome = false // variable 'palindrome' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
while !palindrome && currentIndex < arr.count {
let mirrorIndex = arr.count - currentIndex - 1
if arr[currentIndex] == arr[mirrorIndex] {
currentIndex += 1
} else {
minChanges += 1
currentIndex = mirrorIndex
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
while !palindrome && currentIndex < arr.count {
let mirrorIndex = arr.count - currentIndex - 1
if arr[currentIndex] == arr[mirrorIndex] {
currentIndex += 1
} else {
minChanges += 1
currentIndex = mirrorIndex
}
}
return minChanges
}
```
var palindrome = false // variable 'palindrome' was never mutated; consider changing to 'let' constant
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
while !palindrome && currentIndex < arr.count {
if arr[currentIndex] == arr[arr.count - currentIndex - 1] {
currentIndex += 1
} else {
minChanges += 1
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
while !palindrome && currentIndex < arr.count {
if arr[currentIndex] == arr[arr.count - currentIndex - 1] {
currentIndex += 1
} else {
minChanges += 1
}
}
return minChanges
}
```
var palindrome = false // variable 'palindrome' was never mutated; consider changing to 'let' constant
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
var nextIndex = 0
while !palindrome && currentIndex < arr.count {
nextIndex = (currentIndex + 1) % arr.count
if arr[currentIndex] == arr[nextIndex] {
currentIndex = nextIndex
} else {
minChanges += 1
currentIndex = nextIndex
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
var nextIndex = 0
while !palindrome && currentIndex < arr.count {
nextIndex = (currentIndex + 1) % arr.count
if arr[currentIndex] == arr[nextIndex] {
currentIndex = nextIndex
} else {
minChanges += 1
currentIndex = nextIndex
}
}
return minChanges
}
```
var palindrome = false // variable 'palindrome' was never mutated; consider changing to 'let' constant
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
var nextIndex = 0
while !palindrome && currentIndex < arr.count {
nextIndex = (currentIndex + 1) % arr.count
if arr[currentIndex] == arr[nextIndex] {
currentIndex = nextIndex
} else {
minChanges += 1
currentIndex = nextIndex
}
}
return minChanges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var palindrome = false
var minChanges = 0
var currentIndex = 0
var nextIndex = 0
while !palindrome && currentIndex < arr.count {
nextIndex = (currentIndex + 1) % arr.count
if arr[currentIndex] == arr[nextIndex] {
currentIndex = nextIndex
} else {
minChanges += 1
currentIndex = nextIndex
}
}
return minChanges
}
```
var palindrome = false // variable 'palindrome' was never mutated; consider changing to 'let' constant
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst2 < totalCharsLst1 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst2 < totalCharsLst1 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst2 < totalCharsLst1 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst2 < totalCharsLst1 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalCharsLst1 = lst1.reduce(0) { $0 + $1.count }
let totalCharsLst2 = lst2.reduce(0) { $0 + $1.count }
if totalCharsLst1 < totalCharsLst2 {
return lst1
} else if totalCharsLst1 > totalCharsLst2 {
return lst2
} else {
return lst1
}
}
```
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
return primeFactors.count == 3 && primeFactors.reduce(1, *) == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
return primeFactors.count == 3 && primeFactors.reduce(1, *) == a
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
if a == 1 {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
if a == 1 {
return true
} else {
return false
}
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
// Check if a is a multiple of 3
if a % 3 == 0 {
// Check if a is a multiple of 5
if a % 5 == 0 {
// Check if a is a multiple of 7
if a % 7 == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
// Check if a is a multiple of 3
if a % 3 == 0 {
// Check if a is a multiple of 5
if a % 5 == 0 {
// Check if a is a multiple of 7
if a % 7 == 0 {
return true
}
}
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var num = a
var primeFactors = [Int]()
while num > 1 {
for i in 2..<100 {
if num % i == 0 {
primeFactors.append(i)
num /= i
break
}
}
}
if primeFactors.count == 3 {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
var num = a
var primeFactors = [Int]()
while num > 1 {
for i in 2..<100 {
if num % i == 0 {
primeFactors.append(i)
num /= i
break
}
}
}
if primeFactors.count == 3 {
return true
} else {
return false
}
}
```
func isMultiplyPrime(a: Int) -> Bool {
var primeCount = 0
for i in 2..<sqrt(a) {
if a % i == 0 {
primeCount += 1
if primeCount > 2 {
return false
}
}
}
return primeCount == 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
var primeCount = 0
for i in 2..<sqrt(a) {
if a % i == 0 {
primeCount += 1
if primeCount > 2 {
return false
}
}
}
return primeCount == 2
}
```
for i in 2..<sqrt(a) { // global function 'sqrt' requires that 'Int' conform to 'FloatingPoint'
func isMultiplyPrime(a: Int) -> Bool {
var primeNumbers = [Int]()
for i in 2..<100 {
if a % i == 0 {
primeNumbers.append(i)
}
}
if primeNumbers.count == 3 {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
var primeNumbers = [Int]()
for i in 2..<100 {
if a % i == 0 {
primeNumbers.append(i)
}
}
if primeNumbers.count == 3 {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
return primeFactors.count == 3 && primeFactors[0] * primeFactors[1] * primeFactors[2] == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
return primeFactors.count == 3 && primeFactors[0] * primeFactors[1] * primeFactors[2] == a
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
return primeFactors.count == 3 && primeFactors[0] * primeFactors[1] * primeFactors[2] == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
return primeFactors.count == 3 && primeFactors[0] * primeFactors[1] * primeFactors[2] == a
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
return primeFactors.count == 3 && primeFactors[0] * primeFactors[1] * primeFactors[2] == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
var primeFactors = [Int]()
var i = 2
while i * i <= a {
if a % i == 0 {
primeFactors.append(i)
a /= i
} else {
i += 1
}
}
return primeFactors.count == 3 && primeFactors[0] * primeFactors[1] * primeFactors[2] == a
}
```
a /= i // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
// Check if a is a multiple of 3
if a % 3 == 0 {
// Check if a is a multiple of 5
if a % 5 == 0 {
// Check if a is a multiple of 7
if a % 7 == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
// Check if a is a multiple of 3
if a % 3 == 0 {
// Check if a is a multiple of 5
if a % 5 == 0 {
// Check if a is a multiple of 7
if a % 7 == 0 {
return true
}
}
}
return false
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n.power(Int(log2(Double(x))))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n.power(Int(log2(Double(x))))
}
```
return x == n.power(Int(log2(Double(x)))) // value of type 'Int' has no member 'power'
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log2(Double(x)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log2(Double(x)))
}
```
return x == n ** Int(log2(Double(x))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(x, n))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(x, n))
}
```
return x == n ** Int(log(x, n)) // no exact matches in call to global function 'log'
return x == n ** Int(log(x, n)) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n.power(Int(log(x, n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n.power(Int(log(x, n)))
}
```
return x == n.power(Int(log(x, n))) // no exact matches in call to global function 'log'
return x == n.power(Int(log(x, n))) // value of type 'Int' has no member 'power'
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(x, n))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(x, n))
}
```
return x == n ** Int(log(x, n)) // no exact matches in call to global function 'log'
return x == n ** Int(log(x, n)) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(x, n))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(x, n))
}
```
return x == n ** Int(log(x, n)) // no exact matches in call to global function 'log'
return x == n ** Int(log(x, n)) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func iscube(a: Int) -> Bool {
let cubeRoot = Int(pow(Double(a), 1/3.0))
return cubeRoot * cubeRoot * cubeRoot == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(pow(Double(a), 1/3.0))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
return a.cubeRoot() == Int(a.cubeRoot())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a.cubeRoot() == Int(a.cubeRoot())
}
```
return a.cubeRoot() == Int(a.cubeRoot()) // value of type 'Int' has no member 'cubeRoot'
return a.cubeRoot() == Int(a.cubeRoot()) // value of type 'Int' has no member 'cubeRoot'
func iscube(a: Int) -> Bool {
let cubeRoot = Int(pow(Double(a), 1.0/3.0))
return cubeRoot * cubeRoot * cubeRoot == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(pow(Double(a), 1.0/3.0))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
return a.cubeRoot() == Int(a.cubeRoot())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a.cubeRoot() == Int(a.cubeRoot())
}
```
return a.cubeRoot() == Int(a.cubeRoot()) // value of type 'Int' has no member 'cubeRoot'
return a.cubeRoot() == Int(a.cubeRoot()) // value of type 'Int' has no member 'cubeRoot'
func iscube(a: Int) -> Bool {
return a.cubeRoot() == Int(a.cubeRoot())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a.cubeRoot() == Int(a.cubeRoot())
}
```
return a.cubeRoot() == Int(a.cubeRoot()) // value of type 'Int' has no member 'cubeRoot'
return a.cubeRoot() == Int(a.cubeRoot()) // value of type 'Int' has no member 'cubeRoot'
func iscube(a: Int) -> Bool {
let root = Int(pow(Double(a), 1/3))
return root * root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let root = Int(pow(Double(a), 1/3))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let root = Int(pow(Double(a), 1/3))
return root * root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let root = Int(pow(Double(a), 1/3))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return a == root * root
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return a == root * root
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for c in num.uppercased() {
if c == "A" || c == "B" || c == "D" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for c in num.uppercased() {
if c == "A" || c == "B" || c == "D" {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
let digit = Int(String(char), radix: 16)
if digit != nil && isPrime(digit!) {
count += 1
}
}
return count
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
let digit = Int(String(char), radix: 16)
if digit != nil && isPrime(digit!) {
count += 1
}
}
return count
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func hexKey(num: String) -> Int {
var count = 0
for char in num {
let digit = Int(String(char), radix: 16)
if digit != nil && isPrime(digit!) {
count += 1
}
}
return count
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
let digit = Int(String(char), radix: 16)
if digit != nil && isPrime(digit!) {
count += 1
}
}
return count
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func decimalToBinary(decimal: Int) -> String {
var binary = ""
while decimal > 0 {
binary = (decimal % 2 == 0 ? "0" : "1") + binary
decimal /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
while decimal > 0 {
binary = (decimal % 2 == 0 ? "0" : "1") + binary
decimal /= 2
}
return "db" + binary + "db"
}
```
decimal /= 2 // left side of mutating operator isn't mutable: 'decimal' is a 'let' constant
func decimalToBinary(decimal: Int) -> String {
var binaryString = "db"
while decimal > 0 {
binaryString = String(decimal % 2) + binaryString
decimal /= 2
}
return binaryString + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = "db"
while decimal > 0 {
binaryString = String(decimal % 2) + binaryString
decimal /= 2
}
return binaryString + "db"
}
```
decimal /= 2 // left side of mutating operator isn't mutable: 'decimal' is a 'let' constant
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
if remainder % 2 == 0 {
binaryString = "0" + binaryString
} else {
binaryString = "1" + binaryString
}
remainder /= 2
}
return "db" + binaryString + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
if remainder % 2 == 0 {
binaryString = "0" + binaryString
} else {
binaryString = "1" + binaryString
}
remainder /= 2
}
return "db" + binaryString + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
while decimal > 0 {
binary = (decimal % 2 == 0 ? "0" : "1") + binary
decimal /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
while decimal > 0 {
binary = (decimal % 2 == 0 ? "0" : "1") + binary
decimal /= 2
}
return "db" + binary + "db"
}
```
decimal /= 2 // left side of mutating operator isn't mutable: 'decimal' is a 'let' constant
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
if remainder % 2 == 0 {
binaryString = "0" + binaryString
} else {
binaryString = "1" + binaryString
}
remainder /= 2
}
return "db" + binaryString + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
if remainder % 2 == 0 {
binaryString = "0" + binaryString
} else {
binaryString = "1" + binaryString
}
remainder /= 2
}
return "db" + binaryString + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binaryString = ""
var remainder = decimal
while remainder > 0 {
binaryString = String(remainder % 2) + binaryString
remainder /= 2
}
return "db" + binaryString + "db"
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[i..<i+3]
if substring.count == 3 && !substring.isDistinct {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[i..<i+3]
if substring.count == 3 && !substring.isDistinct {
return false
}
}
return true
}
```
let substring = s[i..<i+3] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
if substring.count == 3 && !substring.isDistinct { // value of type 'String' has no member 'isDistinct'
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if substring.count == 3 && substring.contains(where: { !substring.contains($0) }) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if substring.count == 3 && substring.contains(where: { !substring.contains($0) }) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] {
return false
}
}
return true
}
```
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i + 1] && s[i + 1] == s[i + 2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if substring.count == 3 && substring.contains(where: { !substring.contains($0) }) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count - 2 {
let substring = s[s.index(s.startIndex, offsetBy: i)..<s.index(s.startIndex, offsetBy: i + 3)]
if substring.count == 3 && substring.contains(where: { !substring.contains($0) }) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa >= 3.7 {
letterGrades.append("A")
} else if gpa >= 3.3 {
letterGrades.append("A-")
} else if gpa >= 3.0 {
letterGrades.append("B+")
} else if gpa >= 2.7 {
letterGrades.append("B")
} else if gpa >= 2.3 {
letterGrades.append("B-")
} else if gpa >= 2.0 {
letterGrades.append("C+")
} else if gpa >= 1.7 {
letterGrades.append("C")
} else if gpa >= 1.3 {
letterGrades.append("C-")
} else if gpa >= 1.0 {
letterGrades.append("D+")
} else if gpa >= 0.7 {
letterGrades.append("D")
} else {
letterGrades.append("D-")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa >= 3.7 {
letterGrades.append("A")
} else if gpa >= 3.3 {
letterGrades.append("A-")
} else if gpa >= 3.0 {
letterGrades.append("B+")
} else if gpa >= 2.7 {
letterGrades.append("B")
} else if gpa >= 2.3 {
letterGrades.append("B-")
} else if gpa >= 2.0 {
letterGrades.append("C+")
} else if gpa >= 1.7 {
letterGrades.append("C")
} else if gpa >= 1.3 {
letterGrades.append("C-")
} else if gpa >= 1.0 {
letterGrades.append("D+")
} else if gpa >= 0.7 {
letterGrades.append("D")
} else {
letterGrades.append("D-")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else {
letterGrades.append("D-")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else {
letterGrades.append("D-")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for gpa in grades {
if gpa >= 4.0 {
letterGrades.append("A+")
} else if gpa > 3.7 {
letterGrades.append("A")
} else if gpa > 3.3 {
letterGrades.append("A-")
} else if gpa > 3.0 {
letterGrades.append("B+")
} else if gpa > 2.7 {
letterGrades.append("B")
} else if gpa > 2.3 {
letterGrades.append("B-")
} else if gpa > 2.0 {
letterGrades.append("C+")
} else if gpa > 1.7 {
letterGrades.append("C")
} else if gpa > 1.3 {
letterGrades.append("C-")
} else if gpa > 1.0 {
letterGrades.append("D+")
} else if gpa > 0.7 {
letterGrades.append("D")
} else if gpa > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 {
return false
}
var i = 2
while i * i <= length {
if length % i == 0 {
return false
}
i += 1
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 {
return false
}
var i = 2
while i * i <= length {
if length % i == 0 {
return false
}
i += 1
}
return true
}
```
// XCTAssertTrue failed
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
var isPrime = true
for i in 2..<length {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime
}
```
// Fatal error: Range requires lowerBound <= upperBound
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
```
let num = i.toString() // value of type 'Int' has no member 'toString'
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
```
let num = i.toString() // value of type 'Int' has no member 'toString'
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
```
let num = i.toString() // value of type 'Int' has no member 'toString'
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i * 10^(n-1) + 1
if num % 10 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i * 10^(n-1) + 1
if num % 10 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.digits.first!
if num == 1 || num == n {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.digits.first!
if num == 1 || num == n {
count += 1
}
}
return count
}
```
let num = i.digits.first! // value of type 'Int' has no member 'digits'
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i * 10^(n-1) + 1
if num % 10 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i * 10^(n-1) + 1
if num % 10 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
```
let num = i.toString() // value of type 'Int' has no member 'toString'
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let number = String(i)
if number.first == "1" || number.last == "1" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let number = String(i)
if number.first == "1" || number.last == "1" {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i.toString()
if num.starts(with: "1") || num.ends(with: "1") {
count += 1
}
}
return count
}
```
let num = i.toString() // value of type 'Int' has no member 'toString'
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i * 10^(n - 1) + 1
if String(num).first == "1" || String(num).last == "1" {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
let num = i * 10^(n - 1) + 1
if String(num).first == "1" || String(num).last == "1" {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
var binary = String(N, radix: 2) // variable 'binary' was never mutated; consider changing to 'let' constant
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var result = ""
var n = N
while n > 0 {
result = String(n % 2) + result
n /= 2
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var result = ""
var n = N
while n > 0 {
result = String(n % 2) + result
n /= 2
}
return result
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
var binary = String(N, radix: 2) // variable 'binary' was never mutated; consider changing to 'let' constant
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
let binary = String(N, radix: 2)
let sum = binary.reduce(0) { $0 + Int(String($1))! }
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
let binary = String(N, radix: 2)
let sum = binary.reduce(0) { $0 + Int(String($1))! }
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
var binary = String(N, radix: 2) // variable 'binary' was never mutated; consider changing to 'let' constant
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
var binary = String(N, radix: 2) // variable 'binary' was never mutated; consider changing to 'let' constant
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
var binary = String(N, radix: 2) // variable 'binary' was never mutated; consider changing to 'let' constant
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
var binary = String(N, radix: 2) // variable 'binary' was never mutated; consider changing to 'let' constant
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
let binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
let binary = String(N, radix: 2)
var sum = 0
for digit in binary {
sum += Int(digit.wholeNumberValue!)
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var result = ""
var n = N
while n > 0 {
result = String(n % 2) + result
n /= 2
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var result = ""
var n = N
while n > 0 {
result = String(n % 2) + result
n /= 2
}
return result
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 {
sum += lst[i]
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 {
sum += lst[i]
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 {
sum += lst[i]
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 0 {
sum += lst[i]
}
return sum
}
```
// XCTAssertTrue failed
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
for i in 0..<words.count {
let word = words[i]
var newWord = ""
for char in word {
newWord.append(char)
}
newWord.sort(by: <)
words[i] = newWord
}
return words.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
for i in 0..<words.count {
let word = words[i]
var newWord = ""
for char in word {
newWord.append(char)
}
newWord.sort(by: <)
words[i] = newWord
}
return words.joined(separator: " ")
}
```
newWord.sort(by: <) // value of type 'String' has no member 'sort'
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
let orderedWord = String(word.sorted(by: { $0 < $1 }))
orderedWords.append(orderedWord)
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
let orderedWord = String(word.sorted(by: { $0 < $1 }))
orderedWords.append(orderedWord)
}
return orderedWords.joined(separator: " ")
}
```
var words = s.components(separatedBy: " ") // variable 'words' was never mutated; consider changing to 'let' constant
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWords.append(orderedWord)
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWords.append(orderedWord)
}
return orderedWords.joined(separator: " ")
}
```
var words = s.components(separatedBy: " ") // variable 'words' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func antiShuffle(s: String) -> String {
var orderedString = ""
var words = s.components(separatedBy: " ")
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWord.sort(by: <)
orderedString.append(orderedWord)
orderedString.append(" ")
}
return orderedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
var orderedString = ""
var words = s.components(separatedBy: " ")
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWord.sort(by: <)
orderedString.append(orderedWord)
orderedString.append(" ")
}
return orderedString
}
```
orderedWord.sort(by: <) // value of type 'String' has no member 'sort'
func antiShuffle(s: String) -> String {
var orderedString = ""
var words = s.components(separatedBy: " ")
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWord.sort(by: <)
orderedString.append(orderedWord)
orderedString.append(" ")
}
return orderedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
var orderedString = ""
var words = s.components(separatedBy: " ")
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWord.sort(by: <)
orderedString.append(orderedWord)
orderedString.append(" ")
}
return orderedString
}
```
orderedWord.sort(by: <) // value of type 'String' has no member 'sort'
func antiShuffle(s: String) -> String {
var orderedString = ""
var words = s.components(separatedBy: " ")
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWord.sort(by: { $0 < $1 })
orderedString.append(orderedWord)
orderedString.append(" ")
}
return orderedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
var orderedString = ""
var words = s.components(separatedBy: " ")
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWord.sort(by: { $0 < $1 })
orderedString.append(orderedWord)
orderedString.append(" ")
}
return orderedString
}
```
orderedWord.sort(by: { $0 < $1 }) // value of type 'String' has no member 'sort'
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = Array(word)
let sortedCharacters = characters.sorted(by: { $0.asciiValue! < $1.asciiValue! })
return String(sortedCharacters)
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = Array(word)
let sortedCharacters = characters.sorted(by: { $0.asciiValue! < $1.asciiValue! })
return String(sortedCharacters)
}
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
for i in 0..<words.count {
let word = words[i]
let sortedWord = String(word.sorted(by: { $0 < $1 }))
words[i] = sortedWord
}
return words.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
for i in 0..<words.count {
let word = words[i]
let sortedWord = String(word.sorted(by: { $0 < $1 }))
words[i] = sortedWord
}
return words.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWords.append(orderedWord)
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
var words = s.components(separatedBy: " ")
var orderedWords = [String]()
for word in words {
var orderedWord = ""
for char in word {
orderedWord.append(char)
}
orderedWords.append(orderedWord)
}
return orderedWords.joined(separator: " ")
}
```
var words = s.components(separatedBy: " ") // variable 'words' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = Array(word)
let sortedCharacters = characters.sorted { $0 < $1 }
return String(sortedCharacters)
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = Array(word)
let sortedCharacters = characters.sorted { $0 < $1 }
return String(sortedCharacters)
}
return orderedWords.joined(separator: " ")
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
// Iterate over the rows of the 2D array
for (rowIndex, row) in lst.enumerated() {
// Iterate over the columns of the current row
for (columnIndex, element) in row.enumerated() {
// Check if the current element is equal to x
if element == x {
// Add the coordinate to the result array
result.append((rowIndex, columnIndex))
}
}
}
// Sort the result array by rows in ascending order
result.sort { $0.0 < $1.0 }
// Sort the result array by columns in descending order
result.sort { $0.1 > $1.1 }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
// Iterate over the rows of the 2D array
for (rowIndex, row) in lst.enumerated() {
// Iterate over the columns of the current row
for (columnIndex, element) in row.enumerated() {
// Check if the current element is equal to x
if element == x {
// Add the coordinate to the result array
result.append((rowIndex, columnIndex))
}
}
}
// Sort the result array by rows in ascending order
result.sort { $0.0 < $1.0 }
// Sort the result array by columns in descending order
result.sort { $0.1 > $1.1 }
return result
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
// Iterate over the rows of the 2D array
for (rowIndex, row) in lst.enumerated() {
// Iterate over the columns of the current row
for (columnIndex, element) in row.enumerated() {
// Check if the current element is equal to x
if element == x {
// Add the coordinate to the result array
result.append((rowIndex, columnIndex))
}
}
}
// Sort the result array by rows in ascending order
result.sort { $0.0 < $1.0 }
// Sort the result array by columns in descending order
result.sort { $0.1 > $1.1 }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
// Iterate over the rows of the 2D array
for (rowIndex, row) in lst.enumerated() {
// Iterate over the columns of the current row
for (columnIndex, element) in row.enumerated() {
// Check if the current element is equal to x
if element == x {
// Add the coordinate to the result array
result.append((rowIndex, columnIndex))
}
}
}
// Sort the result array by rows in ascending order
result.sort { $0.0 < $1.0 }
// Sort the result array by columns in descending order
result.sort { $0.1 > $1.1 }
return result
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
// Iterate over the rows of the 2D array
for (rowIndex, row) in lst.enumerated() {
// Iterate over the columns of the current row
for (columnIndex, element) in row.enumerated() {
// Check if the current element is equal to x
if element == x {
// Add the coordinate to the result array
result.append((rowIndex, columnIndex))
}
}
}
// Sort the result array by rows in ascending order
result.sort { $0.0 < $1.0 }
// Sort the result array by columns in descending order
result.sort { $0.1 > $1.1 }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
// Iterate over the rows of the 2D array
for (rowIndex, row) in lst.enumerated() {
// Iterate over the columns of the current row
for (columnIndex, element) in row.enumerated() {
// Check if the current element is equal to x
if element == x {
// Add the coordinate to the result array
result.append((rowIndex, columnIndex))
}
}
}
// Sort the result array by rows in ascending order
result.sort { $0.0 < $1.0 }
// Sort the result array by columns in descending order
result.sort { $0.1 > $1.1 }
return result
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
// Sort the rows by the number of columns in ascending order
lst.sort { $0.count < $1.count }
// Iterate over the rows
for (rowIndex, row) in lst.enumerated() {
// Find the first index of x in the row
if let firstIndex = row.firstIndex(of: x) {
// Add the coordinate to the result
result.append((rowIndex, firstIndex))
}
}
// Sort the result by the rows in ascending order
result.sort { $0.0 < $1.0 }
// Sort the result by the columns in descending order
result.sort { $0.1 > $1.1 }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
// Sort the rows by the number of columns in ascending order
lst.sort { $0.count < $1.count }
// Iterate over the rows
for (rowIndex, row) in lst.enumerated() {
// Find the first index of x in the row
if let firstIndex = row.firstIndex(of: x) {
// Add the coordinate to the result
result.append((rowIndex, firstIndex))
}
}
// Sort the result by the rows in ascending order
result.sort { $0.0 < $1.0 }
// Sort the result by the columns in descending order
result.sort { $0.1 > $1.1 }
return result
}
```
lst.sort { $0.count < $1.count } // cannot use mutating member on immutable value: 'lst' is a 'let' constant
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (colIndex, col) in row.enumerated() {
if col == x {
result.append((rowIndex, colIndex))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (colIndex, col) in row.enumerated() {
if col == x {
result.append((rowIndex, colIndex))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowData) in lst.enumerated() {
for (col, val) in rowData.enumerated() where val == x {
result.append((row, col))
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: <)
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let shiftedChar = char.asciiValue! + 2 * 2
encryptedString.append(Character(UnicodeScalar(shiftedChar)!)
