Metadata

Key Value
engine transformers
prompt default
temp 0.2
top_p 0.95
max_new_tokens 1024
n_completions 10

Solutions

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff <= threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff <= threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let current = numbers[i]
        let next = numbers[i+1]
        if current - next < threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let current = numbers[i]
        let next = numbers[i+1]
        if current - next < threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff <= threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff <= threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let current = numbers[i]
        let next = numbers[i+1]
        if next - current <= threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let current = numbers[i]
        let next = numbers[i+1]
        if next - current <= threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
    for i in 0..<numbers.count-1 {
        let diff = numbers[i+1] - numbers[i]
        if diff < threshold {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openParens = 0

    for char in parenString {
        if char == "(" {
            openParens += 1
            currentGroup += char
        } else if char == ")" {
            openParens -= 1
            currentGroup += char
            if openParens == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openParens = 0

    for char in parenString {
        if char == "(" {
            openParens += 1
            currentGroup += char
        } else if char == ")" {
            openParens -= 1
            currentGroup += char
            if openParens == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openParens = 0

    for char in parenString {
        if char == "(" {
            openParens += 1
            currentGroup += char
        } else if char == ")" {
            openParens -= 1
            currentGroup += char
            if openParens == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openParens = 0

    for char in parenString {
        if char == "(" {
            openParens += 1
            currentGroup += char
        } else if char == ")" {
            openParens -= 1
            currentGroup += char
            if openParens == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openCount = 0
    
    for char in parenString {
        if char == "(" {
            openCount += 1
            currentGroup += char
        } else if char == ")" {
            openCount -= 1
            currentGroup += char
            if openCount == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }
    
    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openCount = 0
    
    for char in parenString {
        if char == "(" {
            openCount += 1
            currentGroup += char
        } else if char == ")" {
            openCount -= 1
            currentGroup += char
            if openCount == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }
    
    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openParens = 0

    for char in parenString {
        if char == "(" {
            openParens += 1
            currentGroup += char
        } else if char == ")" {
            openParens -= 1
            currentGroup += char
            if openParens == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openParens = 0

    for char in parenString {
        if char == "(" {
            openParens += 1
            currentGroup += char
        } else if char == ")" {
            openParens -= 1
            currentGroup += char
            if openParens == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openCount = 0

    for char in parenString {
        if char == "(" {
            openCount += 1
            currentGroup += char
        } else if char == ")" {
            openCount -= 1
            currentGroup += char
            if openCount == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openCount = 0

    for char in parenString {
        if char == "(" {
            openCount += 1
            currentGroup += char
        } else if char == ")" {
            openCount -= 1
            currentGroup += char
            if openCount == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openBraces = 0

    for char in parenString {
        if char == "(" {
            openBraces += 1
            currentGroup += char
        } else if char == ")" {
            openBraces -= 1
            currentGroup += char
            if openBraces == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openBraces = 0

    for char in parenString {
        if char == "(" {
            openBraces += 1
            currentGroup += char
        } else if char == ")" {
            openBraces -= 1
            currentGroup += char
            if openBraces == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openBraces = 0

    for char in parenString {
        if char == "(" {
            openBraces += 1
            currentGroup += char
        } else if char == ")" {
            openBraces -= 1
            currentGroup += char
            if openBraces == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openBraces = 0

    for char in parenString {
        if char == "(" {
            openBraces += 1
            currentGroup += char
        } else if char == ")" {
            openBraces -= 1
            currentGroup += char
            if openBraces == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openCount = 0

    for char in parenString {
        if char == "(" {
            openCount += 1
            currentGroup += char
        } else if char == ")" {
            openCount -= 1
            currentGroup += char
            if openCount == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openCount = 0

    for char in parenString {
        if char == "(" {
            openCount += 1
            currentGroup += char
        } else if char == ")" {
            openCount -= 1
            currentGroup += char
            if openCount == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openCount = 0

    for char in parenString {
        if char == "(" {
            openCount += 1
            currentGroup += char
        } else if char == ")" {
            openCount -= 1
            currentGroup += char
            if openCount == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openCount = 0

    for char in parenString {
        if char == "(" {
            openCount += 1
            currentGroup += char
        } else if char == ")" {
            openCount -= 1
            currentGroup += char
            if openCount == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openParens = 0

    for char in parenString {
        if char == "(" {
            openParens += 1
            currentGroup += char
        } else if char == ")" {
            openParens -= 1
            currentGroup += char
            if openParens == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
    var groups = [String]()
    var currentGroup = ""
    var openParens = 0