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let shiftedChar = char.asciiValue! + 2 * 2
encryptedString.append(Character(UnicodeScalar(shiftedChar)!)
}
return encryptedString
}
```
encryptedString.append(Character(UnicodeScalar(shiftedChar)!) // cannot force unwrap value of non-optional type 'UnicodeScalar' (aka 'Unicode.Scalar')
} // expected ')' in expression list
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let offset = Int(char.asciiValue! - 97)
let newOffset = (offset + 2) * 2
let newChar = Character(UnicodeScalar(newOffset + 97)!)
encryptedString.append(newChar)
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let offset = Int(char.asciiValue! - 97)
let newOffset = (offset + 2) * 2
let newChar = Character(UnicodeScalar(newOffset + 97)!)
encryptedString.append(newChar)
}
return encryptedString
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let offset = Int(char.asciiValue! - 97)
let newOffset = offset * 2
let newChar = Character(UnicodeScalar(newOffset + 97)!)
encryptedString.append(newChar)
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let offset = Int(char.asciiValue! - 97)
let newOffset = offset * 2
let newChar = Character(UnicodeScalar(newOffset + 97)!)
encryptedString.append(newChar)
}
return encryptedString
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let shiftedChar = char.shifted(by: 2 * 2)
encryptedString.append(shiftedChar)
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let shiftedChar = char.shifted(by: 2 * 2)
encryptedString.append(shiftedChar)
}
return encryptedString
}
```
let shiftedChar = char.shifted(by: 2 * 2) // value of type 'Character' has no member 'shifted'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2 * 2)
let encryptedString = s.map { rotatedAlphabet.index(of: $0) }
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2 * 2)
let encryptedString = s.map { rotatedAlphabet.index(of: $0) }
return encryptedString
}
```
let rotatedAlphabet = alphabet.rotated(by: 2 * 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
if char.isLetter {
let offset = 2 * char.isLetter ? 2 : 0
let newChar = Character(UnicodeScalar(char.unicodeScalars.first!.value + offset)!)
encryptedString.append(newChar)
} else {
encryptedString.append(char)
}
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
if char.isLetter {
let offset = 2 * char.isLetter ? 2 : 0
let newChar = Character(UnicodeScalar(char.unicodeScalars.first!.value + offset)!)
encryptedString.append(newChar)
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
let offset = 2 * char.isLetter ? 2 : 0 // type 'Int' cannot be used as a boolean; test for '!= 0' instead
let offset = 2 * char.isLetter ? 2 : 0 // cannot convert value of type 'Bool' to expected argument type 'Int'
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let index = String.Index(encodedOffset: 2 * (char.asciiValue - 97))
encryptedString.append(Character(UnicodeScalar(index)!))
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let index = String.Index(encodedOffset: 2 * (char.asciiValue - 97))
encryptedString.append(Character(UnicodeScalar(index)!))
}
return encryptedString
}
```
let index = String.Index(encodedOffset: 2 * (char.asciiValue - 97)) // cannot convert value of type 'UInt8?' to expected argument type 'Int'
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let index = String.Index(encodedOffset: 2 * Int(char.asciiValue! - 97))
let encryptedChar = String(char.asciiValue! + 2)
encryptedString += String(encryptedChar)
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let index = String.Index(encodedOffset: 2 * Int(char.asciiValue! - 97))
let encryptedChar = String(char.asciiValue! + 2)
encryptedString += String(encryptedChar)
}
return encryptedString
}
```
let index = String.Index(encodedOffset: 2 * Int(char.asciiValue! - 97)) // initialization of immutable value 'index' was never used; consider replacing with assignment to '_' or removing it
let index = String.Index(encodedOffset: 2 * Int(char.asciiValue! - 97)) // 'init(encodedOffset:)' is deprecated: encodedOffset has been deprecated as most common usage is incorrect. Use String.Index(utf16Offset:in:) to achieve the same behavior.
// XCTAssertTrue failed
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let shiftedChar = Character(UnicodeScalar(Int(char.unicodeScalarCode) + 2 * 2))
encryptedString.append(shiftedChar)
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let shiftedChar = Character(UnicodeScalar(Int(char.unicodeScalarCode) + 2 * 2))
encryptedString.append(shiftedChar)
}
return encryptedString
}
```
let shiftedChar = Character(UnicodeScalar(Int(char.unicodeScalarCode) + 2 * 2)) // value of optional type 'UnicodeScalar?' (aka 'Optional<Unicode.Scalar>') must be unwrapped to a value of type 'UnicodeScalar' (aka 'Unicode.Scalar')
let shiftedChar = Character(UnicodeScalar(Int(char.unicodeScalarCode) + 2 * 2)) // value of type 'Character' has no member 'unicodeScalarCode'
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let shiftedChar = Character(UnicodeScalar(Int(char.unicodeScalars.first!.value) + 2 * 2))
encryptedString.append(shiftedChar)
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
var encryptedString = ""
for char in s {
let shiftedChar = Character(UnicodeScalar(Int(char.unicodeScalars.first!.value) + 2 * 2))
encryptedString.append(shiftedChar)
}
return encryptedString
}
```
let shiftedChar = Character(UnicodeScalar(Int(char.unicodeScalars.first!.value) + 2 * 2)) // value of optional type 'UnicodeScalar?' (aka 'Optional<Unicode.Scalar>') must be unwrapped to a value of type 'UnicodeScalar' (aka 'Unicode.Scalar')
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
return sorted[1]
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
let secondSmallest = sorted[1]
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
return sorted[1]
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
var sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var count = 0
var sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
var sentences = S.components(separatedBy: ".", "?", "!") // extra arguments at positions #2, #3 in call
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
let sentences = S.components(separatedBy: ".", "?", "!") // extra arguments at positions #2, #3 in call
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
```
let sentences = S.components(separatedBy: ".", "?", "!") // extra arguments at positions #2, #3 in call
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
let sentences = S.components(separatedBy: ".", "?", "!") // extra arguments at positions #2, #3 in call
func isBored(S: String) -> Int {
var boredoms = 0
let words = S.components(separatedBy: ".", "?", "!")
for word in words {
if word.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var boredoms = 0
let words = S.components(separatedBy: ".", "?", "!")
for word in words {
if word.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
```
let words = S.components(separatedBy: ".", "?", "!") // extra arguments at positions #2, #3 in call
func isBored(S: String) -> Int {
var boredoms = 0
let words = S.components(separatedBy: ".", "?", "!")
for word in words {
if word.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var boredoms = 0
let words = S.components(separatedBy: ".", "?", "!")
for word in words {
if word.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
```
let words = S.components(separatedBy: ".", "?", "!") // extra arguments at positions #2, #3 in call
func isBored(S: String) -> Int {
var count = 0
for sentence in S.components(separatedBy: ".", "?", "!") {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var count = 0
for sentence in S.components(separatedBy: ".", "?", "!") {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
for sentence in S.components(separatedBy: ".", "?", "!") { // extra arguments at positions #2, #3 in call
func isBored(S: String) -> Int {
var count = 0
var sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var count = 0
var sentences = S.components(separatedBy: ".", "?", "!")
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
var sentences = S.components(separatedBy: ".", "?", "!") // extra arguments at positions #2, #3 in call
func isBored(S: String) -> Int {
var count = 0
var sentence = ""
for character in S {
if character == "." || character == "?" || character == "!" {
if sentence.hasPrefix("I") {
count += 1
}
sentence = ""
} else {
sentence += String(character)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var count = 0
var sentence = ""
for character in S {
if character == "." || character == "?" || character == "!" {
if sentence.hasPrefix("I") {
count += 1
}
sentence = ""
} else {
sentence += String(character)
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
var sentence = ""
for character in S {
if character == "." || character == "?" || character == "!" {
if sentence.hasPrefix("I") {
boredoms += 1
}
sentence = ""
} else {
sentence += String(character)
}
}
return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
var boredoms = 0
var sentence = ""
for character in S {
if character == "." || character == "?" || character == "!" {
if sentence.hasPrefix("I") {
boredoms += 1
}
sentence = ""
} else {
sentence += String(character)
}
}
return boredoms
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInt && y.isInt && z.isInt {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInt && y.isInt && z.isInt {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
```
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInt && y.isInt && z.isInt {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInt && y.isInt && z.isInt {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
```
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInt && y.isInt && z.isInt {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInt && y.isInt && z.isInt {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
```
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
if x.isInt && y.isInt && z.isInt { // value of type 'Double' has no member 'isInt'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercase))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercase))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
encodedMessage.append(String(char.lowercase)) // value of type 'Character' has no member 'lowercase'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercase))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercase))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
encodedMessage.append(String(char.lowercase)) // value of type 'Character' has no member 'lowercase'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercase))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercase))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
encodedMessage.append(String(char.lowercase)) // value of type 'Character' has no member 'lowercase'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercase))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercase))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
encodedMessage.append(String(char.lowercase)) // value of type 'Character' has no member 'lowercase'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isUppercase {
encodedMessage.append(String(char.lowercased()))
} else {
encodedMessage.append(String(char.uppercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isUppercase {
encodedMessage.append(String(char.lowercased()))
} else {
encodedMessage.append(String(char.uppercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isLowercase {
encodedMessage.append(String(char.uppercased()))
} else {
encodedMessage.append(String(char.lowercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isUppercase {
encodedMessage.append(String(char.lowercased()))
} else {
encodedMessage.append(String(char.uppercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isLetter {
if char.isUppercase {
encodedMessage.append(String(char.lowercased()))
} else {
encodedMessage.append(String(char.uppercased()))
}
} else {
encodedMessage.append(char)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) {
largestPrime = num
}
}
return largestPrime.digits.reduce(0, +)
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) {
largestPrime = num
}
}
return largestPrime.digits.reduce(0, +)
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
return largestPrime.digits.reduce(0, +) // value of type 'Int' has no member 'digits'
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
return largestPrime.map { $0.digits.reduce(0, +) } ?? 0
}
func isPrime(_ num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
return largestPrime.map { $0.digits.reduce(0, +) } ?? 0
}
func isPrime(_ num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
for num in lst {
if isPrime(num) {
largestPrime = num
break
}
}
return largestPrime.map { $0.digits.reduce(0, +) } ?? 0
}
func isPrime(_ num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
for num in lst {
if isPrime(num) {
largestPrime = num
break
}
}
return largestPrime.map { $0.digits.reduce(0, +) } ?? 0
}
func isPrime(_ num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
return largestPrime.map { $0.digits.reduce(0, +) } ?? 0
}
func isPrime(_ num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int($0) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
return largestPrime.map { $0.digits.reduce(0, +) } ?? 0
}
func isPrime(_ num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int($0) }
}
}
```
return description.compactMap { Int($0) } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) {
largestPrime = num
}
}
return largestPrime.digitsSum()
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) {
largestPrime = num
}
}
return largestPrime.digitsSum()
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
return largestPrime.map { $0.digits.reduce(0, +) } ?? 0
}
func isPrime(_ num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
return largestPrime.map { $0.digits.reduce(0, +) } ?? 0
}
func isPrime(_ num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
var sumOfDigits: Int = 0
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
if let largestPrime = largestPrime {
sumOfDigits = largestPrime.digits.reduce(0, +)
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
var sumOfDigits: Int = 0
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
if let largestPrime = largestPrime {
sumOfDigits = largestPrime.digits.reduce(0, +)
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
sumOfDigits = largestPrime.digits.reduce(0, +) // value of type 'Int' has no member 'digits'
func skjkasdkd(lst: [Int]) -> Int {
var largestPrimeValue = 0
for i in lst {
if isPrime(i) {
largestPrimeValue = i
}
}
return largestPrimeValue.digits.reduce(0, +)
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrimeValue = 0
for i in lst {
if isPrime(i) {
largestPrimeValue = i
}
}
return largestPrimeValue.digits.reduce(0, +)
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
var sumOfDigits: Int = 0
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
if let largestPrime = largestPrime {
sumOfDigits = largestPrime.digits.reduce(0, +)
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime: Int?
var sumOfDigits: Int = 0
for num in lst {
if isPrime(num) {
if largestPrime == nil || num > largestPrime! {
largestPrime = num
}
}
}
if let largestPrime = largestPrime {
sumOfDigits = largestPrime.digits.reduce(0, +)
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
extension Int {
var digits: [Int] {
return description.compactMap { Int(String($0)) }
}
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrimeValue = 0
var sumOfDigits = 0
for num in lst {
if isPrime(num) {
if num > largestPrimeValue {
largestPrimeValue = num
}
}
}
for digit in String(largestPrimeValue).map({ Int(String($0))! }) {
sumOfDigits += digit
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrimeValue = 0
var sumOfDigits = 0
for num in lst {
if isPrime(num) {
if num > largestPrimeValue {
largestPrimeValue = num
}
}
}
for digit in String(largestPrimeValue).map({ Int(String($0))! }) {
sumOfDigits += digit
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
guard n > 1 else { return false }
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
guard n > 1 else { return false }
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primeNumbers = [Int]()
for i in 2..<n where isPrime(i) {
primeNumbers.append(i)
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
guard n >= 2 else { return false }
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primeNumbers = [Int]()
for i in 2..<n where isPrime(i) {
primeNumbers.append(i)
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
guard n >= 2 else { return false }
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
guard n >= 2 else { return false }
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primeNumbers = [Int]()
for i in 2..<n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ n: Int) -> Bool {
guard n >= 2 else { return false }
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitsA = a % 10
let unitDigitsB = b % 10
return unitDigitsA * unitDigitsB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitsA = a % 10
let unitDigitsB = b % 10
return unitDigitsA * unitDigitsB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitsA = a % 10
let unitDigitsB = b % 10
return unitDigitsA * unitDigitsB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitsA = a % 10
let unitDigitsB = b % 10
return unitDigitsA * unitDigitsB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitsA = a % 10
let unitDigitsB = b % 10
return unitDigitsA * unitDigitsB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitsA = a % 10
let unitDigitsB = b % 10
return unitDigitsA * unitDigitsB
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() where i % 2 == 0 && c.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() where i % 2 == 0 && c.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() where i % 2 == 0 && c.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() where i % 2 == 0 && c.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() where i % 2 == 0 && char.isUppercase {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value)
let roundedNumber = round(number)
let integer = Int(roundedNumber)
return integer
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let roundedNumber = round(number)
let integer = Int(roundedNumber)
return integer
}
```
let roundedNumber = round(number) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let difference = abs(number - Double(rounded))
let nextInteger = rounded + 1
let nextDifference = abs(number - Double(nextInteger))
if difference > nextDifference {
return nextInteger
} else {
return rounded
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let difference = abs(number - Double(rounded))
let nextInteger = rounded + 1
let nextDifference = abs(number - Double(nextInteger))
if difference > nextDifference {
return nextInteger
} else {
return rounded
}
}
```
let rounded = Int(round(number)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let difference = abs(number - Double(rounded)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let nextDifference = abs(number - Double(nextInteger)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
if diff > 0.5 {
return rounded + (number > 0 ? 1 : -1)
} else {
return rounded
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
if diff > 0.5 {
return rounded + (number > 0 ? 1 : -1)
} else {
return rounded
}
}
```
let rounded = Int(round(number)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let diff = abs(number - Double(rounded)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return rounded + (number > 0 ? 1 : -1) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let roundedNumber = round(number)
let closestInteger = Int(roundedNumber)
return closestInteger
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let roundedNumber = round(number)
let closestInteger = Int(roundedNumber)
return closestInteger
}
```
let roundedNumber = round(number) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
let nextDiff = abs(number - Double(rounded + 1))
if diff > nextDiff {
return rounded + 1
} else {
return rounded
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
let nextDiff = abs(number - Double(rounded + 1))
if diff > nextDiff {
return rounded + 1
} else {
return rounded
}
}
```
let rounded = Int(round(number)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let diff = abs(number - Double(rounded)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let nextDiff = abs(number - Double(rounded + 1)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
if rounded == number {
return rounded
} else {
let diff1 = abs(rounded - number)
let diff2 = abs(rounded - (number - 1))
return diff1 < diff2 ? rounded : rounded - 1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
if rounded == number {
return rounded
} else {
let diff1 = abs(rounded - number)
let diff2 = abs(rounded - (number - 1))
return diff1 < diff2 ? rounded : rounded - 1
}
}
```
let rounded = Int(round(number)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let diff2 = abs(rounded - (number - 1)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
let nextDiff = abs(number - Double(rounded + 1))
if diff > nextDiff {
return rounded + 1
} else {
return rounded
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
let nextDiff = abs(number - Double(rounded + 1))
if diff > nextDiff {
return rounded + 1
} else {
return rounded
}
}
```
let rounded = Int(round(number)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let diff = abs(number - Double(rounded)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let nextDiff = abs(number - Double(rounded + 1)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
let nextDiff = abs(number - Double(rounded + 1))
if diff > nextDiff {
return rounded + 1
} else {
return rounded
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
let nextDiff = abs(number - Double(rounded + 1))
if diff > nextDiff {
return rounded + 1
} else {
return rounded
}
}
```
let rounded = Int(round(number)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let diff = abs(number - Double(rounded)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let nextDiff = abs(number - Double(rounded + 1)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
let nextDiff = abs(number - Double(rounded + 1))
if diff > nextDiff {
return rounded + 1
} else {
return rounded
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
let diff = abs(number - Double(rounded))
let nextDiff = abs(number - Double(rounded + 1))
if diff > nextDiff {
return rounded + 1
} else {
return rounded
}
}
```
let rounded = Int(round(number)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let diff = abs(number - Double(rounded)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
let nextDiff = abs(number - Double(rounded + 1)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
if number - Double(rounded) == 0.5 {
return rounded > 0 ? rounded + 1 : rounded - 1
}
return rounded
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value)
let rounded = Int(round(number))
if number - Double(rounded) == 0.5 {
return rounded > 0 ? rounded + 1 : rounded - 1
}
return rounded
}
```
let rounded = Int(round(number)) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
if number - Double(rounded) == 0.5 { // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
var currentLevel = n
while currentLevel > 0 {
pile.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 2 : currentLevel + 1
}
return pile
}
```
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ")
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.split(separator: ", ").map { String($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.split(separator: ", ").map { String($0) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ")
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ")
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: ", ")
return words
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, to: y, by: 2) {
return i
}
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, to: y, by: 2) {
return i
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, through: y, by: 2) {
return i
}
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, through: y, by: 2) {
return i
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, to: y, by: 2) {
return i
}
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, to: y, by: 2) {
return i
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, to: y, by: 2) {
return i
}
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, to: y, by: 2) {
return i
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, to: y, by: 2) {
return i
}
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, to: y, by: 2) {
return i
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, through: y, by: 2) {
return i
}
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
if x % 2 == 0 {
return x
}
for i in stride(from: x, through: y, by: 2) {
return i
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(avg))
return .success("\(roundedAvg).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(avg))
return .success("\(roundedAvg).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let roundedAvg = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(avg))
return .success("\(roundedAvg).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(avg))
return .success("\(roundedAvg).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let roundedAvg = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(avg))
return .success("\(roundedAvg).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(avg))
return .success("\(roundedAvg).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let roundedAvg = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = Int(round(avg)) // no exact matches in call to global function 'round'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = Int(round(avg))
return .success("\(rounded).binary")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = Int(round(avg)) // no exact matches in call to global function 'round'
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = x.filter { $0 % 2 == 0 }
let oddDigits = x.filter { $0 % 2 != 0 }
return oddDigits.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = x.filter { $0 % 2 == 0 }
let oddDigits = x.filter { $0 % 2 != 0 }
return oddDigits.sorted()
}
```
let evenDigits = x.filter { $0 % 2 == 0 } // initialization of immutable value 'evenDigits' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
if num % 2 != 0 {
result.append(num)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = x.filter { $0 % 2 == 0 }
let oddDigits = x.filter { $0 % 2 != 0 }
return oddDigits.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = x.filter { $0 % 2 == 0 }
let oddDigits = x.filter { $0 % 2 != 0 }
return oddDigits.sorted()
}
```
let evenDigits = x.filter { $0 % 2 == 0 } // initialization of immutable value 'evenDigits' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sorted.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sorted.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted()
let reversedArr = sortedArr.reversed()
let nameArr = reversedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return nameArr
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted()
let reversedArr = sortedArr.reversed()
let nameArr = reversedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return nameArr
}
```
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sortedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sortedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
return sorted.reversed().map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
return sorted.reversed().map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sortedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sortedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sorted.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sorted.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sortedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sortedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sorted.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sorted.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sortedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sortedArr.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sorted.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted().reversed()
return sorted.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
}
```
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 1, count: n)
for i in 1..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = (1...i).reduce(0, +)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 1, count: n)
for i in 1..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = (1...i).reduce(0, +)
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! * (i! + 1) / 2
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
result[i] = i! * (i! + 1) / 2 // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! + 1
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! + 1
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
result[i] = i! + 1 // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! + 1
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 0, count: n)
for i in 0..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = i! + 1
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
result[i] = i! + 1 // cannot force unwrap value of non-optional type 'Int'
func f(n: Int) -> [Int] {
var result = [Int](repeating: 1, count: n)
for i in 1..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = (1...i).reduce(0, +)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int](repeating: 1, count: n)
for i in 1..<n {
if i % 2 == 0 {
result[i] = i!
} else {
result[i] = (1...i).reduce(0, +)
}
}
return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
if isPalindrome(i) {
if isEven(i) {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
func isPalindrome(_ n: Int) -> Bool {
let str = String(n)
return str == String(str.reversed())
}
func isEven(_ n: Int) -> Bool {
return n % 2 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
if isPalindrome(i) {
if isEven(i) {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
func isPalindrome(_ n: Int) -> Bool {
let str = String(n)
return str == String(str.reversed())
}
func isEven(_ n: Int) -> Bool {
return n % 2 == 0
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var signedDigits = 0
var absNum = abs(num)
while absNum > 0 {
signedDigits += absNum % 10
absNum /= 10
}
if signedDigits > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var signedDigits = 0
var absNum = abs(num)
while absNum > 0 {
signedDigits += absNum % 10
absNum /= 10
}
if signedDigits > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
if num > 0 {
count += 1
} else if num < 0 {
count -= 1
}
}
return count
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
arr.sort()
// Check if the array is sorted in non-decreasing order
if arr == arr.sorted() {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
arr.sort()
// Check if the array is sorted in non-decreasing order
if arr == arr.sorted() {
return true
} else {
return false
}
}
```
arr.sort() // cannot use mutating member on immutable value: 'arr' is a 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
guard arr.count > 0 else { return true }
var sorted = arr.sorted()
var shifted = arr
while shifted != sorted {
shifted = shifted.dropLast().appending(shifted.last!)
sorted = sorted.sorted()
}
return shifted == sorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
guard arr.count > 0 else { return true }
var sorted = arr.sorted()
var shifted = arr
while shifted != sorted {
shifted = shifted.dropLast().appending(shifted.last!)
sorted = sorted.sorted()
}
return shifted == sorted
}
```
shifted = shifted.dropLast().appending(shifted.last!) // reference to member 'appending' cannot be resolved without a contextual type
func moveOneBall(arr: [Int]) -> Bool {
var sorted = arr.sorted()
var shifted = false
while !sorted.isEmpty {
if sorted.first == sorted.last {
sorted.removeLast()
} else {
sorted.removeFirst()
shifted = true
}
}
return shifted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
var sorted = arr.sorted()
var shifted = false
while !sorted.isEmpty {
if sorted.first == sorted.last {
sorted.removeLast()
} else {
sorted.removeFirst()
shifted = true
}
}
return shifted
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already sorted in non-decreasing order
if arr.sorted() == arr {
return true
}
// Perform right shift operations until the array is sorted in non-decreasing order
while !arr.sorted() {
arr.append(arr.removeFirst())
}
// Return true if the array is sorted in non-decreasing order, false otherwise
return arr.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already sorted in non-decreasing order
if arr.sorted() == arr {
return true
}
// Perform right shift operations until the array is sorted in non-decreasing order
while !arr.sorted() {
arr.append(arr.removeFirst())
}
// Return true if the array is sorted in non-decreasing order, false otherwise
return arr.sorted()
}
```
while !arr.sorted() { // cannot convert value of type '[Int]' to expected argument type 'Bool'
arr.append(arr.removeFirst()) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
arr.append(arr.removeFirst()) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
return arr.sorted() // cannot convert return expression of type '[Int]' to return type 'Bool'
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already sorted in non-decreasing order
if arr.sorted() == arr {
return true
}
// Perform right shift operations until the array is sorted in non-decreasing order
while !arr.sorted() {
arr.append(arr.removeFirst())
}
// Return true if the array is sorted in non-decreasing order
return arr.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already sorted in non-decreasing order
if arr.sorted() == arr {
return true
}
// Perform right shift operations until the array is sorted in non-decreasing order
while !arr.sorted() {
arr.append(arr.removeFirst())
}
// Return true if the array is sorted in non-decreasing order
return arr.sorted()
}
```
while !arr.sorted() { // cannot convert value of type '[Int]' to expected argument type 'Bool'
arr.append(arr.removeFirst()) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
arr.append(arr.removeFirst()) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
return arr.sorted() // cannot convert return expression of type '[Int]' to return type 'Bool'
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already sorted in non-decreasing order
if arr.sorted() == arr {
return true
}
// Perform right shift operations until the array is sorted in non-decreasing order
while arr.sorted() != arr {
arr.append(arr.removeFirst())
}
// Return true if the array is sorted in non-decreasing order
return arr.sorted() == arr
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already sorted in non-decreasing order
if arr.sorted() == arr {
return true
}
// Perform right shift operations until the array is sorted in non-decreasing order
while arr.sorted() != arr {
arr.append(arr.removeFirst())
}
// Return true if the array is sorted in non-decreasing order
return arr.sorted() == arr
}
```
arr.append(arr.removeFirst()) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
arr.append(arr.removeFirst()) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already sorted in non-decreasing order
if arr.sorted() == arr {
return true
}
// Check if it is possible to sort the array in non-decreasing order by performing right shift operations
var i = 0
while i < arr.count - 1 {
if arr[i] > arr[i + 1] {
return false
}
i += 1
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already sorted in non-decreasing order
if arr.sorted() == arr {
return true
}
// Check if it is possible to sort the array in non-decreasing order by performing right shift operations
var i = 0
while i < arr.count - 1 {
if arr[i] > arr[i + 1] {
return false
}
i += 1
}
return true
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
var sorted = arr.sorted()
var count = 0
while sorted != arr {
sorted = sorted.sorted()
count += 1
}
return count % 2 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
var sorted = arr.sorted()
var count = 0
while sorted != arr {
sorted = sorted.sorted()
count += 1
}
return count % 2 == 0
}
```
func moveOneBall(arr: [Int]) -> Bool {
var sorted = arr.sorted()
var count = 0
while sorted != arr {
sorted = sorted.sorted()
count += 1
}
return count % 2 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
var sorted = arr.sorted()
var count = 0
while sorted != arr {
sorted = sorted.sorted()
count += 1
}
return count % 2 == 0
}
```
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var sorted = arr.sorted()
while !sorted.isEmpty {
if sorted.first == arr.last {
sorted.removeFirst()
} else {
sorted.append(sorted.removeFirst())
}
}
return sorted == arr
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else { return true }
var sorted = arr.sorted()
while !sorted.isEmpty {
if sorted.first == arr.last {
sorted.removeFirst()
} else {
sorted.append(sorted.removeFirst())
}
}
return sorted == arr
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are even
if lst2.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if there is an even number in lst1 that is not in lst2
if lst1.contains(where: { $0 % 2 == 0 && !lst2.contains($0) }) {
return "YES"
}
// Check if there is an even number in lst2 that is not in lst1
if lst2.contains(where: { $0 % 2 == 0 && !lst1.contains($0) }) {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are even
if lst2.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if there is an even number in lst1 that is not in lst2
if lst1.contains(where: { $0 % 2 == 0 && !lst2.contains($0) }) {
return "YES"
}
// Check if there is an even number in lst2 that is not in lst1
if lst2.contains(where: { $0 % 2 == 0 && !lst1.contains($0) }) {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements of lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if lst2 has any odd elements
if lst2.contains(where: { $0 % 2 == 1 }) {
return "NO"
}
// Exchange elements between lst1 and lst2
for i in 0..<min(lst1.count, lst2.count) {
let temp = lst1[i]
lst1[i] = lst2[i]
lst2[i] = temp
}
// Check if all elements of lst1 are even after exchange
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements of lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if lst2 has any odd elements
if lst2.contains(where: { $0 % 2 == 1 }) {
return "NO"
}
// Exchange elements between lst1 and lst2
for i in 0..<min(lst1.count, lst2.count) {
let temp = lst1[i]
lst1[i] = lst2[i]
lst2[i] = temp
}
// Check if all elements of lst1 are even after exchange
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
return "NO"
}
```
lst1[i] = lst2[i] // cannot assign through subscript: 'lst1' is a 'let' constant
lst2[i] = temp // cannot assign through subscript: 'lst2' is a 'let' constant
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements of lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements of lst2 are even
if lst2.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if there is at least one element in lst1 that is even and one element in lst2 that is even
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 0 }) {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements of lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements of lst2 are even
if lst2.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if there is at least one element in lst1 that is even and one element in lst2 that is even
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 0 }) {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are odd
if lst2.allSatisfy({ $0 % 2 == 1 }) {
return "NO"
}
// Check if there is an element in lst1 that is even and an element in lst2 that is odd
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 1 }) {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are odd
if lst2.allSatisfy({ $0 % 2 == 1 }) {
return "NO"
}
// Check if there is an element in lst1 that is even and an element in lst2 that is odd
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 1 }) {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are odd
if lst2.allSatisfy({ $0 % 2 == 1 }) {
return "NO"
}
// Check if there is at least one element in lst1 that is even and one element in lst2 that is odd
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 1 }) {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are odd
if lst2.allSatisfy({ $0 % 2 == 1 }) {
return "NO"
}
// Check if there is at least one element in lst1 that is even and one element in lst2 that is odd
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 1 }) {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are odd
if lst2.allSatisfy({ $0 % 2 != 0 }) {
return "YES"
}
// Check if there is a common element between lst1 and lst2
if lst1.intersection(lst2).isEmpty {
return "NO"
}
// Check if the number of elements in lst1 is even
if lst1.count % 2 == 0 {
return "YES"
}
// Check if the number of elements in lst2 is odd
if lst2.count % 2 != 0 {
return "YES"
}
// Check if the sum of the elements in lst1 and lst2 is even
if (lst1.reduce(0, +) + lst2.reduce(0, +)) % 2 == 0 {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are odd
if lst2.allSatisfy({ $0 % 2 != 0 }) {
return "YES"
}
// Check if there is a common element between lst1 and lst2
if lst1.intersection(lst2).isEmpty {
return "NO"
}
// Check if the number of elements in lst1 is even
if lst1.count % 2 == 0 {
return "YES"
}
// Check if the number of elements in lst2 is odd
if lst2.count % 2 != 0 {
return "YES"
}
// Check if the sum of the elements in lst1 and lst2 is even
if (lst1.reduce(0, +) + lst2.reduce(0, +)) % 2 == 0 {
return "YES"
}
return "NO"
}
```
if lst1.intersection(lst2).isEmpty { // value of type '[Int]' has no member 'intersection'
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements of lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if lst2 contains any odd elements
if lst2.contains(where: { $0 % 2 != 0 }) {
return "NO"
}
// Exchange elements between lst1 and lst2
for i in 0..<min(lst1.count, lst2.count) {
let temp = lst1[i]
lst1[i] = lst2[i]
lst2[i] = temp
}
// Check if all elements of lst1 are even after exchange
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements of lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if lst2 contains any odd elements
if lst2.contains(where: { $0 % 2 != 0 }) {
return "NO"
}
// Exchange elements between lst1 and lst2
for i in 0..<min(lst1.count, lst2.count) {
let temp = lst1[i]
lst1[i] = lst2[i]
lst2[i] = temp
}
// Check if all elements of lst1 are even after exchange
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
return "NO"
}
```
lst1[i] = lst2[i] // cannot assign through subscript: 'lst1' is a 'let' constant
lst2[i] = temp // cannot assign through subscript: 'lst2' is a 'let' constant
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are odd
if lst2.allSatisfy({ $0 % 2 == 1 }) {
return "NO"
}
// Check if there is at least one element in lst1 that is even and one element in lst2 that is odd
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 1 }) {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are odd
if lst2.allSatisfy({ $0 % 2 == 1 }) {
return "NO"
}
// Check if there is at least one element in lst1 that is even and one element in lst2 that is odd
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 1 }) {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements of lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if lst2 has any odd elements
if lst2.contains(where: { $0 % 2 == 1 }) {
return "NO"
}
// Exchange elements between lst1 and lst2
var i = 0
while i < lst1.count && i < lst2.count {
let temp = lst1[i]
lst1[i] = lst2[i]
lst2[i] = temp
i += 1
}
// Check if all elements of lst1 are even after exchange
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
} else {
return "NO"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements of lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if lst2 has any odd elements
if lst2.contains(where: { $0 % 2 == 1 }) {
return "NO"
}
// Exchange elements between lst1 and lst2
var i = 0
while i < lst1.count && i < lst2.count {
let temp = lst1[i]
lst1[i] = lst2[i]
lst2[i] = temp
i += 1
}
// Check if all elements of lst1 are even after exchange
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
} else {
return "NO"
}
}
```
lst1[i] = lst2[i] // cannot assign through subscript: 'lst1' is a 'let' constant
lst2[i] = temp // cannot assign through subscript: 'lst2' is a 'let' constant
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are even
if lst2.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if there is a common even number in lst1 and lst2
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 0 }) {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
// Check if all elements in lst1 are even
if lst1.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if all elements in lst2 are even
if lst2.allSatisfy({ $0 % 2 == 0 }) {
return "YES"
}
// Check if there is a common even number in lst1 and lst2
if lst1.contains(where: { $0 % 2 == 0 }) && lst2.contains(where: { $0 % 2 == 0 }) {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var letterCounts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
letterCounts[letter, default: 0] += 1
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var letterCounts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
letterCounts[letter, default: 0] += 1
}
return letterCounts
}
```
letterCounts[letter, default: 0] += 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var letterCounts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var letterCounts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
```
if let count = letterCounts[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var letterCounts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var letterCounts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
```
if let count = letterCounts[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if letterCounts[letter] == nil {
letterCounts[letter] = 1
} else {
letterCounts[letter]! += 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if letterCounts[letter] == nil {
letterCounts[letter] = 1
} else {
letterCounts[letter]! += 1
}
}
return letterCounts
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts = [String : Int]()
for letter in letters {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts = [String : Int]()
for letter in letters {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var letterCounts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var letterCounts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = letterCounts[letter] {
letterCounts[letter] = count + 1
} else {
letterCounts[letter] = 1
}
}
return letterCounts
}
```
if let count = letterCounts[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if letterCounts[letter] == nil {
letterCounts[letter] = 1
} else {
letterCounts[letter]! += 1
}
}
return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var letterCounts: [String : Int] = [:]
for letter in letters {
if letterCounts[letter] == nil {
letterCounts[letter] = 1
} else {
letterCounts[letter]! += 1
}
}
return letterCounts
}
```
// XCTAssertTrue failed
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
```
return (result, result.isPalindrome) // value of type 'String' has no member 'isPalindrome'
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
```
return (result, result.isPalindrome) // value of type 'String' has no member 'isPalindrome'
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
```
return (result, result.isPalindrome) // value of type 'String' has no member 'isPalindrome'
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
```
return (result, result.isPalindrome) // value of type 'String' has no member 'isPalindrome'
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome)
}
```
return (result, result.isPalindrome) // value of type 'String' has no member 'isPalindrome'
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isOdd }
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isOdd }
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput."
}
}
```
let oddDigits = string.filter { $0.isOdd } // value of type 'String.Element' (aka 'Character') has no member 'isOdd'
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput." // cannot find '$string' in scope
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput." // cannot find '$oddDigits' in scope
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput." // cannot find '$string' in scope
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isOdd }
return "the number of odd elements \(oddDigits.count)n the str\(string.count)ng \(string.count) of the 4nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isOdd }
return "the number of odd elements \(oddDigits.count)n the str\(string.count)ng \(string.count) of the 4nput."
}
}
```
let oddDigits = string.filter { $0.isOdd } // value of type 'String.Element' (aka 'Character') has no member 'isOdd'
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isNumber && $0 % 2 != 0 }
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \(string.count) of the \(string.count)nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isNumber && $0 % 2 != 0 }
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \(string.count) of the \(string.count)nput."
}
}
```
let oddDigits = string.filter { $0.isNumber && $0 % 2 != 0 } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Int'
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \(string.count) of the \(string.count)nput." // cannot find '$oddDigits' in scope
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddCount = string.filter { $0.isNumber && $0 % 2 != 0 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddCount = string.filter { $0.isNumber && $0 % 2 != 0 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
let oddCount = string.filter { $0.isNumber && $0 % 2 != 0 }.count // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Int'
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isOdd }
return "the number of odd elements \(oddDigits.count)n the str\(string.count)ng \(string.count) of the 4nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isOdd }
return "the number of odd elements \(oddDigits.count)n the str\(string.count)ng \(string.count) of the 4nput."
}
}
```
let oddDigits = string.filter { $0.isOdd } // value of type 'String.Element' (aka 'Character') has no member 'isOdd'
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isOdd }
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isOdd }
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput."
}
}
```
let oddDigits = string.filter { $0.isOdd } // value of type 'String.Element' (aka 'Character') has no member 'isOdd'
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput." // cannot find '$string' in scope
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput." // cannot find '$oddDigits' in scope
return "the number of odd elements \($oddDigits.count)n the str\(string.count)ng \($string.count) of the \($string.count)nput." // cannot find '$string' in scope
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddCount = string.filter { $0.isNumber && $0.isOdd }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddCount = string.filter { $0.isNumber && $0.isOdd }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
let oddCount = string.filter { $0.isNumber && $0.isOdd }.count // trailing closure passed to parameter of type 'Predicate<String.Element>' (aka 'Predicate<Character>') that does not accept a closure
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isNumber && Int($0) % 2 != 0 }
return "the number of odd elements \(oddDigits.count)n the str\(string.count)ng \(string.count) of the \(string.count)nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isNumber && Int($0) % 2 != 0 }
return "the number of odd elements \(oddDigits.count)n the str\(string.count)ng \(string.count) of the \(string.count)nput."
}
}
```
let oddDigits = string.filter { $0.isNumber && Int($0) % 2 != 0 } // no exact matches in call to initializer
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isNumber && Int($0) % 2 == 1 }
return "the number of odd elements \(oddDigits.count)n the str\(string.count)ng \(string.count) of the \(string.count)nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddDigits = string.filter { $0.isNumber && Int($0) % 2 == 1 }
return "the number of odd elements \(oddDigits.count)n the str\(string.count)ng \(string.count) of the \(string.count)nput."