    for char in parenString {
        if char == "(" {
            openParens += 1
            currentGroup += char
        } else if char == ")" {
            openParens -= 1
            currentGroup += char
            if openParens == 0 {
                groups.append(currentGroup)
                currentGroup = ""
            }
        }
    }

    return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
    return number.truncatingRemainder(dividingBy: 1)
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
    var balance = 0
    for operation in operations {
        balance += operation
        if balance < 0 {
            return true
        }
    }
    return false
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    return numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    return numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    return numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    return numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    let deviations = numbers.map { abs($0 - mean) }
    return deviations.reduce(0, +) / Double(deviations.count)
}
```

func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    return numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
    let mean = numbers.reduce(0, +) / Double(numbers.count)
    return numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result: [Int] = []
    for (index, number) in numbers.enumerated() {
        result.append(number)
        if index < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result: [Int] = []
    for (index, number) in numbers.enumerated() {
        result.append(number)
        if index < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result: [Int] = []
    for (index, number) in numbers.enumerated() {
        if index > 0 {
            result.append(delimeter)
        }
        result.append(number)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result: [Int] = []
    for (index, number) in numbers.enumerated() {
        if index > 0 {
            result.append(delimeter)
        }
        result.append(number)
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result: [Int] = []
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result: [Int] = []
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for (index, number) in numbers.enumerated() {
        result.append(number)
        if index < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for (index, number) in numbers.enumerated() {
        result.append(number)
        if index < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
    var result = [Int]()
    for i in 0..<numbers.count {
        result.append(numbers[i])
        if i < numbers.count - 1 {
            result.append(delimeter)
        }
    }
    return result
}
```

func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            inParens = true
        } else if char == ")" {
            currentLevel -= 1
            inParens = false
        }

        if inParens {
            levels.append(currentLevel)
        }
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            inParens = true
        } else if char == ")" {
            currentLevel -= 1
            inParens = false
        }

        if inParens {
            levels.append(currentLevel)
        }
    }

    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            if inParens {
                currentLevel += 1
            } else {
                inParens = true
                currentLevel = 1
            }
        } else if char == ")" {
            if currentLevel == 1 {
                levels.append(currentLevel)
                inParens = false
                currentLevel = 0
            } else {
                currentLevel -= 1
            }
        }
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            if inParens {
                currentLevel += 1
            } else {
                inParens = true
                currentLevel = 1
            }
        } else if char == ")" {
            if currentLevel == 1 {
                levels.append(currentLevel)
                inParens = false
                currentLevel = 0
            } else {
                currentLevel -= 1
            }
        }
    }

    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels = [Int]()
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            if inParens {
                currentLevel += 1
            } else {
                inParens = true
                currentLevel = 1
            }
        } else if char == ")" {
            if inParens {
                currentLevel -= 1
                if currentLevel == 0 {
                    inParens = false
                }
            } else {
                // error: unmatched closing parenthesis
                return []
            }
        }
    }

    if inParens {
        // error: unmatched opening parenthesis
        return []
    }

    levels.append(currentLevel)
    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels = [Int]()
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            if inParens {
                currentLevel += 1
            } else {
                inParens = true
                currentLevel = 1
            }
        } else if char == ")" {
            if inParens {
                currentLevel -= 1
                if currentLevel == 0 {
                    inParens = false
                }
            } else {
                // error: unmatched closing parenthesis
                return []
            }
        }
    }

    if inParens {
        // error: unmatched opening parenthesis
        return []
    }

    levels.append(currentLevel)
    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            if inParens {
                currentLevel += 1
            } else {
                inParens = true
                currentLevel = 1
            }
        } else if char == ")" {
            if currentLevel == 1 {
                inParens = false
            } else {
                currentLevel -= 1
            }
        }
        levels.append(currentLevel)
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            if inParens {
                currentLevel += 1
            } else {
                inParens = true
                currentLevel = 1
            }
        } else if char == ")" {
            if currentLevel == 1 {
                inParens = false
            } else {
                currentLevel -= 1
            }
        }
        levels.append(currentLevel)
    }