}
}
```
let oddDigits = string.filter { $0.isNumber && Int($0) % 2 == 1 } // no exact matches in call to initializer
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddCount = string.filter { $0.isNumber && $0 % 2 == 1 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { string in
let oddCount = string.filter { $0.isNumber && $0 % 2 == 1 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
let oddCount = string.filter { $0.isNumber && $0 % 2 == 1 }.count // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Int'
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for i in 0..<nums.count {
currentSum += nums[i]
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var currentCapacity = capacity
for well in row {
if well == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
}
}
return result
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
var result = arr
result.sort(by: { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
})
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
var result = arr
result.sort(by: { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
})
return result
}
```
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
var result = arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes != bOnes {
return aOnes < bOnes
} else {
return a < b
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
var result = arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes != bOnes {
return aOnes < bOnes
} else {
return a < b
}
}
return result
}
```
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
var result = arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes != bOnes {
return aOnes < bOnes
} else {
return a < b
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
var result = arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes != bOnes {
return aOnes < bOnes
} else {
return a < b
}
}
return result
}
```
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
var sortedArr = arr.sorted { (num1, num2) in
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count
let num2Ones = num2.binaryRepresentation.filter { $0 == "1" }.count
if num1Ones == num2Ones {
return num1 < num2
} else {
return num1Ones < num2Ones
}
}
return sortedArr
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
var sortedArr = arr.sorted { (num1, num2) in
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count
let num2Ones = num2.binaryRepresentation.filter { $0 == "1" }.count
if num1Ones == num2Ones {
return num1 < num2
} else {
return num1Ones < num2Ones
}
}
return sortedArr
}
```
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
var result = arr
result.sort(by: { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
})
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
var result = arr
result.sort(by: { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
})
return result
}
```
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
var result = arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
var result = arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
return result
}
```
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
let sortedArr = arr.sorted { (num1, num2) in
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count
let num2Ones = num2.binaryRepresentation.filter { $0 == "1" }.count
if num1Ones == num2Ones {
return num1 < num2
} else {
return num1Ones < num2Ones
}
}
return sortedArr
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
let sortedArr = arr.sorted { (num1, num2) in
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count
let num2Ones = num2.binaryRepresentation.filter { $0 == "1" }.count
if num1Ones == num2Ones {
return num1 < num2
} else {
return num1Ones < num2Ones
}
}
return sortedArr
}
```
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
var sortedArr = arr.sorted { (num1, num2) -> Bool in
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count
let num2Ones = num2.binaryRepresentation.filter { $0 == "1" }.count
if num1Ones != num2Ones {
return num1Ones < num2Ones
} else {
return num1 < num2
}
}
return sortedArr
}
extension Int {
var binaryRepresentation: String {
return String(self, radix: 2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
var sortedArr = arr.sorted { (num1, num2) -> Bool in
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count
let num2Ones = num2.binaryRepresentation.filter { $0 == "1" }.count
if num1Ones != num2Ones {
return num1Ones < num2Ones
} else {
return num1 < num2
}
}
return sortedArr
}
extension Int {
var binaryRepresentation: String {
return String(self, radix: 2)
}
}
```
var sortedArr = arr.sorted { (num1, num2) -> Bool in // variable 'sortedArr' was never mutated; consider changing to 'let' constant
func sortArray(arr: [Int]) -> [Int] {
let sortedArr = arr.sorted { (num1, num2) in
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count
let num2Ones = num2.binaryRepresentation.filter { $0 == "1" }.count
if num1Ones == num2Ones {
return num1 < num2
} else {
return num1Ones < num2Ones
}
}
return sortedArr
}
extension Int {
var binaryRepresentation: String {
return String(self, radix: 2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
let sortedArr = arr.sorted { (num1, num2) in
let num1Ones = num1.binaryRepresentation.filter { $0 == "1" }.count
let num2Ones = num2.binaryRepresentation.filter { $0 == "1" }.count
if num1Ones == num2Ones {
return num1 < num2
} else {
return num1Ones < num2Ones
}
}
return sortedArr
}
extension Int {
var binaryRepresentation: String {
return String(self, radix: 2)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
var result = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
return result
}
extension Int {
var binaryRepresentation: [Int] {
var result = [Int]()
var num = self
while num > 0 {
result.append(num % 2)
num /= 2
}
return result.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
var result = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
return result
}
extension Int {
var binaryRepresentation: [Int] {
var result = [Int]()
var num = self
while num > 0 {
result.append(num % 2)
num /= 2
}
return result.reversed()
}
}
```
var result = arr.sorted { (a, b) -> Bool in // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
```
if !char.isVowel { // value of type 'Character' has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
```
if !char.isVowel { // value of type 'Character' has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
```
if !char.isVowel { // value of type 'Character' has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonants = 0
for char in s {
if char.isLetter {
if char.isConsonant {
consonants += 1
}
currentWord.append(char)
} else {
if consonants == n {
words.append(currentWord)
}
currentWord = ""
consonants = 0
}
}
if consonants == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonants = 0
for char in s {
if char.isLetter {
if char.isConsonant {
consonants += 1
}
currentWord.append(char)
} else {
if consonants == n {
words.append(currentWord)
}
currentWord = ""
consonants = 0
}
}
if consonants == n {
words.append(currentWord)
}
return words
}
```
if char.isConsonant { // value of type 'Character' has no member 'isConsonant'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
if char.isConsonant {
consonantsCount += 1
}
currentWord.append(char)
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
if char.isConsonant {
consonantsCount += 1
}
currentWord.append(char)
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
```
if char.isConsonant { // value of type 'Character' has no member 'isConsonant'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
```
if !char.isVowel { // value of type 'Character' has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
```
if !char.isVowel { // value of type 'Character' has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
if char.isConsonant {
consonantsCount += 1
}
currentWord.append(char)
} else {
if consonantsCount == n {
words.append(currentWord)
currentWord = ""
consonantsCount = 0
}
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
if char.isConsonant {
consonantsCount += 1
}
currentWord.append(char)
} else {
if consonantsCount == n {
words.append(currentWord)
currentWord = ""
consonantsCount = 0
}
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
```
if char.isConsonant { // value of type 'Character' has no member 'isConsonant'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonantsCount = 0
for char in s {
if char.isLetter {
currentWord.append(char)
if !char.isVowel {
consonantsCount += 1
}
} else {
if consonantsCount == n {
words.append(currentWord)
}
currentWord = ""
consonantsCount = 0
}
}
if consonantsCount == n {
words.append(currentWord)
}
return words
}
```
if !char.isVowel { // value of type 'Character' has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonants = 0
for char in s {
if char.isLetter && !char.isWhitespace {
currentWord.append(char)
if !char.isVowel {
consonants += 1
}
} else if char.isWhitespace {
if consonants == n {
words.append(currentWord)
}
currentWord = ""
consonants = 0
}
}
if consonants == n {
words.append(currentWord)
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
var currentWord = ""
var consonants = 0
for char in s {
if char.isLetter && !char.isWhitespace {
currentWord.append(char)
if !char.isVowel {
consonants += 1
}
} else if char.isWhitespace {
if consonants == n {
words.append(currentWord)
}
currentWord = ""
consonants = 0
}
}
if consonants == n {
words.append(currentWord)
}
return words
}
```
if !char.isVowel { // value of type 'Character' has no member 'isVowel'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel: String?
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
} else if consonants.contains(char) {
if let closestVowel = closestVowel {
return closestVowel
}
}
}
return closestVowel ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel: String?
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
} else if consonants.contains(char) {
if let closestVowel = closestVowel {
return closestVowel
}
}
}
return closestVowel ?? ""
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String?'
} else if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
}
}
return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
}
}
return closestVowel
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
for i in 0..<word.count {
if vowels.contains(word[i]) {
closestVowel = word[i]
break
} else if consonants.contains(word[i]) {
if i < word.count - 1 && vowels.contains(word[i + 1]) {
closestVowel = word[i + 1]
break
}
}
}
return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
for i in 0..<word.count {
if vowels.contains(word[i]) {
closestVowel = word[i]
break
} else if consonants.contains(word[i]) {
if i < word.count - 1 && vowels.contains(word[i + 1]) {
closestVowel = word[i + 1]
break
}
}
}
return closestVowel
}
```
if vowels.contains(word[i]) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = word[i] // cannot assign value of type 'Character' to type 'String'
} else if consonants.contains(word[i]) { // cannot convert value of type 'Character' to expected argument type 'String'
if i < word.count - 1 && vowels.contains(word[i + 1]) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = word[i + 1] // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel: String?
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
}
}
return closestVowel ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel: String?
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
}
}
return closestVowel ?? ""
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String?'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
} else if consonants.contains(char) {
if i > 0 {
let previousChar = word[word.index(word.startIndex, offsetBy: i - 1)]
if vowels.contains(previousChar) {
closestVowel = previousChar
break
}
}
if i < word.count - 1 {
let nextChar = word[word.index(word.startIndex, offsetBy: i + 1)]
if vowels.contains(nextChar) {
closestVowel = nextChar
break
}
}
}
}
return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
} else if consonants.contains(char) {
if i > 0 {
let previousChar = word[word.index(word.startIndex, offsetBy: i - 1)]
if vowels.contains(previousChar) {
closestVowel = previousChar
break
}
}
if i < word.count - 1 {
let nextChar = word[word.index(word.startIndex, offsetBy: i + 1)]
if vowels.contains(nextChar) {
closestVowel = nextChar
break
}
}
}
}
return closestVowel
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
} else if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
if vowels.contains(previousChar) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = previousChar // cannot assign value of type 'Character' to type 'String'
if vowels.contains(nextChar) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = nextChar // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
var foundVowel = false
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
} else if consonants.contains(char) {
if i > 0 && vowels.contains(word[word.index(word.startIndex, offsetBy: i - 1)]) {
closestVowel = word[word.index(word.startIndex, offsetBy: i - 1)]
foundVowel = true
break
}
}
}
return foundVowel ? closestVowel : ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
var foundVowel = false
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
} else if consonants.contains(char) {
if i > 0 && vowels.contains(word[word.index(word.startIndex, offsetBy: i - 1)]) {
closestVowel = word[word.index(word.startIndex, offsetBy: i - 1)]
foundVowel = true
break
}
}
}
return foundVowel ? closestVowel : ""
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
} else if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
if i > 0 && vowels.contains(word[word.index(word.startIndex, offsetBy: i - 1)]) { // subscript 'subscript(_:)' requires that 'String.Index' conform to 'RangeExpression'
closestVowel = word[word.index(word.startIndex, offsetBy: i - 1)] // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
var foundVowel = false
for i in 0..<word.count {
if consonants.contains(word[word.index(word.startIndex, offsetBy: i)]) {
if foundVowel {
closestVowel = word[word.index(word.startIndex, offsetBy: i - 1)]
break
}
} else if vowels.contains(word[word.index(word.startIndex, offsetBy: i)]) {
foundVowel = true
}
}
return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
var foundVowel = false
for i in 0..<word.count {
if consonants.contains(word[word.index(word.startIndex, offsetBy: i)]) {
if foundVowel {
closestVowel = word[word.index(word.startIndex, offsetBy: i - 1)]
break
}
} else if vowels.contains(word[word.index(word.startIndex, offsetBy: i)]) {
foundVowel = true
}
}
return closestVowel
}
```
if consonants.contains(word[word.index(word.startIndex, offsetBy: i)]) { // subscript 'subscript(_:)' requires that 'String.Index' conform to 'RangeExpression'
closestVowel = word[word.index(word.startIndex, offsetBy: i - 1)] // cannot assign value of type 'Character' to type 'String'
} else if vowels.contains(word[word.index(word.startIndex, offsetBy: i)]) { // subscript 'subscript(_:)' requires that 'String.Index' conform to 'RangeExpression'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
var foundVowel = false
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
} else if consonants.contains(char) {
if i < word.count - 1 {
let nextChar = word[word.index(word.startIndex, offsetBy: i + 1)]
if vowels.contains(nextChar) {
closestVowel = nextChar
foundVowel = true
break
}
}
}
}
return foundVowel ? closestVowel : ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
var foundVowel = false
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
} else if consonants.contains(char) {
if i < word.count - 1 {
let nextChar = word[word.index(word.startIndex, offsetBy: i + 1)]
if vowels.contains(nextChar) {
closestVowel = nextChar
foundVowel = true
break
}
}
}
}
return foundVowel ? closestVowel : ""
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
} else if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
if vowels.contains(nextChar) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = nextChar // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel: String?
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
}
if consonants.contains(char) {
if let nextChar = word[word.index(word.startIndex, offsetBy: i + 1)], vowels.contains(nextChar) {
closestVowel = nextChar
break
}
}
}
return closestVowel ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel: String?
for i in 0..<word.count {
let char = word[word.index(word.startIndex, offsetBy: i)]
if vowels.contains(char) {
closestVowel = char
break
}
if consonants.contains(char) {
if let nextChar = word[word.index(word.startIndex, offsetBy: i + 1)], vowels.contains(nextChar) {
closestVowel = nextChar
break
}
}
}
return closestVowel ?? ""
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String?'
if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
if let nextChar = word[word.index(word.startIndex, offsetBy: i + 1)], vowels.contains(nextChar) { // initializer for conditional binding must have Optional type, not 'Character'
if let nextChar = word[word.index(word.startIndex, offsetBy: i + 1)], vowels.contains(nextChar) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = nextChar // cannot assign value of type 'Character' to type 'String?'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
for i in 0..<word.count {
if consonants.contains(word[word.index(word.startIndex, offsetBy: i)]) {
if i + 1 < word.count && vowels.contains(word[word.index(word.startIndex, offsetBy: i + 1)]) {
closestVowel = word[word.index(word.startIndex, offsetBy: i + 1)]
break
}
}
}
return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
var closestVowel = ""
for i in 0..<word.count {
if consonants.contains(word[word.index(word.startIndex, offsetBy: i)]) {
if i + 1 < word.count && vowels.contains(word[word.index(word.startIndex, offsetBy: i + 1)]) {
closestVowel = word[word.index(word.startIndex, offsetBy: i + 1)]
break
}
}
}
return closestVowel
}
```
if consonants.contains(word[word.index(word.startIndex, offsetBy: i)]) { // subscript 'subscript(_:)' requires that 'String.Index' conform to 'RangeExpression'
if i + 1 < word.count && vowels.contains(word[word.index(word.startIndex, offsetBy: i + 1)]) { // subscript 'subscript(_:)' requires that 'String.Index' conform to 'RangeExpression'
closestVowel = word[word.index(word.startIndex, offsetBy: i + 1)] // cannot assign value of type 'Character' to type 'String'
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0].characters + lst[1].characters {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0].characters + lst[1].characters {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
for char in lst[0].characters + lst[1].characters { // 'characters' is unavailable: Please use String directly
for char in lst[0].characters + lst[1].characters { // 'characters' is unavailable: Please use String directly
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
if stack.isEmpty {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
if stack.isEmpty {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] + lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] + lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] + lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] + lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] + lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] + lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
var stack = [Character]()
for char in lst[0] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
for char in lst[1] {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return "No"
}
stack.removeLast()
}
}
return stack.isEmpty ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap<Int>(sort: >)
for i in 0..<k {
maxHeap.insert(arr[i])
}
for i in k..<arr.count {
if maxHeap.peek()! < arr[i] {
maxHeap.remove()
maxHeap.insert(arr[i])
}
}
return maxHeap.toArray()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap<Int>(sort: >)
for i in 0..<k {
maxHeap.insert(arr[i])
}
for i in k..<arr.count {
if maxHeap.peek()! < arr[i] {
maxHeap.remove()
maxHeap.insert(arr[i])
}
}
return maxHeap.toArray()
}
```
var maxHeap = Heap<Int>(sort: >) // cannot find 'Heap' in scope
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap(arr) { $0 > $1 }
for i in 0..<k {
result[i] = maxHeap.pop()!
}
return result
}
struct Heap {
private var heap: [Int]
private let compare: (Int, Int) -> Bool
init(_ arr: [Int], _ compare: @escaping (Int, Int) -> Bool) {
self.heap = arr
self.compare = compare
buildHeap()
}
mutating func buildHeap() {
for i in stride(from: (heap.count - 1) / 2, through: 0, by: -1) {
shiftDown(i)
}
}
mutating func shiftDown(_ i: Int) {
var largest = i
let left = 2 * i + 1
let right = 2 * i + 2
if left < heap.count && compare(heap[left], heap[largest]) {
largest = left
}
if right < heap.count && compare(heap[right], heap[largest]) {
largest = right
}
if largest != i {
swap(&heap[i], &heap[largest])
shiftDown(largest)
}
}
mutating func pop() -> Int? {
guard !heap.isEmpty else { return nil }
swap(&heap[0], &heap[heap.count - 1])
let result = heap.popLast()
shiftDown(0)
return result
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap(arr) { $0 > $1 }
for i in 0..<k {
result[i] = maxHeap.pop()!
}
return result
}
struct Heap {
private var heap: [Int]
private let compare: (Int, Int) -> Bool
init(_ arr: [Int], _ compare: @escaping (Int, Int) -> Bool) {
self.heap = arr
self.compare = compare
buildHeap()
}
mutating func buildHeap() {
for i in stride(from: (heap.count - 1) / 2, through: 0, by: -1) {
shiftDown(i)
}
}
mutating func shiftDown(_ i: Int) {
var largest = i
let left = 2 * i + 1
let right = 2 * i + 2
if left < heap.count && compare(heap[left], heap[largest]) {
largest = left
}
if right < heap.count && compare(heap[right], heap[largest]) {
largest = right
}
if largest != i {
swap(&heap[i], &heap[largest])
shiftDown(largest)
}
}
mutating func pop() -> Int? {
guard !heap.isEmpty else { return nil }
swap(&heap[0], &heap[heap.count - 1])
let result = heap.popLast()
shiftDown(0)
return result
}
}
```
swap(&heap[i], &heap[largest]) // overlapping accesses to 'self.heap', but modification requires exclusive access; consider calling MutableCollection.swapAt(_:_:)
swap(&heap[0], &heap[heap.count - 1]) // overlapping accesses to 'self.heap', but modification requires exclusive access; consider calling MutableCollection.swapAt(_:_:)
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap(arr) { $0 > $1 }
for i in 0..<k {
result[i] = maxHeap.pop()!
}
return result
}
struct Heap<T> {
private var heap: [T]
private let isMaxHeap: (T, T) -> Bool
init(_ arr: [T], _ isMaxHeap: @escaping (T, T) -> Bool) {
self.heap = arr
self.isMaxHeap = isMaxHeap
buildHeap()
}
mutating func buildHeap() {
for i in stride(from: (heap.count - 1) / 2, through: 0, by: -1) {
shiftDown(i)
}
}
mutating func shiftDown(_ i: Int) {
var largest = i
let left = 2 * i + 1
let right = 2 * i + 2
if left < heap.count && isMaxHeap(heap[left], heap[largest]) {
largest = left
}
if right < heap.count && isMaxHeap(heap[right], heap[largest]) {
largest = right
}
if largest != i {
swap(&heap[i], &heap[largest])
shiftDown(largest)
}
}
mutating func pop() -> T? {
guard !heap.isEmpty else { return nil }
swap(&heap[0], &heap[heap.count - 1])
let result = heap.popLast()
shiftDown(0)
return result
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap(arr) { $0 > $1 }
for i in 0..<k {
result[i] = maxHeap.pop()!
}
return result
}
struct Heap<T> {
private var heap: [T]
private let isMaxHeap: (T, T) -> Bool
init(_ arr: [T], _ isMaxHeap: @escaping (T, T) -> Bool) {
self.heap = arr
self.isMaxHeap = isMaxHeap
buildHeap()
}
mutating func buildHeap() {
for i in stride(from: (heap.count - 1) / 2, through: 0, by: -1) {
shiftDown(i)
}
}
mutating func shiftDown(_ i: Int) {
var largest = i
let left = 2 * i + 1
let right = 2 * i + 2
if left < heap.count && isMaxHeap(heap[left], heap[largest]) {
largest = left
}
if right < heap.count && isMaxHeap(heap[right], heap[largest]) {
largest = right
}
if largest != i {
swap(&heap[i], &heap[largest])
shiftDown(largest)
}
}
mutating func pop() -> T? {
guard !heap.isEmpty else { return nil }
swap(&heap[0], &heap[heap.count - 1])
let result = heap.popLast()
shiftDown(0)
return result
}
}
```
swap(&heap[i], &heap[largest]) // overlapping accesses to 'self.heap', but modification requires exclusive access; consider calling MutableCollection.swapAt(_:_:)
swap(&heap[0], &heap[heap.count - 1]) // overlapping accesses to 'self.heap', but modification requires exclusive access; consider calling MutableCollection.swapAt(_:_:)
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap(arr) { $0 > $1 }
for i in 0..<k {
result[i] = maxHeap.remove()
}
return result
}
struct Heap {
private var heap: [Int]
private let isMaxHeap: (Int, Int) -> Bool
init(_ arr: [Int], _ isMaxHeap: @escaping (Int, Int) -> Bool) {
self.heap = arr
self.isMaxHeap = isMaxHeap
buildHeap()
}
mutating func buildHeap() {
for i in stride(from: (heap.count - 2) / 2, through: 0, by: -1) {
shiftDown(i)
}
}
mutating func shiftDown(_ i: Int) {
var largest = i
let left = 2 * i + 1
let right = 2 * i + 2
if left < heap.count && isMaxHeap(heap[left], heap[largest]) {
largest = left
}
if right < heap.count && isMaxHeap(heap[right], heap[largest]) {
largest = right
}
if largest != i {
swap(&heap[i], &heap[largest])
shiftDown(largest)
}
}
mutating func remove() -> Int {
guard !heap.isEmpty else { return 0 }
let result = heap[0]
heap[0] = heap.removeLast()
shiftDown(0)
return result
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap(arr) { $0 > $1 }
for i in 0..<k {
result[i] = maxHeap.remove()
}
return result
}
struct Heap {
private var heap: [Int]
private let isMaxHeap: (Int, Int) -> Bool
init(_ arr: [Int], _ isMaxHeap: @escaping (Int, Int) -> Bool) {
self.heap = arr
self.isMaxHeap = isMaxHeap
buildHeap()
}
mutating func buildHeap() {
for i in stride(from: (heap.count - 2) / 2, through: 0, by: -1) {
shiftDown(i)
}
}
mutating func shiftDown(_ i: Int) {
var largest = i
let left = 2 * i + 1
let right = 2 * i + 2
if left < heap.count && isMaxHeap(heap[left], heap[largest]) {
largest = left
}
if right < heap.count && isMaxHeap(heap[right], heap[largest]) {
largest = right
}
if largest != i {
swap(&heap[i], &heap[largest])
shiftDown(largest)
}
}
mutating func remove() -> Int {
guard !heap.isEmpty else { return 0 }
let result = heap[0]
heap[0] = heap.removeLast()
shiftDown(0)
return result
}
}
```
swap(&heap[i], &heap[largest]) // overlapping accesses to 'self.heap', but modification requires exclusive access; consider calling MutableCollection.swapAt(_:_:)
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int]()
for i in 0..<k {
result.append(arr[i])
}
result.sort(by: >)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int]()
for i in 0..<k {
result.append(arr[i])
}
result.sort(by: >)
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
for i in 0..<k {
result[i] = arr[i]
}
for i in k..<arr.count {
if result[i - k] < arr[i] {
result[i - k] = arr[i]
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
for i in 0..<k {
result[i] = arr[i]
}
for i in k..<arr.count {
if result[i - k] < arr[i] {
result[i - k] = arr[i]
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap(arr) { $0 > $1 }
for i in 0..<k {
result[i] = maxHeap.remove()
}
return result
}
struct Heap {
var elements: [Int]
var compare: (Int, Int) -> Bool
init(_ elements: [Int], _ compare: @escaping (Int, Int) -> Bool) {
self.elements = elements
self.compare = compare
buildHeap()
}
mutating func buildHeap() {
for i in stride(from: (elements.count - 2) / 2, through: 0, by: -1) {
shiftDown(i)
}
}
mutating func shiftDown(_ i: Int) {
var root = i
while root * 2 + 1 < elements.count {
var child = root * 2 + 1
if child + 1 < elements.count && compare(elements[child + 1], elements[child]) {
child += 1
}
if compare(elements[child], elements[root]) {
elements.swapAt(root, child)
root = child
} else {
break
}
}
}
mutating func remove() -> Int {
elements.swapAt(0, elements.count - 1)
shiftDown(0)
return elements.removeLast()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap(arr) { $0 > $1 }
for i in 0..<k {
result[i] = maxHeap.remove()
}
return result
}
struct Heap {
var elements: [Int]
var compare: (Int, Int) -> Bool
init(_ elements: [Int], _ compare: @escaping (Int, Int) -> Bool) {
self.elements = elements
self.compare = compare
buildHeap()
}
mutating func buildHeap() {
for i in stride(from: (elements.count - 2) / 2, through: 0, by: -1) {
shiftDown(i)
}
}
mutating func shiftDown(_ i: Int) {
var root = i
while root * 2 + 1 < elements.count {
var child = root * 2 + 1
if child + 1 < elements.count && compare(elements[child + 1], elements[child]) {
child += 1
}
if compare(elements[child], elements[root]) {
elements.swapAt(root, child)
root = child
} else {
break
}
}
}
mutating func remove() -> Int {
elements.swapAt(0, elements.count - 1)
shiftDown(0)
return elements.removeLast()
}
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int]()
for i in 0..<k {
result.append(arr[i])
}
result.sort(by: >)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int]()
for i in 0..<k {
result.append(arr[i])
}
result.sort(by: >)
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int]()
for i in 0..<k {
result.append(arr[i])
}
result.sort(by: >)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int]()
for i in 0..<k {
result.append(arr[i])
}
result.sort(by: >)
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap<Int>(sort: >)
for i in 0..<k {
maxHeap.insert(arr[i])
}
for i in k..<arr.count {
if maxHeap.peek()! < arr[i] {
maxHeap.remove()
maxHeap.insert(arr[i])
}
}
for i in 0..<k {
result[i] = maxHeap.remove()!