    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var isInsideParen = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            isInsideParen = true
        } else if char == ")" {
            currentLevel -= 1
            isInsideParen = false
        }

        if isInsideParen {
            levels.append(currentLevel)
        }
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var isInsideParen = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            isInsideParen = true
        } else if char == ")" {
            currentLevel -= 1
            isInsideParen = false
        }

        if isInsideParen {
            levels.append(currentLevel)
        }
    }

    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            inParens = true
        } else if char == ")" {
            currentLevel -= 1
            inParens = false
        }

        if inParens {
            levels.append(currentLevel)
        }
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            inParens = true
        } else if char == ")" {
            currentLevel -= 1
            inParens = false
        }

        if inParens {
            levels.append(currentLevel)
        }
    }

    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            if inParens {
                currentLevel += 1
            } else {
                inParens = true
                currentLevel = 1
            }
        } else if char == ")" {
            if currentLevel == 1 {
                inParens = false
            } else {
                currentLevel -= 1
            }
        }
        levels.append(currentLevel)
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            if inParens {
                currentLevel += 1
            } else {
                inParens = true
                currentLevel = 1
            }
        } else if char == ")" {
            if currentLevel == 1 {
                inParens = false
            } else {
                currentLevel -= 1
            }
        }
        levels.append(currentLevel)
    }

    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var isInsideParen = false

    for char in parenString {
        if char == "(" {
            if isInsideParen {
                currentLevel += 1
            } else {
                isInsideParen = true
                currentLevel = 1
            }
        } else if char == ")" {
            if currentLevel == 1 {
                isInsideParen = false
            } else {
                currentLevel -= 1
            }
        }
        levels.append(currentLevel)
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var isInsideParen = false

    for char in parenString {
        if char == "(" {
            if isInsideParen {
                currentLevel += 1
            } else {
                isInsideParen = true
                currentLevel = 1
            }
        } else if char == ")" {
            if currentLevel == 1 {
                isInsideParen = false
            } else {
                currentLevel -= 1
            }
        }
        levels.append(currentLevel)
    }

    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels = [Int]()
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            inParens = true
        } else if char == ")" {
            currentLevel -= 1
            inParens = false
        }

        if inParens {
            levels.append(currentLevel)
        }
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels = [Int]()
    var currentLevel = 0
    var inParens = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            inParens = true
        } else if char == ")" {
            currentLevel -= 1
            inParens = false
        }

        if inParens {
            levels.append(currentLevel)
        }
    }

    return levels
}
```
 // XCTAssertTrue failed

func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParen = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            inParen = true
        } else if char == ")" {
            currentLevel -= 1
            inParen = false
        }

        if !inParen {
            levels.append(currentLevel)
        }
    }

    return levels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
    var levels: [Int] = []
    var currentLevel = 0
    var inParen = false

    for char in parenString {
        if char == "(" {
            currentLevel += 1
            inParen = true
        } else if char == ")" {
            currentLevel -= 1
            inParen = false
        }

        if !inParen {
            levels.append(currentLevel)
        }
    }

    return levels
}
```
 // XCTAssertTrue failed

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
    return strings.filter { $0.contains(substring) }
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
    var sum = 0
    var product = 1
    for number in numbers {
        sum += number
        product *= number
    }
    return (sum, product)
}
```

func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        rollingMax.append(max)
    }
    return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        rollingMax.append(max)
    }
    return rollingMax
}
```
max = numbers[j] // cannot assign to value: 'max' is a 'let' constant

func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        rollingMax.append(max)
    }
    return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        rollingMax.append(max)
    }
    return rollingMax
}
```
max = numbers[j] // cannot assign to value: 'max' is a 'let' constant

func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        rollingMax.append(max)
    }
    return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        rollingMax.append(max)
    }
    return rollingMax
}
```
max = numbers[j] // cannot assign to value: 'max' is a 'let' constant

func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i..<numbers.count].max()!
        rollingMax.append(max)
    }
    return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i..<numbers.count].max()!
        rollingMax.append(max)
    }
    return rollingMax
}
```
 // XCTAssertTrue failed

func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i..<numbers.count].max()!
        rollingMax.append(max)
    }
    return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i..<numbers.count].max()!
        rollingMax.append(max)
    }
    return rollingMax
}
```
 // XCTAssertTrue failed

func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let currentMax = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > currentMax {
                currentMax = numbers[j]
            }
        }
        rollingMax.append(currentMax)
    }
    return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let currentMax = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > currentMax {
                currentMax = numbers[j]
            }
        }
        rollingMax.append(currentMax)
    }
    return rollingMax
}
```
currentMax = numbers[j] // cannot assign to value: 'currentMax' is a 'let' constant

func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i..<numbers.count].max()!
        rollingMax.append(max)
    }
    return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i..<numbers.count].max()!
        rollingMax.append(max)
    }
    return rollingMax
}
```
 // XCTAssertTrue failed