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
var result = [Int](repeating: 0, count: k)
var maxHeap = Heap<Int>(sort: >)
for i in 0..<k {
maxHeap.insert(arr[i])
}
for i in k..<arr.count {
if maxHeap.peek()! < arr[i] {
maxHeap.remove()
maxHeap.insert(arr[i])
}
}
for i in 0..<k {
result[i] = maxHeap.remove()!
}
return result
}
```
var maxHeap = Heap<Int>(sort: >) // cannot find 'Heap' in scope
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count where lst[i] % 2 == 1 && i % 2 == 0 {
sum += lst[i]
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
sequence.append(currentNumber)
}
return sequence.filter { $0 % 2 != 0 }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
sequence.append(currentNumber)
}
return sequence.filter { $0 % 2 != 0 }.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
sequence.append(currentNumber)
}
return sequence.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
sequence.append(currentNumber)
}
return sequence.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
while sequence.last != 1 {
let current = sequence.removeLast()
if current % 2 == 0 {
sequence.append(current / 2)
} else {
sequence.append(3 * current + 1)
}
}
return sequence.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
while sequence.last != 1 {
let current = sequence.removeLast()
if current % 2 == 0 {
sequence.append(current / 2)
} else {
sequence.append(3 * current + 1)
}
}
return sequence.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
while sequence.last != 1 {
let lastNumber = sequence.last!
if lastNumber % 2 == 0 {
sequence.append(lastNumber / 2)
} else {
sequence.append(3 * lastNumber + 1)
}
}
return sequence.filter { $0 % 2 != 0 }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [n]
while sequence.last != 1 {
let lastNumber = sequence.last!
if lastNumber % 2 == 0 {
sequence.append(lastNumber / 2)
} else {
sequence.append(3 * lastNumber + 1)
}
}
return sequence.filter { $0 % 2 != 0 }.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var sequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
sequence.append(currentNumber)
}
return sequence.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var sequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
sequence.append(currentNumber)
}
return sequence.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber /= 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
```
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard year >= 0 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
```
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard year >= 0 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func validDate(date: String) -> Bool {
let components = date.components(separatedBy: "-")
guard components.count == 3 else { return false }
let month = Int(components[0])
let day = Int(components[1])
let year = Int(components[2])
guard month != nil && day != nil && year != nil else { return false }
let isValidMonth = (month >= 1 && month <= 12)
let isValidDay = (day >= 1 && day <= 31)
let isValidYear = (year >= 0 && year <= 9999)
if isValidMonth && isValidDay && isValidYear {
switch month {
case 1, 3, 5, 7, 8, 10, 12:
return isValidDay && (day >= 1 && day <= 31)
case 4, 6, 9, 11:
return isValidDay && (day >= 1 && day <= 30)
case 2:
return isValidDay && (day >= 1 && day <= 29)
default:
return false
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let components = date.components(separatedBy: "-")
guard components.count == 3 else { return false }
let month = Int(components[0])
let day = Int(components[1])
let year = Int(components[2])
guard month != nil && day != nil && year != nil else { return false }
let isValidMonth = (month >= 1 && month <= 12)
let isValidDay = (day >= 1 && day <= 31)
let isValidYear = (year >= 0 && year <= 9999)
if isValidMonth && isValidDay && isValidYear {
switch month {
case 1, 3, 5, 7, 8, 10, 12:
return isValidDay && (day >= 1 && day <= 31)
case 4, 6, 9, 11:
return isValidDay && (day >= 1 && day <= 30)
case 2:
return isValidDay && (day >= 1 && day <= 29)
default:
return false
}
}
return false
}
```
let isValidMonth = (month >= 1 && month <= 12) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let isValidMonth = (month >= 1 && month <= 12) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let isValidDay = (day >= 1 && day <= 31) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let isValidDay = (day >= 1 && day <= 31) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let isValidYear = (year >= 0 && year <= 9999) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
let isValidYear = (year >= 0 && year <= 9999) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return isValidDay && (day >= 1 && day <= 31) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return isValidDay && (day >= 1 && day <= 31) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return isValidDay && (day >= 1 && day <= 30) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return isValidDay && (day >= 1 && day <= 30) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return isValidDay && (day >= 1 && day <= 29) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
return isValidDay && (day >= 1 && day <= 29) // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func validDate(date: String) -> Bool {
let components = date.components(separatedBy: "-")
guard components.count == 3 else { return false }
let month = Int(components[0])
let day = Int(components[1])
let year = Int(components[2])
guard month != nil && day != nil && year != nil else { return false }
guard month! >= 1 && month! <= 12 else { return false }
guard day! >= 1 && day! <= 31 else { return false }
guard year! >= 0 else { return false }
switch month! {
case 2:
guard day! >= 1 && day! <= 29 else { return false }
case 4, 6, 9, 11:
guard day! >= 1 && day! <= 30 else { return false }
default:
guard day! >= 1 && day! <= 31 else { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let components = date.components(separatedBy: "-")
guard components.count == 3 else { return false }
let month = Int(components[0])
let day = Int(components[1])
let year = Int(components[2])
guard month != nil && day != nil && year != nil else { return false }
guard month! >= 1 && month! <= 12 else { return false }
guard day! >= 1 && day! <= 31 else { return false }
guard year! >= 0 else { return false }
switch month! {
case 2:
guard day! >= 1 && day! <= 29 else { return false }
case 4, 6, 9, 11:
guard day! >= 1 && day! <= 30 else { return false }
default:
guard day! >= 1 && day! <= 31 else { return false }
}
return true
}
```
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
```
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard year >= 0 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
switch month {
case 1, 3, 5, 7, 8, 10, 12:
guard day >= 1 && day <= 31 else { return false }
case 4, 6, 9, 11:
guard day >= 1 && day <= 30 else { return false }
case 2:
guard day >= 1 && day <= 29 else { return false }
default:
break
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
switch month {
case 1, 3, 5, 7, 8, 10, 12:
guard day >= 1 && day <= 31 else { return false }
case 4, 6, 9, 11:
guard day >= 1 && day <= 30 else { return false }
case 2:
guard day >= 1 && day <= 29 else { return false }
default:
break
}
return true
}
```
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard year >= 0 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func validDate(date: String) -> Bool {
let components = date.components(separatedBy: "-")
guard components.count == 3 else { return false }
guard let month = Int(components[0]), let day = Int(components[1]), let year = Int(components[2]) else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let components = date.components(separatedBy: "-")
guard components.count == 3 else { return false }
guard let month = Int(components[0]), let day = Int(components[1]), let year = Int(components[2]) else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
```
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
if month! < 1 || month! > 12 {
return false
}
if day! < 1 || day! > 31 {
return false
}
if year! < 0 || year! > 9999 {
return false
}
if month! == 2 && day! > 29 {
return false
}
if [1, 3, 5, 7, 8, 10, 12].contains(month!) && day! > 31 {
return false
}
if [4, 6, 9, 11].contains(month!) && day! > 30 {
return false
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
if month! < 1 || month! > 12 {
return false
}
if day! < 1 || day! > 31 {
return false
}
if year! < 0 || year! > 9999 {
return false
}
if month! == 2 && day! > 29 {
return false
}
if [1, 3, 5, 7, 8, 10, 12].contains(month!) && day! > 31 {
return false
}
if [4, 6, 9, 11].contains(month!) && day! > 30 {
return false
}
return true
}
```
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
guard month != nil && day != nil && year != nil else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
if month == 2 {
guard day >= 1 && day <= 29 else { return false }
} else if [1, 3, 5, 7, 8, 10, 12].contains(month) {
guard day >= 1 && day <= 31 else { return false }
} else {
guard day >= 1 && day <= 30 else { return false }
}
return true
}
```
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard month >= 1 && month <= 12 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard year >= 0 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 29 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 31 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
guard day >= 1 && day <= 30 else { return false } // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
guard let month = Int(dateComponents[0]) else { return false }
guard let day = Int(dateComponents[1]) else { return false }
guard let year = Int(dateComponents[2]) else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
guard dateComponents.count == 3 else { return false }
guard let month = Int(dateComponents[0]) else { return false }
guard let day = Int(dateComponents[1]) else { return false }
guard let year = Int(dateComponents[2]) else { return false }
guard month >= 1 && month <= 12 else { return false }
guard day >= 1 && day <= 31 else { return false }
guard year >= 0 else { return false }
return true
}
```
// XCTAssertTrue failed
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let whitespace = CharacterSet.whitespaces
let comma = CharacterSet.init(charactersIn: ",")
let characters = Array(txt)
var words: [String] = []
var word: String = ""
var i = 0
while i < characters.count {
let character = characters[i]
if whitespace.contains(character) || comma.contains(character) {
if !word.isEmpty {
words.append(word)
word = ""
}
} else {
word.append(character)
}
i += 1
}
if !word.isEmpty {
words.append(word)
}
if words.isEmpty {
let lowercaseLetters = characters.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(words)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let whitespace = CharacterSet.whitespaces
let comma = CharacterSet.init(charactersIn: ",")
let characters = Array(txt)
var words: [String] = []
var word: String = ""
var i = 0
while i < characters.count {
let character = characters[i]
if whitespace.contains(character) || comma.contains(character) {
if !word.isEmpty {
words.append(word)
word = ""
}
} else {
word.append(character)
}
i += 1
}
if !word.isEmpty {
words.append(word)
}
if words.isEmpty {
let lowercaseLetters = characters.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(words)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if whitespace.contains(character) || comma.contains(character) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Unicode.Scalar'
if whitespace.contains(character) || comma.contains(character) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Unicode.Scalar'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let range = txt.range(of: "\\s+", options: .regularExpression) {
return .success(txt[range].split(separator: " ").map(String.init))
} else if let range = txt.range(of: ",", options: .regularExpression) {
return .success(txt[range].split(separator: ",").map(String.init))
} else {
var count = 0
for c in txt.lowercased() {
if c.isLowercase && (c.asciiValue! % 2) == 0 {
count += 1
}
}
return .failure(count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let range = txt.range(of: "\\s+", options: .regularExpression) {
return .success(txt[range].split(separator: " ").map(String.init))
} else if let range = txt.range(of: ",", options: .regularExpression) {
return .success(txt[range].split(separator: ",").map(String.init))
} else {
var count = 0
for c in txt.lowercased() {
if c.isLowercase && (c.asciiValue! % 2) == 0 {
count += 1
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map { String($0) })
}
} else {
return .success(words.map { String($0) })
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map { String($0) })
}
} else {
return .success(words.map { String($0) })
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddLetters.count)
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
return .failure(txt.count { $0.isLowercase && $0.isOdd })
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.isEmpty {
let commas = txt.split(separator: ",")
if commas.isEmpty {
return .failure(txt.count { $0.isLowercase && $0.isOdd })
} else {
return .success(commas.map(String.init))
}
} else {
return .success(words.map(String.init))
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .failure(txt.count { $0.isLowercase && $0.isOdd }) // cannot call value of non-function type 'Int'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let range = txt.range(of: "\\s+", options: .regularExpression) {
return .success(txt.components(separatedBy: range))
} else if let range = txt.range(of: ",", options: .regularExpression) {
return .success(txt.components(separatedBy: range))
} else {
var count = 0
for c in txt.lowercased() {
if c.isLetter && c.isLowercase {
count += (Int(c.asciiValue!) - Int(UnicodeScalar("a").asciiValue!)) % 2 == 0 ? 1 : 0
}
}
return .failure(count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let range = txt.range(of: "\\s+", options: .regularExpression) {
return .success(txt.components(separatedBy: range))
} else if let range = txt.range(of: ",", options: .regularExpression) {
return .success(txt.components(separatedBy: range))
} else {
var count = 0
for c in txt.lowercased() {
if c.isLetter && c.isLowercase {
count += (Int(c.asciiValue!) - Int(UnicodeScalar("a").asciiValue!)) % 2 == 0 ? 1 : 0
}
}
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(txt.components(separatedBy: range)) // cannot convert value of type 'Range<String.Index>' to expected argument type 'CharacterSet'
return .success(txt.components(separatedBy: range)) // cannot convert value of type 'Range<String.Index>' to expected argument type 'CharacterSet'
count += (Int(c.asciiValue!) - Int(UnicodeScalar("a").asciiValue!)) % 2 == 0 ? 1 : 0 // value of type 'UnicodeScalar' (aka 'Unicode.Scalar') has no member 'asciiValue'
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
for i in 0..<lst.count-1 {
if lst[i] > lst[i+1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
for i in 0..<lst.count-1 {
if lst[i] > lst[i+1] {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isSorted(lst: [Int]) -> Bool {
for i in 0..<lst.count-1 {
if lst[i] > lst[i+1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
for i in 0..<lst.count-1 {
if lst[i] > lst[i+1] {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func isSorted(lst: [Int]) -> Bool {
if lst.count < 2 {
return true
}
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
if lst.count < 2 {
return true
}
for i in 1..<lst.count {
if lst[i] < lst[i - 1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
if length.isPrime {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
if length.isPrime {
return "YES"
}
return "NO"
}
```
if length.isPrime { // value of type 'Int' has no member 'isPrime'
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2...length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2...length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 0 {
return "NO"
}
if length == 1 {
return "YES"
}
if length > 1 && length % 2 == 1 {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 0 {
return "NO"
}
if length == 1 {
return "YES"
}
if length > 1 && length % 2 == 1 {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength == 1 {
return "NO"
}
for i in 2..<intersectionLength {
if intersectionLength % i == 0 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end2 || start2 > end1 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
if intersectionLength == 1 {
return "NO"
}
for i in 2..<intersectionLength {
if intersectionLength % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2...length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
if start1 > end2 || start2 > end1 {
return "NO"
}
let start = max(start1, start2)
let end = min(end1, end2)
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2...length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
// Check if the intervals intersect
if start1 <= end2 && start2 <= end1 {
// Calculate the intersection
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
// Check if the intersection length is a prime number
if intersectionLength.isPrime {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
extension Int {
var isPrime: Bool {
guard self > 1 else { return false }
for i in 2..<self {
if self % i == 0 {
return false
}
}
return true
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let (start1, end1) = interval1
let (start2, end2) = interval2
// Check if the intervals intersect
if start1 <= end2 && start2 <= end1 {
// Calculate the intersection
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
let intersectionLength = intersectionEnd - intersectionStart + 1
// Check if the intersection length is a prime number
if intersectionLength.isPrime {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
extension Int {
var isPrime: Bool {
guard self > 1 else { return false }
for i in 2..<self {
if self % i == 0 {
return false
}
}
return true
}
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
let sign = num == 0 ? 0 : (num > 0 ? 1 : -1)
product *= sign
sum += abs(num) * sign
}
return sum * product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
let sign = num == 0 ? 0 : (num > 0 ? 1 : -1)
product *= sign
sum += abs(num) * sign
}
return sum * product
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
return signs.reduce(1, *) * arr.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
return signs.reduce(1, *) * arr.reduce(0, +)
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 == 0 ? 0 : ($0 > 0 ? 1 : -1) }
return signs.reduce(1, *) * arr.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 == 0 ? 0 : ($0 > 0 ? 1 : -1) }
return signs.reduce(1, *) * arr.reduce(0, +)
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 0 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return sum * product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 0 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
return signs.reduce(1, *) * arr.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
return signs.reduce(1, *) * arr.reduce(0, +)
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 1 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return sum * product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 1 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return sum * product
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 0 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return sum * product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 0 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
return signs.reduce(1, *) * arr.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
return signs.reduce(1, *) * arr.reduce(0, +)
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 0 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return product * sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 0 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 0 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return product * sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num == 0 ? 0 : (num > 0 ? 1 : -1)
sum += abs(num)
}
return product * sum
}
```
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: 0, count: n), count: n)
var parent = Array(repeating: Array(repeating: -1, count: n), count: n)
for i in 0..<n {
dp[i][i] = 1
parent[i][i] = i
}
for k in 2...k {
for i in 0..<n {
for j in 0..<n {
if i == j { continue }
let cost = grid[i / cols][i % cols] + grid[j / cols][j % cols]
if dp[i][j] > cost {
dp[i][j] = cost
parent[i][j] = i
}
}
}
}
var path = [Int]()
var current = parent[0][k - 1]
while current != -1 {
path.append(grid[current / cols][current % cols])
current = parent[current][k - 1]
}
return path.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: 0, count: n), count: n)
var parent = Array(repeating: Array(repeating: -1, count: n), count: n)
for i in 0..<n {
dp[i][i] = 1
parent[i][i] = i
}
for k in 2...k {
for i in 0..<n {
for j in 0..<n {
if i == j { continue }
let cost = grid[i / cols][i % cols] + grid[j / cols][j % cols]
if dp[i][j] > cost {
dp[i][j] = cost
parent[i][j] = i
}
}
}
}
var path = [Int]()
var current = parent[0][k - 1]
while current != -1 {
path.append(grid[current / cols][current % cols])
current = parent[current][k - 1]
}
return path.reversed()
}
```
for k in 2...k { // immutable value 'k' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: 0, count: k + 1), count: n + 1)
var path = Array(repeating: 0, count: k + 1)
for i in 1...n {
for j in 1...k {
if j == 1 {
dp[i][j] = grid[i / cols][i % cols]
path[j] = i
} else {
var minVal = Int.max
var minIndex = 0
for neighbor in neighbors(i, rows, cols) {
let newVal = dp[neighbor][j - 1] + grid[neighbor / cols][neighbor % cols]
if newVal < minVal {
minVal = newVal
minIndex = neighbor
}
}
dp[i][j] = minVal
path[j] = minIndex
}
}
}
return path
}
func neighbors(_ i: Int, _ rows: Int, _ cols: Int) -> [Int] {
var neighbors = [Int]()
if i % cols != 0 {
neighbors.append(i - 1)
}
if i % cols != cols - 1 {
neighbors.append(i + 1)
}
if i / cols != 0 {
neighbors.append(i - cols)
}
if i / cols != rows - 1 {
neighbors.append(i + cols)
}
return neighbors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: 0, count: k + 1), count: n + 1)
var path = Array(repeating: 0, count: k + 1)
for i in 1...n {
for j in 1...k {
if j == 1 {
dp[i][j] = grid[i / cols][i % cols]
path[j] = i
} else {
var minVal = Int.max
var minIndex = 0
for neighbor in neighbors(i, rows, cols) {
let newVal = dp[neighbor][j - 1] + grid[neighbor / cols][neighbor % cols]
if newVal < minVal {
minVal = newVal
minIndex = neighbor
}
}
dp[i][j] = minVal
path[j] = minIndex
}
}
}
return path
}
func neighbors(_ i: Int, _ rows: Int, _ cols: Int) -> [Int] {
var neighbors = [Int]()
if i % cols != 0 {
neighbors.append(i - 1)
}
if i % cols != cols - 1 {
neighbors.append(i + 1)
}
if i / cols != 0 {
neighbors.append(i - cols)
}
if i / cols != rows - 1 {
neighbors.append(i + cols)
}
return neighbors
}
```
// Fatal error: Index out of range
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
// Create a 2D array to store the minimum path values
var dp = Array(repeating: Array(repeating: 0, count: n), count: n)
// Initialize the first row and column with the values from the grid
for i in 0..<rows {
for j in 0..<cols {
dp[i][j] = grid[i][j]
}
}
// Fill in the rest of the 2D array with the minimum path values
for i in 1..<n {
for j in 1..<n {
let minValue = min(dp[i - 1][j], dp[i][j - 1])
dp[i][j] = minValue
}
}
// Find the minimum path value and the corresponding index
var minValue = Int.max
var minIndex = 0