func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i..<numbers.count].max()!
        rollingMax.append(max)
    }
    return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var rollingMax = [Int]()
    for i in 0..<numbers.count {
        let max = numbers[i..<numbers.count].max()!
        rollingMax.append(max)
    }
    return rollingMax
}
```
 // XCTAssertTrue failed

func rollingMax(numbers: [Int]) -> [Int] {
    var maxValues = [Int]()
    for i in 0..<numbers.count {
        var max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        maxValues.append(max)
    }
    return maxValues
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var maxValues = [Int]()
    for i in 0..<numbers.count {
        var max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        maxValues.append(max)
    }
    return maxValues
}
```
 // XCTAssertTrue failed

func rollingMax(numbers: [Int]) -> [Int] {
    var maxValues = [Int]()
    for i in 0..<numbers.count {
        var max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        maxValues.append(max)
    }
    return maxValues
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
    var maxValues = [Int]()
    for i in 0..<numbers.count {
        var max = numbers[i]
        for j in i+1..<numbers.count {
            if numbers[j] > max {
                max = numbers[j]
            }
        }
        maxValues.append(max)
    }
    return maxValues
}
```
 // XCTAssertTrue failed

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() })

    // Append to the end of the string the reverse of the string prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = prefix.reversed()
    return string + reversedPrefix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() })

    // Append to the end of the string the reverse of the string prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = prefix.reversed()
    return string + reversedPrefix
}
```
let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() }) // generic parameter 'Element' could not be inferred
let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() }) // no exact matches in call to instance method 'suffix'

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0..<string.count).reversed() {
        let suffix = string[i..<string.count]
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append the reverse of the string prefix that comes before the palindromic suffix
    let prefix = string[0..<string.count - palindromicSuffix.count]
    let reversedPrefix = String(prefix.reversed())
    return palindromicSuffix + reversedPrefix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0..<string.count).reversed() {
        let suffix = string[i..<string.count]
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append the reverse of the string prefix that comes before the palindromic suffix
    let prefix = string[0..<string.count - palindromicSuffix.count]
    let reversedPrefix = String(prefix.reversed())
    return palindromicSuffix + reversedPrefix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
```
let suffix = string[i..<string.count] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let prefix = string[0..<string.count - palindromicSuffix.count] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0...string.count).reversed() {
        let suffix = string.suffix(i)
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix + palindromicSuffix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0...string.count).reversed() {
        let suffix = string.suffix(i)
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix + palindromicSuffix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
```
if isPalindrome(suffix) { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
palindromicSuffix = suffix // cannot assign value of type 'String.SubSequence' (aka 'Substring') to type 'String'

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() })

    // Append to the end of the string the reverse of the string prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = prefix.reversed()
    return string + reversedPrefix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() })

    // Append to the end of the string the reverse of the string prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = prefix.reversed()
    return string + reversedPrefix
}
```
let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() }) // generic parameter 'Element' could not be inferred
let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() }) // no exact matches in call to instance method 'suffix'

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0...string.count).reversed() {
        let suffix = string.suffix(i)
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix + palindromicSuffix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0...string.count).reversed() {
        let suffix = string.suffix(i)
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix + palindromicSuffix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
```
if isPalindrome(suffix) { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
palindromicSuffix = suffix // cannot assign value of type 'String.SubSequence' (aka 'Substring') to type 'String'

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() })

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = prefix.reversed()
    return string + reversedPrefix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() })

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = prefix.reversed()
    return string + reversedPrefix
}
```
let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() }) // generic parameter 'Element' could not be inferred
let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() }) // no exact matches in call to instance method 'suffix'

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0..<string.count).reversed() {
        let suffix = string[i..<string.count]
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string[..<palindromicSuffix.startIndex]
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0..<string.count).reversed() {
        let suffix = string[i..<string.count]
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string[..<palindromicSuffix.startIndex]
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
```
let suffix = string[i..<string.count] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0...string.count).reversed() {
        let suffix = string.suffix(i)
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix + palindromicSuffix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0...string.count).reversed() {
        let suffix = string.suffix(i)
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix + palindromicSuffix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
```
if isPalindrome(suffix) { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
palindromicSuffix = suffix // cannot assign value of type 'String.SubSequence' (aka 'Substring') to type 'String'

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0...string.count).reversed() {
        let suffix = string.suffix(i)
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix + palindromicSuffix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    var palindromicSuffix = ""
    for i in (0...string.count).reversed() {
        let suffix = string.suffix(i)