for i in 0..<n {
if dp[k][i] < minValue {
minValue = dp[k][i]
minIndex = i
}
}
// Return the ordered array of values on the cells that the minimum path goes through
var path = [Int]()
var currentIndex = minIndex
for _ in 0..<k {
path.append(dp[k][currentIndex])
currentIndex = (currentIndex + 1) % n
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
// Create a 2D array to store the minimum path values
var dp = Array(repeating: Array(repeating: 0, count: n), count: n)
// Initialize the first row and column with the values from the grid
for i in 0..<rows {
for j in 0..<cols {
dp[i][j] = grid[i][j]
}
}
// Fill in the rest of the 2D array with the minimum path values
for i in 1..<n {
for j in 1..<n {
let minValue = min(dp[i - 1][j], dp[i][j - 1])
dp[i][j] = minValue
}
}
// Find the minimum path value and the corresponding index
var minValue = Int.max
var minIndex = 0
for i in 0..<n {
if dp[k][i] < minValue {
minValue = dp[k][i]
minIndex = i
}
}
// Return the ordered array of values on the cells that the minimum path goes through
var path = [Int]()
var currentIndex = minIndex
for _ in 0..<k {
path.append(dp[k][currentIndex])
currentIndex = (currentIndex + 1) % n
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: 0, count: n), count: n)
var path = Array(repeating: 0, count: n)
var minPath = [Int]()
for i in 0..<n {
dp[i][i] = grid[i / cols][i % cols]
path[i] = i
}
for k in 2...k {
for i in 0..<n {
for j in 0..<n {
if i == j { continue }
let cost = grid[i / cols][i % cols] + grid[j / cols][j % cols]
if cost < dp[i][j] {
dp[i][j] = cost
path[j] = i
}
}
}
}
var current = 0
for _ in 0..<k {
minPath.append(grid[current / cols][current % cols])
current = path[current]
}
return minPath
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: 0, count: n), count: n)
var path = Array(repeating: 0, count: n)
var minPath = [Int]()
for i in 0..<n {
dp[i][i] = grid[i / cols][i % cols]
path[i] = i
}
for k in 2...k {
for i in 0..<n {
for j in 0..<n {
if i == j { continue }
let cost = grid[i / cols][i % cols] + grid[j / cols][j % cols]
if cost < dp[i][j] {
dp[i][j] = cost
path[j] = i
}
}
}
}
var current = 0
for _ in 0..<k {
minPath.append(grid[current / cols][current % cols])
current = path[current]
}
return minPath
}
```
for k in 2...k { // immutable value 'k' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
var prev = [[Int]](repeating: [Int](repeating: -1, count: n), count: n)
for i in 0..<n {
dp[i][i] = 1
prev[i][i] = i
}
for i in 0..<n {
for j in i+1..<n {
let x = i / cols
let y = i % cols
let x2 = j / cols
let y2 = j % cols
if x == x2 || y == y2 {
dp[i][j] = min(dp[i][j], dp[i][x] + dp[x][j])
prev[i][j] = prev[i][x]
}
}
}
var path = [Int]()
var current = k
while current != -1 {
path.append(grid[current / cols][current % cols])
current = prev[current / cols][current % cols]
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
var prev = [[Int]](repeating: [Int](repeating: -1, count: n), count: n)
for i in 0..<n {
dp[i][i] = 1
prev[i][i] = i
}
for i in 0..<n {
for j in i+1..<n {
let x = i / cols
let y = i % cols
let x2 = j / cols
let y2 = j % cols
if x == x2 || y == y2 {
dp[i][j] = min(dp[i][j], dp[i][x] + dp[x][j])
prev[i][j] = prev[i][x]
}
}
}
var path = [Int]()
var current = k
while current != -1 {
path.append(grid[current / cols][current % cols])
current = prev[current / cols][current % cols]
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let N = rows * cols
var dp = Array(repeating: Array(repeating: Int.max, count: N), count: N)
var path = Array(repeating: -1, count: N)
dp[0][0] = 0
for i in 0..<N {
for j in 0..<N {
if i == j { continue }
let cost = grid[i / cols][i % cols]
let newCost = dp[i][j] + cost
if newCost < dp[i][j] {
dp[i][j] = newCost
path[i] = j
}
}
}
var current = 0
var result = [Int]()
for _ in 0..<k {
result.append(grid[current / cols][current % cols])
current = path[current]
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let N = rows * cols
var dp = Array(repeating: Array(repeating: Int.max, count: N), count: N)
var path = Array(repeating: -1, count: N)
dp[0][0] = 0
for i in 0..<N {
for j in 0..<N {
if i == j { continue }
let cost = grid[i / cols][i % cols]
let newCost = dp[i][j] + cost
if newCost < dp[i][j] {
dp[i][j] = newCost
path[i] = j
}
}
}
var current = 0
var result = [Int]()
for _ in 0..<k {
result.append(grid[current / cols][current % cols])
current = path[current]
}
return result
}
```
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
var prev = [[Int]](repeating: [Int](repeating: -1, count: n), count: n)
for i in 0..<n {
dp[i][i] = 1
prev[i][i] = i
}
for i in 0..<rows {
for j in 0..<cols {
let curr = i * cols + j
if i > 0 {
let prevRow = (i - 1) * cols + j
dp[curr][prevRow] = 1
prev[curr][prevRow] = prevRow
}
if j > 0 {
let prevCol = i * cols + j - 1
dp[curr][prevCol] = 1
prev[curr][prevCol] = prevCol
}
if i < rows - 1 {
let nextRow = (i + 1) * cols + j
dp[curr][nextRow] = 1
prev[curr][nextRow] = nextRow
}
if j < cols - 1 {
let nextCol = i * cols + j + 1
dp[curr][nextCol] = 1
prev[curr][nextCol] = nextCol
}
}
}
var path = [Int]()
var curr = k - 1
while curr != -1 {
path.append(grid[curr / cols][curr % cols])
curr = prev[curr / cols][curr % cols]
}
return path.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
var prev = [[Int]](repeating: [Int](repeating: -1, count: n), count: n)
for i in 0..<n {
dp[i][i] = 1
prev[i][i] = i
}
for i in 0..<rows {
for j in 0..<cols {
let curr = i * cols + j
if i > 0 {
let prevRow = (i - 1) * cols + j
dp[curr][prevRow] = 1
prev[curr][prevRow] = prevRow
}
if j > 0 {
let prevCol = i * cols + j - 1
dp[curr][prevCol] = 1
prev[curr][prevCol] = prevCol
}
if i < rows - 1 {
let nextRow = (i + 1) * cols + j
dp[curr][nextRow] = 1
prev[curr][nextRow] = nextRow
}
if j < cols - 1 {
let nextCol = i * cols + j + 1
dp[curr][nextCol] = 1
prev[curr][nextCol] = nextCol
}
}
}
var path = [Int]()
var curr = k - 1
while curr != -1 {
path.append(grid[curr / cols][curr % cols])
curr = prev[curr / cols][curr % cols]
}
return path.reversed()
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: Int.max, count: k + 1), count: n + 1)
dp[0][0] = 0
for i in 1...n {
for j in 1...k {
if i - cols >= 0 {
dp[i][j] = min(dp[i][j], dp[i - cols][j - 1] + grid[i - cols][i % cols])
}
if i + cols < n * n {
dp[i][j] = min(dp[i][j], dp[i + cols][j - 1] + grid[i + cols][i % cols])
}
if i % cols != 0 {
dp[i][j] = min(dp[i][j], dp[i - 1][j - 1] + grid[i - 1][i % cols])
}
if i % cols != cols - 1 {
dp[i][j] = min(dp[i][j], dp[i + 1][j - 1] + grid[i + 1][i % cols])
}
}
}
var path = [Int]()
var i = n
var j = k
while i != 0 {
path.append(grid[i - 1][i % cols])
i = dp[i][j]
j -= 1
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: Int.max, count: k + 1), count: n + 1)
dp[0][0] = 0
for i in 1...n {
for j in 1...k {
if i - cols >= 0 {
dp[i][j] = min(dp[i][j], dp[i - cols][j - 1] + grid[i - cols][i % cols])
}
if i + cols < n * n {
dp[i][j] = min(dp[i][j], dp[i + cols][j - 1] + grid[i + cols][i % cols])
}
if i % cols != 0 {
dp[i][j] = min(dp[i][j], dp[i - 1][j - 1] + grid[i - 1][i % cols])
}
if i % cols != cols - 1 {
dp[i][j] = min(dp[i][j], dp[i + 1][j - 1] + grid[i + 1][i % cols])
}
}
}
var path = [Int]()
var i = n
var j = k
while i != 0 {
path.append(grid[i - 1][i % cols])
i = dp[i][j]
j -= 1
}
return path
}
```
// Fatal error: Index out of range
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: Int.max, count: k + 1), count: n + 1)
dp[0][0] = 0
for i in 1...n {
for j in 1...k {
if i - 1 >= 0 && j - 1 >= 0 {
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1])
} else if i - 1 >= 0 {
dp[i][j] = dp[i - 1][j]
} else {
dp[i][j] = dp[i][j - 1]
}
if j > 0 && dp[i][j] == dp[i][j - 1] {
dp[i][j] += 1
}
}
}
var path = [Int]()
var i = n
var j = k
while i > 0 {
path.append(grid[i - 1][j - 1])
if j > 0 && dp[i][j] == dp[i][j - 1] {
j -= 1
} else {
i -= 1
}
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: Int.max, count: k + 1), count: n + 1)
dp[0][0] = 0
for i in 1...n {
for j in 1...k {
if i - 1 >= 0 && j - 1 >= 0 {
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1])
} else if i - 1 >= 0 {
dp[i][j] = dp[i - 1][j]
} else {
dp[i][j] = dp[i][j - 1]
}
if j > 0 && dp[i][j] == dp[i][j - 1] {
dp[i][j] += 1
}
}
}
var path = [Int]()
var i = n
var j = k
while i > 0 {
path.append(grid[i - 1][j - 1])
if j > 0 && dp[i][j] == dp[i][j - 1] {
j -= 1
} else {
i -= 1
}
}
return path
}
```
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: 0, count: n), count: n)
var path = Array(repeating: -1, count: n)
for i in 0..<n {
dp[i][i] = 1
path[i] = i
}
for i in 0..<n {
for j in 0..<n {
if i == j { continue }
let cost = grid[i / cols][i % cols]
let newCost = grid[j / cols][j % cols]
if cost < newCost {
dp[i][j] = dp[i][j - 1] + 1
path[j] = i
} else {
dp[i][j] = dp[i - 1][j] + 1
path[j] = i - 1
}
}
}
var result = [Int]()
var current = k - 1
while current != -1 {
result.append(grid[path[current] / cols][path[current] % cols])
current = path[current]
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let rows = grid.count
let cols = grid[0].count
let n = rows * cols
var dp = Array(repeating: Array(repeating: 0, count: n), count: n)
var path = Array(repeating: -1, count: n)
for i in 0..<n {
dp[i][i] = 1
path[i] = i
}
for i in 0..<n {
for j in 0..<n {
if i == j { continue }
let cost = grid[i / cols][i % cols]
let newCost = grid[j / cols][j % cols]
if cost < newCost {
dp[i][j] = dp[i][j - 1] + 1
path[j] = i
} else {
dp[i][j] = dp[i - 1][j] + 1
path[j] = i - 1
}
}
}
var result = [Int]()
var current = k - 1
while current != -1 {
result.append(grid[path[current] / cols][path[current] % cols])
current = path[current]
}
return result
}
```
func tri(n: Int) -> [Int] {
var result = [1]
var a = 3
var b = 1
var c = 2
for i in 1..<n {
if i % 2 == 0 {
result.append(a)
a = (a + b) / 2
} else {
result.append(a + b + c)
c = b
b = a
a = result.last!
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1]
var a = 3
var b = 1
var c = 2
for i in 1..<n {
if i % 2 == 0 {
result.append(a)
a = (a + b) / 2
} else {
result.append(a + b + c)
c = b
b = a
a = result.last!
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var sequence = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var sequence = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
sequence.append(1 + i / 2)
} else {
sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
}
}
return sequence
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [1]
for i in 1..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1]
for i in 1..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1]
for i in 1..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1]
for i in 1..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [1]
for i in 1..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1]
for i in 1..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
result.append(1)
for i in 1..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
result.append(1)
for i in 1..<n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func digits(n: Int) -> Int {
var result = 1
for digit in String(n).compactMap({ Int($0) }) {
if digit % 2 == 1 {
result *= digit
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
for digit in String(n).compactMap({ Int($0) }) {
if digit % 2 == 1 {
result *= digit
}
}
return result
}
```
for digit in String(n).compactMap({ Int($0) }) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
```
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
```
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
```
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 == 1 {
product *= digit
}
return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 == 1 {
product *= digit
}
return product
}
```
for digit in String(n).compactMap({ Int($0) }) where digit % 2 == 1 { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
```
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var result = 1
for digit in String(n).compactMap({ Int($0) }) {
if digit % 2 == 1 {
result *= digit
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
for digit in String(n).compactMap({ Int($0) }) {
if digit % 2 == 1 {
result *= digit
}
}
return result
}
```
for digit in String(n).compactMap({ Int($0) }) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
product *= digit
}
return product
}
```
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) {
if digit % 2 == 1 {
product *= digit
}
}
return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var product = 1
for digit in String(n).compactMap({ Int($0) }) {
if digit % 2 == 1 {
product *= digit
}
}
return product
}
```
for digit in String(n).compactMap({ Int($0) }) { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func digits(n: Int) -> Int {
var result = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
result *= digit
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 {
result *= digit
}
return result
}
```
for digit in String(n).compactMap({ Int($0) }) where digit % 2 != 0 { // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for element in lst {
let rounded = Int(ceil(element))
sum += rounded * rounded
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for element in lst {
let rounded = Int(ceil(element))
sum += rounded * rounded
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for i in lst {
sum += Int(ceil(i)) * Int(ceil(i))
}
return sum
}
```
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count-1 {
if arr[i] <= arr[i+1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count-1 {
if arr[i] <= arr[i+1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count-1 {
if arr[i] <= arr[i+1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count-1 {
if arr[i] <= arr[i+1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var previous = arr[0]
for i in 1..<arr.count {
if arr[i] <= previous {
return i - 1
}
previous = arr[i]
}
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var previous = arr[0]
for i in 1..<arr.count {
if arr[i] <= previous {
return i - 1
}
previous = arr[i]
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
for i in 0..<arr.count-1 {
if arr[i] > arr[i+1] {
return i
}
}
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
for i in 0..<arr.count-1 {
if arr[i] > arr[i+1] {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] <= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for num in lst {
if num < 0 {
if negative == nil || num > negative {
negative = num
}
} else if num > 0 {
if positive == nil || num < positive {
positive = num
}
}
}
return (negative, positive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for num in lst {
if num < 0 {
if negative == nil || num > negative {
negative = num
}
} else if num > 0 {
if positive == nil || num < positive {
positive = num
}
}
}
return (negative, positive)
}
```
if negative == nil || num > negative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if positive == nil || num < positive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative = Int.min
var positive = Int.max
for i in lst {
if i < 0 && i < negative {
negative = i
} else if i > 0 && i > positive {
positive = i
}
}
return (negative, positive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative = Int.min
var positive = Int.max
for i in lst {
if i < 0 && i < negative {
negative = i
} else if i > 0 && i > positive {
positive = i
}
}
return (negative, positive)
}
```
// XCTAssertTrue failed
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative = Int.min
var positive = Int.max
for i in lst {
if i < 0 && i < negative {
negative = i
} else if i > 0 && i > positive {
positive = i
}
}
return (negative, positive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative = Int.min
var positive = Int.max
for i in lst {
if i < 0 && i < negative {
negative = i
} else if i > 0 && i > positive {
positive = i
}
}
return (negative, positive)
}
```
// XCTAssertTrue failed
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 && (largestNegative == nil || num > largestNegative!) {
largestNegative = num
} else if num > 0 && (smallestPositive == nil || num < smallestPositive!) {
smallestPositive = num
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 && (largestNegative == nil || num > largestNegative!) {
largestNegative = num
} else if num > 0 && (smallestPositive == nil || num < smallestPositive!) {
smallestPositive = num
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 && (largestNegative == nil || num > largestNegative!) {
largestNegative = num
} else if num > 0 && (smallestPositive == nil || num < smallestPositive!) {
smallestPositive = num
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 && (largestNegative == nil || num > largestNegative!) {
largestNegative = num
} else if num > 0 && (smallestPositive == nil || num < smallestPositive!) {
smallestPositive = num
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var negative: Int?
var positive: Int?
for i in lst {
if i < 0 && (negative == nil || i > negative!) {
negative = i
} else if i > 0 && (positive == nil || i < positive!) {
positive = i
}
}
return (negative, positive)
}
```
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a == b ? nil : .intValue(max(a, b))
case (.doubleValue(let a), .doubleValue(let b)):
return a == b ? nil : .doubleValue(max(a, b))
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble == bDouble ? nil : .stringValue(aDouble > bDouble ? a : b)
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a == b ? nil : .intValue(max(a, b))
case (.doubleValue(let a), .doubleValue(let b)):
return a == b ? nil : .doubleValue(max(a, b))
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble == bDouble ? nil : .stringValue(aDouble > bDouble ? a : b)
default:
return nil
}
}
```
return aDouble == bDouble ? nil : .stringValue(aDouble > bDouble ? a : b) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return aDouble == bDouble ? nil : .stringValue(aDouble > bDouble ? a : b) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
let aDouble = Double(a.replacingOccurrences(of: ",", with: "."))
let bDouble = Double(b.replacingOccurrences(of: ",", with: "."))
return aDouble > bDouble ? .stringValue(a) : nil
default:
return nil
}
}
```
return aDouble > bDouble ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return aDouble > bDouble ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a == b ? nil : .intValue(max(a, b))
case (.doubleValue(let a), .doubleValue(let b)):
return a == b ? nil : .doubleValue(max(a, b))
case (.stringValue(let a), .stringValue(let b)):
return a == b ? nil : .stringValue(max(a, b))
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a == b ? nil : .intValue(max(a, b))
case (.doubleValue(let a), .doubleValue(let b)):
return a == b ? nil : .doubleValue(max(a, b))
case (.stringValue(let a), .stringValue(let b)):
return a == b ? nil : .stringValue(max(a, b))
default:
return nil
}
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
```
var evenNumbers = [2, 4, 6, 8] // variable 'evenNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
```
var evenNumbers = [2, 4, 6, 8] // variable 'evenNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
```
var evenNumbers = [2, 4, 6, 8] // variable 'evenNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
```
var evenNumbers = [2, 4, 6, 8] // variable 'evenNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
```
var evenNumbers = [2, 4, 6, 8] // variable 'evenNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
```
var evenNumbers = [2, 4, 6, 8] // variable 'evenNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
```
var evenNumbers = [2, 4, 6, 8] // variable 'evenNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [Int]()
for i in 0..<n {
if i % 2 == 0 {
evenNumbers.append(i)
if evenNumbers.count == 4 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [Int]()
for i in 0..<n {
if i % 2 == 0 {
evenNumbers.append(i)
if evenNumbers.count == 4 {
return true
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8]
let sum = evenNumbers.reduce(0, +)
return n == sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8]
let sum = evenNumbers.reduce(0, +)
return n == sum
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var evenNumbers = [2, 4, 6, 8]
var sum = 0
for number in evenNumbers {
sum += number
if sum == n {
return true
}
}
return false
}
```
var evenNumbers = [2, 4, 6, 8] // variable 'evenNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += char
}
}
return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += String(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var fixedText = text
fixedText = fixedText.replacingOccurrences(of: " ", with: "_")
if fixedText.contains("__") {
fixedText = fixedText.replacingOccurrences(of: "__", with: "-")
}
return fixedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var fixedText = text
fixedText = fixedText.replacingOccurrences(of: " ", with: "_")
if fixedText.contains("__") {
fixedText = fixedText.replacingOccurrences(of: "__", with: "-")
}
return fixedText
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += String(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += String(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += String(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
for char in text {
if char == " " {
result += "_"
} else {
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if !fileExtension[1].hasPrefix(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if !fileExtension[1].hasPrefix(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
```
if !fileExtension[0].hasPrefix(CharacterSet.letters) { // instance method 'hasPrefix' requires that 'CharacterSet' conform to 'StringProtocol'
if !fileExtension[1].hasPrefix(["txt", "exe", "dll"]) { // instance method 'hasPrefix' requires that '[String]' conform to 'StringProtocol'
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if !fileExtension[1].hasPrefix(CharacterSet.letters) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileExtension[1]) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if !fileExtension[1].hasPrefix(CharacterSet.letters) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileExtension[1]) {
return "No"
}
return "Yes"
}
```
if !fileExtension[0].hasPrefix(CharacterSet.letters) { // instance method 'hasPrefix' requires that 'CharacterSet' conform to 'StringProtocol'
if !fileExtension[1].hasPrefix(CharacterSet.letters) { // instance method 'hasPrefix' requires that 'CharacterSet' conform to 'StringProtocol'
func fileNameCheck(fileName: String) -> String {
let regex = "^[a-zA-Z][a-zA-Z0-9]{0,2}\\.[txt|exe|dll]$"
let range = NSRange(location: 0, length: fileName.count)
let matches = regex.rangeOfCharacter(from: .letters, options: .caseInsensitive, range: range)
if matches.location == NSNotFound {
return "No"
}
let substring = fileName[matches.range]
if substring.count > 3 {
return "No"
}
if substring.contains(".") {
return "No"
}
if substring.hasPrefix("txt") || substring.hasPrefix("exe") || substring.hasPrefix("dll") {
return "Yes"
}
return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let regex = "^[a-zA-Z][a-zA-Z0-9]{0,2}\\.[txt|exe|dll]$"
let range = NSRange(location: 0, length: fileName.count)
let matches = regex.rangeOfCharacter(from: .letters, options: .caseInsensitive, range: range)
if matches.location == NSNotFound {
return "No"
}
let substring = fileName[matches.range]
if substring.count > 3 {
return "No"
}
if substring.contains(".") {
return "No"
}
if substring.hasPrefix("txt") || substring.hasPrefix("exe") || substring.hasPrefix("dll") {
return "Yes"
}
return "No"
}
```
let matches = regex.rangeOfCharacter(from: .letters, options: .caseInsensitive, range: range) // cannot convert value of type 'NSRange' (aka '_NSRange') to expected argument type 'Range<String.Index>?'
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileExtension[1]) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileExtension[1]) {
return "No"
}
return "Yes"
}
```
if !fileExtension[0].hasPrefix(CharacterSet.letters) { // instance method 'hasPrefix' requires that 'CharacterSet' conform to 'StringProtocol'
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if fileExtension[1] != "txt" && fileExtension[1] != "exe" && fileExtension[1] != "dll" {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if fileExtension[1] != "txt" && fileExtension[1] != "exe" && fileExtension[1] != "dll" {
return "No"
}
return "Yes"
}
```
if !fileExtension[0].hasPrefix(CharacterSet.letters) { // instance method 'hasPrefix' requires that 'CharacterSet' conform to 'StringProtocol'
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if !fileExtension[1].hasPrefix(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if !fileExtension[1].hasPrefix(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
```
if !fileExtension[0].hasPrefix(CharacterSet.letters) { // instance method 'hasPrefix' requires that 'CharacterSet' conform to 'StringProtocol'
if !fileExtension[1].hasPrefix(["txt", "exe", "dll"]) { // instance method 'hasPrefix' requires that '[String]' conform to 'StringProtocol'
func fileNameCheck(fileName: String) -> String {
let regex = try! NSRegularExpression(pattern: "^[a-zA-Z][a-zA-Z0-9]{0,2}\\.[txt|exe|dll]$")
return regex.firstMatch(in: fileName, options: [], range: NSRange(location: 0, length: fileName.count)) != nil ? "Yes" : "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let regex = try! NSRegularExpression(pattern: "^[a-zA-Z][a-zA-Z0-9]{0,2}\\.[txt|exe|dll]$")
return regex.firstMatch(in: fileName, options: [], range: NSRange(location: 0, length: fileName.count)) != nil ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if fileExtension[1] != "txt" && fileExtension[1] != "exe" && fileExtension[1] != "dll" {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let fileExtension = fileName.split(separator: ".")
if fileExtension.count > 3 {
return "No"
}
if fileExtension.count == 1 {
return "No"
}
if fileExtension[0].isEmpty {
return "No"
}
if !fileExtension[0].hasPrefix(CharacterSet.letters) {
return "No"
}
if fileExtension[1] != "txt" && fileExtension[1] != "exe" && fileExtension[1] != "dll" {
return "No"
}
return "Yes"
}
```
if !fileExtension[0].hasPrefix(CharacterSet.letters) { // instance method 'hasPrefix' requires that 'CharacterSet' conform to 'StringProtocol'
func fileNameCheck(fileName: String) -> String {
let nameComponents = fileName.components(separatedBy: ".")
guard nameComponents.count == 2 else { return "No" }
guard nameComponents[0].count <= 3 else { return "No" }
guard nameComponents[0].range(of: #"^[a-zA-Z]"#, options: .regularExpression) != nil else { return "No" }
guard ["txt", "exe", "dll"].contains(nameComponents[1]) else { return "No" }
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let nameComponents = fileName.components(separatedBy: ".")
guard nameComponents.count == 2 else { return "No" }
guard nameComponents[0].count <= 3 else { return "No" }
guard nameComponents[0].range(of: #"^[a-zA-Z]"#, options: .regularExpression) != nil else { return "No" }
guard ["txt", "exe", "dll"].contains(nameComponents[1]) else { return "No" }
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let fileNameComponents = fileName.components(separatedBy: ".")
guard fileNameComponents.count == 2 else { return "No" }
guard fileNameComponents[0].count <= 3 else { return "No" }
guard fileNameComponents[0].first != nil && fileNameComponents[0].first!.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(fileNameComponents[1]) else { return "No" }
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let fileNameComponents = fileName.components(separatedBy: ".")
guard fileNameComponents.count == 2 else { return "No" }
guard fileNameComponents[0].count <= 3 else { return "No" }
guard fileNameComponents[0].first != nil && fileNameComponents[0].first!.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(fileNameComponents[1]) else { return "No" }
return "Yes"
}
```
// XCTAssertTrue failed
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number < 2 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ number: Int) -> Bool {
if number < 2 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 { return false }
for i in 2..<n {
if n % i == 0 { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 { return false }
for i in 2..<n {
if n % i == 0 { return false }
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 { return false }
for i in 2..<n {
if n % i == 0 { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 { return false }
for i in 2..<n {
if n % i == 0 { return false }
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ n: Int) -> Bool {
if n == 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/").first!)!
let xDenominator = Int(x.split(separator: "/").last!)!
let nNumerator = Int(n.split(separator: "/").first!)!
let nDenominator = Int(n.split(separator: "/").last!)!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/").first!)!
let xDenominator = Int(x.split(separator: "/").last!)!
let nNumerator = Int(n.split(separator: "/").first!)!
let nDenominator = Int(n.split(separator: "/").last!)!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.components(separatedBy: "/")[0])!
let xDenominator = Int(x.components(separatedBy: "/")[1])!
let nNumerator = Int(n.components(separatedBy: "/")[0])!
let nDenominator = Int(n.components(separatedBy: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.components(separatedBy: "/")[0])!
let xDenominator = Int(x.components(separatedBy: "/")[1])!
let nNumerator = Int(n.components(separatedBy: "/")[0])!
let nDenominator = Int(n.components(separatedBy: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xNumerator = x.components(separatedBy: "/").first
let xDenominator = x.components(separatedBy: "/").last
let nNumerator = n.components(separatedBy: "/").first
let nDenominator = n.components(separatedBy: "/").last
if xNumerator == nNumerator && xDenominator == nDenominator {
return true
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xNumerator = x.components(separatedBy: "/").first
let xDenominator = x.components(separatedBy: "/").last
let nNumerator = n.components(separatedBy: "/").first
let nDenominator = n.components(separatedBy: "/").last
if xNumerator == nNumerator && xDenominator == nDenominator {
return true
}
return false
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/")[0])!
let xDenominator = Int(x.split(separator: "/")[1])!
let nNumerator = Int(n.split(separator: "/")[0])!
let nDenominator = Int(n.split(separator: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/")[0])!
let xDenominator = Int(x.split(separator: "/")[1])!
let nNumerator = Int(n.split(separator: "/")[0])!
let nDenominator = Int(n.split(separator: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xComponents = x.components(separatedBy: "/")
let nComponents = n.components(separatedBy: "/")
let xNumerator = Int(xComponents[0])!
let xDenominator = Int(xComponents[1])!
let nNumerator = Int(nComponents[0])!
let nDenominator = Int(nComponents[1])!
let xValue = Double(xNumerator) / Double(xDenominator)
let nValue = Double(nNumerator) / Double(nDenominator)
let result = xValue * nValue
return result.truncatingRemainder(dividingBy: 1) == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.components(separatedBy: "/")
let nComponents = n.components(separatedBy: "/")
let xNumerator = Int(xComponents[0])!
let xDenominator = Int(xComponents[1])!
let nNumerator = Int(nComponents[0])!
let nDenominator = Int(nComponents[1])!
let xValue = Double(xNumerator) / Double(xDenominator)
let nValue = Double(nNumerator) / Double(nDenominator)
let result = xValue * nValue
return result.truncatingRemainder(dividingBy: 1) == 0
}
```
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/")[0])!
let xDenominator = Int(x.split(separator: "/")[1])!
let nNumerator = Int(n.split(separator: "/")[0])!
let nDenominator = Int(n.split(separator: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/")[0])!
let xDenominator = Int(x.split(separator: "/")[1])!
let nNumerator = Int(n.split(separator: "/")[0])!
let nDenominator = Int(n.split(separator: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xComponents = x.components(separatedBy: "/")
let nComponents = n.components(separatedBy: "/")
let xNumerator = Int(xComponents[0])!
let xDenominator = Int(xComponents[1])!
let nNumerator = Int(nComponents[0])!
let nDenominator = Int(nComponents[1])!
let result = xNumerator * nNumerator
return result % nDenominator == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xComponents = x.components(separatedBy: "/")
let nComponents = n.components(separatedBy: "/")
let xNumerator = Int(xComponents[0])!
let xDenominator = Int(xComponents[1])!
let nNumerator = Int(nComponents[0])!
let nDenominator = Int(nComponents[1])!
let result = xNumerator * nNumerator
return result % nDenominator == 0
}
```
let xDenominator = Int(xComponents[1])! // initialization of immutable value 'xDenominator' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/")[0])!
let xDenominator = Int(x.split(separator: "/")[1])!
let nNumerator = Int(n.split(separator: "/")[0])!
let nDenominator = Int(n.split(separator: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/")[0])!
let xDenominator = Int(x.split(separator: "/")[1])!
let nNumerator = Int(n.split(separator: "/")[0])!
let nDenominator = Int(n.split(separator: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/")[0])!
let xDenominator = Int(x.split(separator: "/")[1])!
let nNumerator = Int(n.split(separator: "/")[0])!
let nDenominator = Int(n.split(separator: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.split(separator: "/")[0])!
let xDenominator = Int(x.split(separator: "/")[1])!
let nNumerator = Int(n.split(separator: "/")[0])!
let nDenominator = Int(n.split(separator: "/")[1])!
let result = xNumerator * nDenominator == xDenominator * nNumerator
return result
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.components(separatedBy: "/")[0])!
let xDenominator = Int(x.components(separatedBy: "/")[1])!
let nNumerator = Int(n.components(separatedBy: "/")[0])!
let nDenominator = Int(n.components(separatedBy: "/")[1])!
if xNumerator * nDenominator == xDenominator * nNumerator {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xNumerator = Int(x.components(separatedBy: "/")[0])!
let xDenominator = Int(x.components(separatedBy: "/")[1])!
let nNumerator = Int(n.components(separatedBy: "/")[0])!
let nDenominator = Int(n.components(separatedBy: "/")[1])!
if xNumerator * nDenominator == xDenominator * nNumerator {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count where result[i].digitsSum() == result[i + 1].digitsSum() {
result[i].digitsSum() < result[i + 1].digitsSum()
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count where result[i].digitsSum() == result[i + 1].digitsSum() {
result[i].digitsSum() < result[i + 1].digitsSum()
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() } // variable 'result' was never mutated; consider changing to 'let' constant
result[i].digitsSum() < result[i + 1].digitsSum() // result of operator '<' is unused
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
result[i].digitsSum() < result[i+1].digitsSum() { // reference to member 'digitsSum' cannot be resolved without a contextual type
result[i].digitsSum() < result[i+1].digitsSum() { // no exact matches in call to subscript
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
result[i].digitsSum() < result[i+1].digitsSum() { // reference to member 'digitsSum' cannot be resolved without a contextual type
result[i].digitsSum() < result[i+1].digitsSum() { // no exact matches in call to subscript
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
result[i].digitsSum() < result[i+1].digitsSum() { // reference to member 'digitsSum' cannot be resolved without a contextual type
result[i].digitsSum() < result[i+1].digitsSum() { // no exact matches in call to subscript
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
result[i].digitsSum() < result[i+1].digitsSum() { // reference to member 'digitsSum' cannot be resolved without a contextual type
result[i].digitsSum() < result[i+1].digitsSum() { // no exact matches in call to subscript
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count where result[i].digitsSum() == result[i + 1].digitsSum() {
result[i].digitsSum() < result[i + 1].digitsSum()
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count where result[i].digitsSum() == result[i + 1].digitsSum() {
result[i].digitsSum() < result[i + 1].digitsSum()
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() } // variable 'result' was never mutated; consider changing to 'let' constant
result[i].digitsSum() < result[i + 1].digitsSum() // result of operator '<' is unused
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
result[i].digitsSum() < result[i+1].digitsSum() { // reference to member 'digitsSum' cannot be resolved without a contextual type
result[i].digitsSum() < result[i+1].digitsSum() { // no exact matches in call to subscript
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
result[i].digitsSum() < result[i+1].digitsSum() { // reference to member 'digitsSum' cannot be resolved without a contextual type
result[i].digitsSum() < result[i+1].digitsSum() { // no exact matches in call to subscript
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
result[i].digitsSum() < result[i+1].digitsSum() { // reference to member 'digitsSum' cannot be resolved without a contextual type
result[i].digitsSum() < result[i+1].digitsSum() { // no exact matches in call to subscript
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = nums.sorted { $0.digitsSum() < $1.digitsSum() }
for i in 0..<result.count-1 where result[i].digitsSum() == result[i+1].digitsSum() {
result[i].digitsSum() < result[i+1].digitsSum() {
result.swapAt(i, i+1)
}
}
return result
}
extension Int {
func digitsSum() -> Int {
var sum = 0
for digit in String(self).compactMap(Int.init) {
sum += digit
}
return sum
}
}
```
result[i].digitsSum() < result[i+1].digitsSum() { // reference to member 'digitsSum' cannot be resolved without a contextual type
result[i].digitsSum() < result[i+1].digitsSum() { // no exact matches in call to subscript
for digit in String(self).compactMap(Int.init) { // cannot convert value of type '() -> Int' to expected argument type '(String.Element) throws -> Int?' (aka '(Character) throws -> Optional<Int>')
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && (num % 10) % 2 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var count = 0
for i in 1..<n {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var count = 0
for i in 1..<n {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
func getMaxTriples(n: Int) -> Int {
var count = 0
for i in 1..<n {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var count = 0
for i in 1..<n {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var count = 0
for i in 1..<n {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var count = 0
for i in 1..<n {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
func getMaxTriples(n: Int) -> Int {
var count = 0
for i in 1..<n {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var count = 0
for i in 1..<n {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
if a[i] + a[j] + a[k] % 3 == 0 { // cannot find 'a' in scope
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1..<n {
a[i] = i * i - i + 1
}
var count = 0
for i in 1..<n-1 {
for j in i+1..<n {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthWords = lst.filter { $0.count % 2 == 1 }
let evenLengthWords = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthWords = evenLengthWords.sorted { $0.count < $1.count }
let sortedOddLengthWords = oddLengthWords.sorted { $0 < $1 }
return sortedEvenLengthWords + sortedOddLengthWords
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthWords = lst.filter { $0.count % 2 == 1 }
let evenLengthWords = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthWords = evenLengthWords.sorted { $0.count < $1.count }
let sortedOddLengthWords = oddLengthWords.sorted { $0 < $1 }
return sortedEvenLengthWords + sortedOddLengthWords
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthWords = lst.filter { $0.count % 2 == 1 }
let evenLengthWords = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthWords = evenLengthWords.sorted { $0.count < $1.count }
let sortedOddLengthWords = oddLengthWords.sorted { $0.count < $1.count }
return sortedEvenLengthWords + sortedOddLengthWords
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthWords = lst.filter { $0.count % 2 == 1 }
let evenLengthWords = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthWords = evenLengthWords.sorted { $0.count < $1.count }
let sortedOddLengthWords = oddLengthWords.sorted { $0.count < $1.count }
return sortedEvenLengthWords + sortedOddLengthWords
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthWords = lst.filter { $0.count % 2 == 1 }
let evenLengthWords = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthWords = evenLengthWords.sorted { $0.count < $1.count }
let sortedOddLengthWords = oddLengthWords.sorted { $0.count < $1.count }
return sortedEvenLengthWords + sortedOddLengthWords
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthWords = lst.filter { $0.count % 2 == 1 }
let evenLengthWords = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthWords = evenLengthWords.sorted { $0.count < $1.count }
let sortedOddLengthWords = oddLengthWords.sorted { $0.count < $1.count }
return sortedEvenLengthWords + sortedOddLengthWords
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let oddLengthStrings = lst.filter { $0.count % 2 == 1 }
let evenLengthStrings = lst.filter { $0.count % 2 == 0 }
let sortedEvenLengthStrings = evenLengthStrings.sorted { $0.count < $1.count }
let sortedOddLengthStrings = oddLengthStrings.sorted { $0.count < $1.count }
return sortedEvenLengthStrings + sortedOddLengthStrings
}
```
// XCTAssertTrue failed
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n.isPrime {
return x
} else {
return y
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n.isPrime {
return x
} else {
return y
}
}
```
if n.isPrime { // value of type 'Int' has no member 'isPrime'
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your logic to check if n is prime
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your logic to check if n is prime
return true
}
```
// XCTAssertTrue failed
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your own logic to check if a number is prime
// For example, you can use the Sieve of Eratosthenes algorithm
// or the Miller-Rabin primality test
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your own logic to check if a number is prime
// For example, you can use the Sieve of Eratosthenes algorithm
// or the Miller-Rabin primality test
return false
}
```
// XCTAssertTrue failed
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n.isPrime {
return x
} else {
return y
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n.isPrime {
return x
} else {
return y
}
}
```
if n.isPrime { // value of type 'Int' has no member 'isPrime'
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your logic to check if n is prime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your logic to check if n is prime
}
```
} // missing return in global function expected to return 'Bool'
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your own logic to check if a number is prime
// For example, you can use the Sieve of Eratosthenes algorithm
return n % 2 == 0 && n > 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your own logic to check if a number is prime
// For example, you can use the Sieve of Eratosthenes algorithm
return n % 2 == 0 && n > 2
}
```
// XCTAssertTrue failed
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n.isPrime {
return x
} else {
return y
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n.isPrime {
return x
} else {
return y
}
}
```
if n.isPrime { // value of type 'Int' has no member 'isPrime'
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your own logic to check if a number is prime
return n % 2 == 0 && n > 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your own logic to check if a number is prime
return n % 2 == 0 && n > 2
}
```
// XCTAssertTrue failed
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your own logic to check if a number is prime
// For example, you can use the Sieve of Eratosthenes algorithm
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your own logic to check if a number is prime
// For example, you can use the Sieve of Eratosthenes algorithm
return false
}
```
// XCTAssertTrue failed
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your logic to check if n is prime
// For example, you can use the Sieve of Eratosthenes algorithm
return n % 2 != 0 && n % 3 != 0 && n % 5 != 0 && n % 7 != 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(_ n: Int) -> Bool {
// Implement your logic to check if n is prime
// For example, you can use the Sieve of Eratosthenes algorithm
return n % 2 != 0 && n % 3 != 0 && n % 5 != 0 && n % 7 != 0
}
```
// XCTAssertTrue failed
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0.0
var sumOfEvenSquares = 0.0
for num in lst {
if num.isNaN || num < 0 {
continue
}
if num.isOdd {
sumOfOddSquares += num * num
} else {
sumOfEvenSquares += num * num
}
}
return Int(sumOfOddSquares - sumOfEvenSquares)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0.0
var sumOfEvenSquares = 0.0
for num in lst {
if num.isNaN || num < 0 {
continue
}
if num.isOdd {
sumOfOddSquares += num * num
} else {
sumOfEvenSquares += num * num
}
}
return Int(sumOfOddSquares - sumOfEvenSquares)
}
```
if num.isOdd { // value of type 'Double' has no member 'isOdd'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0.0
var sumOfEvenSquares = 0.0
for num in lst {
if num.isInteger {
if num.isOdd {
sumOfOddSquares += num * num
} else {
sumOfEvenSquares += num * num
}
}
}
return Int(sumOfOddSquares - sumOfEvenSquares)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0.0
var sumOfEvenSquares = 0.0
for num in lst {
if num.isInteger {
if num.isOdd {
sumOfOddSquares += num * num
} else {
sumOfEvenSquares += num * num
}
}
}
return Int(sumOfOddSquares - sumOfEvenSquares)
}
```
if num.isInteger { // value of type 'Double' has no member 'isInteger'
if num.isOdd { // value of type 'Double' has no member 'isOdd'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
sumOfOddSquares += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
sumOfOddSquares += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOddSquares += num * num
}
}
return sumOddSquares
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOddSquares += num * num
}
}
return sumOddSquares
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
sumOddSquares += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
sumOfOddSquares += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
sumOfOddSquares += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
sumOfOddSquares += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isMultiple(of: 2) {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
sumOfOddSquares += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isInteger && num > 0 {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sumOfOddSquares = 0
for num in lst {
if num.isInteger && num > 0 {
sumOfOddSquares += num * num
}
}
return sumOfOddSquares
}
```
if num.isInteger && num > 0 { // value of type 'Double' has no member 'isInteger'
sumOfOddSquares += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = Double(extension.uppercased().count)
let sm = Double(extension.lowercased().count)
let strength = cap - sm
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = Double(extension.uppercased().count)
let sm = Double(extension.lowercased().count)
let strength = cap - sm
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let cap = Double(extension.uppercased().count) // consecutive statements on a line must be separated by ';'
let cap = Double(extension.uppercased().count) // expected '{' in extension
let cap = Double(extension.uppercased().count) // declaration is only valid at file scope
let cap = Double(extension.uppercased().count) // expected expression in list of expressions
let cap = Double(extension.uppercased().count) // expected type name in extension declaration
let sm = Double(extension.lowercased().count) // expected expression in list of expressions
let sm = Double(extension.lowercased().count) // expected type name in extension declaration
let sm = Double(extension.lowercased().count) // consecutive statements on a line must be separated by ';'
let sm = Double(extension.lowercased().count) // expected '{' in extension
let sm = Double(extension.lowercased().count) // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let capCount = extension.uppercased().count
let smCount = extension.lowercased().count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return className + "." + strongestExtension!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let capCount = extension.uppercased().count
let smCount = extension.lowercased().count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return className + "." + strongestExtension!
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let capCount = extension.uppercased().count // expected type name in extension declaration
let capCount = extension.uppercased().count // expected initial value after '='
let capCount = extension.uppercased().count // declaration is only valid at file scope
let capCount = extension.uppercased().count // consecutive statements on a line must be separated by ';'
let capCount = extension.uppercased().count // expected '{' in extension
let smCount = extension.lowercased().count // expected '{' in extension
let smCount = extension.lowercased().count // consecutive statements on a line must be separated by ';'
let smCount = extension.lowercased().count // expected initial value after '='
let smCount = extension.lowercased().count // declaration is only valid at file scope
let smCount = extension.lowercased().count // expected type name in extension declaration
let strength = Double(capCount - smCount) // no exact matches in call to initializer
strongestExtension = extension // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = Double(extension.uppercased().count)
let sm = Double(extension.lowercased().count)
let strength = cap - sm
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = Double(extension.uppercased().count)
let sm = Double(extension.lowercased().count)
let strength = cap - sm
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let cap = Double(extension.uppercased().count) // consecutive statements on a line must be separated by ';'
let cap = Double(extension.uppercased().count) // expected '{' in extension
let cap = Double(extension.uppercased().count) // declaration is only valid at file scope
let cap = Double(extension.uppercased().count) // expected expression in list of expressions
let cap = Double(extension.uppercased().count) // expected type name in extension declaration
let sm = Double(extension.lowercased().count) // expected expression in list of expressions
let sm = Double(extension.lowercased().count) // expected type name in extension declaration
let sm = Double(extension.lowercased().count) // consecutive statements on a line must be separated by ';'
let sm = Double(extension.lowercased().count) // expected '{' in extension
let sm = Double(extension.lowercased().count) // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let capCount = extension.uppercased().count
let smCount = extension.lowercased().count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return className + "." + strongestExtension!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let capCount = extension.uppercased().count
let smCount = extension.lowercased().count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return className + "." + strongestExtension!
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let capCount = extension.uppercased().count // expected type name in extension declaration
let capCount = extension.uppercased().count // expected initial value after '='
let capCount = extension.uppercased().count // declaration is only valid at file scope
let capCount = extension.uppercased().count // consecutive statements on a line must be separated by ';'
let capCount = extension.uppercased().count // expected '{' in extension
let smCount = extension.lowercased().count // expected '{' in extension
let smCount = extension.lowercased().count // consecutive statements on a line must be separated by ';'
let smCount = extension.lowercased().count // expected initial value after '='
let smCount = extension.lowercased().count // declaration is only valid at file scope
let smCount = extension.lowercased().count // expected type name in extension declaration
let strength = Double(capCount - smCount) // no exact matches in call to initializer
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = extension.uppercased().count
let sm = extension.lowercased().count
let strength = Double(cap - sm)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = extension.uppercased().count
let sm = extension.lowercased().count
let strength = Double(cap - sm)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let cap = extension.uppercased().count // expected '{' in extension
let cap = extension.uppercased().count // expected initial value after '='
let cap = extension.uppercased().count // expected type name in extension declaration
let cap = extension.uppercased().count // consecutive statements on a line must be separated by ';'
let cap = extension.uppercased().count // declaration is only valid at file scope
let sm = extension.lowercased().count // declaration is only valid at file scope
let sm = extension.lowercased().count // expected '{' in extension
let sm = extension.lowercased().count // consecutive statements on a line must be separated by ';'
let sm = extension.lowercased().count // expected initial value after '='
let sm = extension.lowercased().count // expected type name in extension declaration
let strength = Double(cap - sm) // no exact matches in call to initializer
strongestExtension = extension // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return className + "." + strongestExtension!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return className + "." + strongestExtension!
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let capCount = extension.filter { $0.isUppercase }.count // declaration is only valid at file scope
let capCount = extension.filter { $0.isUppercase }.count // expected '{' in extension
let capCount = extension.filter { $0.isUppercase }.count // expected initial value after '='
let capCount = extension.filter { $0.isUppercase }.count // expected type name in extension declaration
let capCount = extension.filter { $0.isUppercase }.count // consecutive statements on a line must be separated by ';'
let smCount = extension.filter { $0.isLowercase }.count // expected initial value after '='
let smCount = extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let smCount = extension.filter { $0.isLowercase }.count // expected '{' in extension
let smCount = extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
let smCount = extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let strength = Double(capCount - smCount) // no exact matches in call to initializer
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = Double(extension.filter { $0.isUppercase }.count)
let sm = Double(extension.filter { $0.isLowercase }.count)
let strength = cap - sm
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = Double(extension.filter { $0.isUppercase }.count)
let sm = Double(extension.filter { $0.isLowercase }.count)
let strength = cap - sm
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let cap = Double(extension.filter { $0.isUppercase }.count) // expected '{' in extension
let cap = Double(extension.filter { $0.isUppercase }.count) // consecutive statements on a line must be separated by ';'
let cap = Double(extension.filter { $0.isUppercase }.count) // expected expression in list of expressions
let cap = Double(extension.filter { $0.isUppercase }.count) // expected type name in extension declaration
let cap = Double(extension.filter { $0.isUppercase }.count) // declaration is only valid at file scope
let sm = Double(extension.filter { $0.isLowercase }.count) // consecutive statements on a line must be separated by ';'
let sm = Double(extension.filter { $0.isLowercase }.count) // declaration is only valid at file scope
let sm = Double(extension.filter { $0.isLowercase }.count) // expected expression in list of expressions
let sm = Double(extension.filter { $0.isLowercase }.count) // expected '{' in extension
let sm = Double(extension.filter { $0.isLowercase }.count) // expected type name in extension declaration
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = Double(extension.filter { $0.isUppercase }.count)
let sm = Double(extension.filter { $0.isLowercase }.count)
let strength = cap - sm
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return className + "." + strongestExtension!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0
for extension in extensions {
let cap = Double(extension.filter { $0.isUppercase }.count)
let sm = Double(extension.filter { $0.isLowercase }.count)
let strength = cap - sm
if strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return className + "." + strongestExtension!
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let cap = Double(extension.filter { $0.isUppercase }.count) // expected '{' in extension
let cap = Double(extension.filter { $0.isUppercase }.count) // consecutive statements on a line must be separated by ';'
let cap = Double(extension.filter { $0.isUppercase }.count) // expected expression in list of expressions
let cap = Double(extension.filter { $0.isUppercase }.count) // expected type name in extension declaration
let cap = Double(extension.filter { $0.isUppercase }.count) // declaration is only valid at file scope
let sm = Double(extension.filter { $0.isLowercase }.count) // consecutive statements on a line must be separated by ';'
let sm = Double(extension.filter { $0.isLowercase }.count) // declaration is only valid at file scope
let sm = Double(extension.filter { $0.isLowercase }.count) // expected expression in list of expressions
let sm = Double(extension.filter { $0.isLowercase }.count) // expected '{' in extension
let sm = Double(extension.filter { $0.isLowercase }.count) // expected type name in extension declaration
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let class_name = className.lowercased()
let extensions = extensions.map { $0.lowercased() }
let strongest_extension = extensions.sorted { $0.count - $1.count }.first
return "\(class_name).\(strongest_extension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let class_name = className.lowercased()
let extensions = extensions.map { $0.lowercased() }
let strongest_extension = extensions.sorted { $0.count - $1.count }.first
return "\(class_name).\(strongest_extension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let strongest_extension = extensions.sorted { $0.count - $1.count }.first // cannot convert value of type 'Int' to closure result type 'Bool'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double?
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strongestStrength == nil || strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double?
for extension in extensions {
let capCount = extension.filter { $0.isUppercase }.count
let smCount = extension.filter { $0.isLowercase }.count
let strength = Double(capCount - smCount)
if strongestStrength == nil || strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
} else if strength == strongestStrength && extension < strongestExtension {
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let capCount = extension.filter { $0.isUppercase }.count // declaration is only valid at file scope
let capCount = extension.filter { $0.isUppercase }.count // expected '{' in extension
let capCount = extension.filter { $0.isUppercase }.count // expected initial value after '='
let capCount = extension.filter { $0.isUppercase }.count // expected type name in extension declaration
let capCount = extension.filter { $0.isUppercase }.count // consecutive statements on a line must be separated by ';'
let smCount = extension.filter { $0.isLowercase }.count // expected initial value after '='
let smCount = extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let smCount = extension.filter { $0.isLowercase }.count // expected '{' in extension
let smCount = extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
let smCount = extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let strength = Double(capCount - smCount) // no exact matches in call to initializer
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // expected '{' in extension
strongestStrength = strength // cannot find type 'strongestStrength' in scope
} else if strength == strongestStrength && extension < strongestExtension { // expected type name in extension declaration
} else if strength == strongestStrength && extension < strongestExtension { // declaration is only valid at file scope
} else if strength == strongestStrength && extension < strongestExtension { // expected '{' in extension
} else if strength == strongestStrength && extension < strongestExtension { // expected expression after operator
func cycpatternCheck(a: String, b: String) -> Bool {
let aRotations = a.rotations()
let bRotations = b.rotations()
return aRotations.contains(b) || bRotations.contains(a)
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let substring = self[i..<count]
rotations.append(substring)
}
return rotations
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aRotations = a.rotations()
let bRotations = b.rotations()
return aRotations.contains(b) || bRotations.contains(a)
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let substring = self[i..<count]
rotations.append(substring)
}
return rotations
}
}
```
let substring = self[i..<count] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i).prefix(bChars.count - i))
if a.contains(rotatedB) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i).prefix(bChars.count - i))
if a.contains(rotatedB) {
return true
}
}
return false
}
```
let aChars = Array(a) // initialization of immutable value 'aChars' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i).prefix(bChars.count - i))
if a.contains(rotatedB) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i).prefix(bChars.count - i))
if a.contains(rotatedB) {
return true
}
}
return false
}
```
let aChars = Array(a) // initialization of immutable value 'aChars' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i).prefix(bChars.count - i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i).prefix(bChars.count - i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: bChars.count - i) + bChars.prefix(i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: bChars.count - i) + bChars.prefix(i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i).prefix(bChars.count - i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i).prefix(bChars.count - i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: bChars.count - i) + bChars.prefix(upTo: bChars.count - i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: bChars.count - i) + bChars.prefix(upTo: bChars.count - i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
for i in 0..<b.count {
let rotation = b.suffix(b.count - i) + b.prefix(i)
if a.contains(rotation) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
for i in 0..<b.count {
let rotation = b.suffix(b.count - i) + b.prefix(i)
if a.contains(rotation) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i) + bChars.prefix(i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let aChars = Array(a)
let bChars = Array(b)
for i in 0..<bChars.count {
let rotatedB = String(bChars.suffix(from: i) + bChars.prefix(i))
if aChars.contains(rotatedB) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
for i in 0..<b.count {
let rotation = b.suffix(b.count - i) + b.prefix(i)
if a.contains(rotation) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
for i in 0..<b.count {
let rotation = b.suffix(b.count - i) + b.prefix(i)
if a.contains(rotation) {
return true
}
}
return false
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).digits {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).digits { // value of type 'String' has no member 'digits'
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman = "i" + roman
case 2:
roman = "ii" + roman
case 3:
roman = "iii" + roman
case 4:
roman = "iv" + roman
case 5:
roman = "v" + roman
case 6:
roman = "vi" + roman
case 7:
roman = "vii" + roman
case 8:
roman = "viii" + roman
case 9:
roman = "ix" + roman
default:
break
}
num /= 10
}
return roman
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman = "i" + roman
case 2:
roman = "ii" + roman
case 3:
roman = "iii" + roman
case 4:
roman = "iv" + roman
case 5:
roman = "v" + roman
case 6:
roman = "vi" + roman
case 7:
roman = "vii" + roman
case 8:
roman = "viii" + roman
case 9:
roman = "ix" + roman
default:
break
}
num /= 10
}
return roman
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman = "i" + roman
case 2:
roman = "ii" + roman
case 3:
roman = "iii" + roman
case 4:
roman = "iv" + roman
case 5:
roman = "v" + roman
case 6:
roman = "vi" + roman
case 7:
roman = "vii" + roman
case 8:
roman = "viii" + roman
case 9:
roman = "ix" + roman
default:
break
}
num /= 10
}
return roman
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman = "i" + roman
case 2:
roman = "ii" + roman
case 3:
roman = "iii" + roman
case 4:
roman = "iv" + roman
case 5:
roman = "v" + roman
case 6:
roman = "vi" + roman
case 7:
roman = "vii" + roman
case 8:
roman = "viii" + roman
case 9:
roman = "ix" + roman
default:
break
}
num /= 10
}
return roman
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman = "i" + roman
case 2:
roman = "ii" + roman
case 3:
roman = "iii" + roman
case 4:
roman = "iv" + roman
case 5:
roman = "v" + roman
case 6:
roman = "vi" + roman
case 7:
roman = "vii" + roman
case 8:
roman = "viii" + roman
case 9:
roman = "ix" + roman
default:
break
}
num /= 10
}
return roman.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman = "i" + roman
case 2:
roman = "ii" + roman
case 3:
roman = "iii" + roman
case 4:
roman = "iv" + roman
case 5:
roman = "v" + roman
case 6:
roman = "vi" + roman
case 7:
roman = "vii" + roman
case 8:
roman = "viii" + roman
case 9:
roman = "ix" + roman
default:
break
}
num /= 10
}
return roman.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var romanNumeral = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
romanNumeral = "i" + romanNumeral
case 2:
romanNumeral = "ii" + romanNumeral
case 3:
romanNumeral = "iii" + romanNumeral
case 4:
romanNumeral = "iv" + romanNumeral
case 5:
romanNumeral = "v" + romanNumeral
case 6:
romanNumeral = "vi" + romanNumeral
case 7:
romanNumeral = "vii" + romanNumeral
case 8:
romanNumeral = "viii" + romanNumeral
case 9:
romanNumeral = "ix" + romanNumeral
default:
break
}
num /= 10
}
return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var romanNumeral = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
romanNumeral = "i" + romanNumeral
case 2:
romanNumeral = "ii" + romanNumeral
case 3:
romanNumeral = "iii" + romanNumeral
case 4:
romanNumeral = "iv" + romanNumeral
case 5:
romanNumeral = "v" + romanNumeral
case 6:
romanNumeral = "vi" + romanNumeral
case 7:
romanNumeral = "vii" + romanNumeral
case 8:
romanNumeral = "viii" + romanNumeral
case 9:
romanNumeral = "ix" + romanNumeral
default:
break
}
num /= 10
}
return romanNumeral.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
switch num % 10 {
case 1:
roman += "i"
case 2:
roman += "ii"
case 3:
roman += "iii"
case 4:
roman += "iv"
case 5:
roman += "v"
case 6:
roman += "vi"
case 7:
roman += "vii"
case 8:
roman += "viii"
case 9:
roman += "ix"
default:
break
}
num /= 10
}
return roman
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return a*a + b*b == c*c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return a*a + b*b == c*c
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return a*a + b*b == c*c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
return a*a + b*b == c*c
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
if a*a + b*b == c*c {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
let uniqueChars = Set(word.characters) // 'characters' is unavailable: Please use String directly
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
let uniqueChars = Set(word.characters) // 'characters' is unavailable: Please use String directly
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
let uniqueChars = Set(word.characters) // 'characters' is unavailable: Please use String directly
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
let uniqueChars = Set(word.characters) // 'characters' is unavailable: Please use String directly
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxUniqueWord = word
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
} else if uniqueChars == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord: String?
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord ?? ""
}
```
let uniqueChars = Set(word.characters) // 'characters' is unavailable: Please use String directly
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord { // value of optional type 'String?' must be unwrapped to a value of type 'String'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left >= need {
eaten += need - left
left = 0
} else {
eaten += left
left = 0
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left >= need {
eaten += need - left
left = 0
} else {
eaten += left
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left < need {
eaten += left
left = 0
} else {
eaten += need - left
left = 0
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left < need {
eaten += left
left = 0
} else {
eaten += need - left
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten > need {
eaten = need
left = 0
} else if eaten < need {
eaten += remaining
left = 0
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten > need {
eaten = need
left = 0
} else if eaten < need {
eaten += remaining
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten >= need {
return [eaten, left]
}
if left < need - eaten {
eaten += left
left = 0
} else {
eaten += need - eaten
left -= need - eaten
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten >= need {
return [eaten, left]
}
if left < need - eaten {
eaten += left
left = 0
} else {
eaten += need - eaten
left -= need - eaten
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left < need {
eaten += left
left = 0
} else {
eaten += need - left
left = remaining - (need - left)
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left < need {
eaten += left
left = 0
} else {
eaten += need - left
left = remaining - (need - left)
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left >= need {
eaten += need - left
left = 0
} else {
eaten += left
left = 0
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left >= need {
eaten += need - left
left = 0
} else {
eaten += left
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left < need {
eaten += left
left = 0
} else {
eaten += need - left
left = remaining - (need - left)
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left < need {
eaten += left
left = 0
} else {
eaten += need - left
left = remaining - (need - left)
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten > need {
eaten = need
left = 0
} else if eaten < need {
eaten = eaten
left = remaining - eaten
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten > need {
eaten = need
left = 0
} else if eaten < need {
eaten = eaten
left = remaining - eaten
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
eaten = eaten // assigning a variable to itself
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left < need {
eaten += left
left = 0
} else {
eaten += need - left
left = remaining - (need - left)
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left < need {
eaten += left
left = 0
} else {
eaten += need - left
left = remaining - (need - left)
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left >= need {
eaten += need - left
left = 0
} else {
eaten += left
left = 0
}
return [eaten, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var eaten = number
var left = remaining
if eaten + left >= need {
eaten += need - left
left = 0
} else {
eaten += left
left = 0
}
return [eaten, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
if operators[i] == "+" {
result += operands[i]
} else if operators[i] == "-" {
result -= operands[i]
} else if operators[i] == "*" {
result *= operands[i]
} else if operators[i] == "//" {
result //= operands[i]
} else if operators[i] == "**" {
result **= operands[i]
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
if operators[i] == "+" {
result += operands[i]
} else if operators[i] == "-" {
result -= operands[i]
} else if operators[i] == "*" {
result *= operands[i]
} else if operators[i] == "//" {
result //= operands[i]
} else if operators[i] == "**" {
result **= operands[i]
}
}
return result
}
```
result //= operands[i] // variable is unused
result **= operands[i] // cannot find operator '**=' in scope
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
for i in 0..<operators.count {
let operator = operators[i]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result **= operand
default:
break
}
}
return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isUppercase ? char.lowercased() : char.uppercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isUppercase ? char.lowercased() : char.uppercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isUppercase ? char.lowercased() : char.uppercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isUppercase ? char.lowercased() : char.uppercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result.append(char.isLowercase ? char.uppercased() : char.lowercased())
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let digest = MD5(bytes, CC_MD5_DIGEST_LENGTH)
return digest.map { String(format: "%02hhx", $0) }.joined()
}
return md5
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let digest = MD5(bytes, CC_MD5_DIGEST_LENGTH)
return digest.map { String(format: "%02hhx", $0) }.joined()
}
return md5
}
```
let digest = MD5(bytes, CC_MD5_DIGEST_LENGTH) // cannot find 'MD5' in scope
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)
let md5 = data.map { digest in
let hash = digest.withUnsafeBytes { bytes in
CC_MD5(bytes, CC_LONG(data.count), &hash)
}
return Data(hash)
}
return md5?.base64EncodedString()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)
let md5 = data.map { digest in
let hash = digest.withUnsafeBytes { bytes in
CC_MD5(bytes, CC_LONG(data.count), &hash)
}
return Data(hash)
}
return md5?.base64EncodedString()
}
```
CC_MD5(bytes, CC_LONG(data.count), &hash) // value of optional type 'Data?' must be unwrapped to refer to member 'count' of wrapped base type 'Data'
CC_MD5(bytes, CC_LONG(data.count), &hash) // cannot convert value of type 'UnsafeMutablePointer<UInt8>?' to closure result type 'UInt8'
CC_MD5(bytes, CC_LONG(data.count), &hash) // cannot pass immutable value as inout argument: 'hash' is a 'let' constant
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)
let hash = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = CC_MD5_CTX()
CC_MD5_Init(&context)
CC_MD5_Update(&context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, &context)
return digest.map { String(format: "%02x", $0) }.joined()
}
return hash
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)
let hash = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = CC_MD5_CTX()
CC_MD5_Init(&context)
CC_MD5_Update(&context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, &context)
return digest.map { String(format: "%02x", $0) }.joined()
}
return hash
}
```
let hash = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in // value of optional type 'Data?' must be unwrapped to refer to member 'withUnsafeBytes' of wrapped base type 'Data'
CC_MD5_Init(&context) // cannot pass immutable value as inout argument: 'context' is a 'let' constant
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = CC_MD5_CTX()
CC_MD5_Init(&context)
CC_MD5_Update(&context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, &context)
return digest.map { String(format: "%02x", $0) }.joined()
}
return hash
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = CC_MD5_CTX()
CC_MD5_Init(&context)
CC_MD5_Update(&context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, &context)
return digest.map { String(format: "%02x", $0) }.joined()
}
return hash
}
```
CC_MD5_Init(&context) // cannot pass immutable value as inout argument: 'context' is a 'let' constant
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = CC_MD5_CTX()
CC_MD5_Init(&context)
CC_MD5_Update(&context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, &context)
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = CC_MD5_CTX()
CC_MD5_Init(&context)
CC_MD5_Update(&context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, &context)
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
```
CC_MD5_Init(&context) // cannot pass immutable value as inout argument: 'context' is a 'let' constant
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
let digest = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return digest.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
let digest = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return digest.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = UnsafeMutablePointer<CC_MD5_CTX>.allocate(capacity: 1)
CC_MD5_Init(context)
CC_MD5_Update(context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, context)
context.deallocate()
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = UnsafeMutablePointer<CC_MD5_CTX>.allocate(capacity: 1)
CC_MD5_Init(context)
CC_MD5_Update(context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, context)
context.deallocate()
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
```
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5_Init(context) // 'CC_MD5_Init' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
CC_MD5_Update(context, bytes, CC_LONG(data.count)) // 'CC_MD5_Update' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
CC_MD5_Final(&digest, context) // 'CC_MD5_Final' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = UnsafeMutablePointer<CC_MD5_CTX>.allocate(capacity: 1)
CC_MD5_Init(context)
CC_MD5_Update(context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, context)
context.deallocate()
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = text.data(using: .utf8)!
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = UnsafeMutablePointer<CC_MD5_CTX>.allocate(capacity: 1)
CC_MD5_Init(context)
CC_MD5_Update(context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, context)
context.deallocate()
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
```
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5_Init(context) // 'CC_MD5_Init' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
CC_MD5_Update(context, bytes, CC_LONG(data.count)) // 'CC_MD5_Update' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
CC_MD5_Final(&digest, context) // 'CC_MD5_Final' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = UnsafeMutablePointer<CC_MD5_CTX>.allocate(capacity: 1)
CC_MD5_Init(context)
CC_MD5_Update(context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, context)
context.deallocate()
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = UnsafeMutablePointer<CC_MD5_CTX>.allocate(capacity: 1)
CC_MD5_Init(context)
CC_MD5_Update(context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, context)
context.deallocate()
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
```
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5_Init(context) // 'CC_MD5_Init' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
CC_MD5_Update(context, bytes, CC_LONG(data.count)) // 'CC_MD5_Update' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
CC_MD5_Final(&digest, context) // 'CC_MD5_Final' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = UnsafeMutablePointer<CC_MD5_CTX>.allocate(capacity: 1)
CC_MD5_Init(context)
CC_MD5_Update(context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, context)
context.deallocate()
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let data = Data(text.utf8)
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in
let context = UnsafeMutablePointer<CC_MD5_CTX>.allocate(capacity: 1)
CC_MD5_Init(context)
CC_MD5_Update(context, bytes, CC_LONG(data.count))
var digest = Array<UInt8>(repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5_Final(&digest, context)
context.deallocate()
return digest.map { String(format: "%02x", $0) }.joined()
}
return md5
}
```
let md5 = data.withUnsafeBytes { (bytes: UnsafePointer<UInt8>) -> String in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5_Init(context) // 'CC_MD5_Init' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
CC_MD5_Update(context, bytes, CC_LONG(data.count)) // 'CC_MD5_Update' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
CC_MD5_Final(&digest, context) // 'CC_MD5_Final' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result = [Int]()
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound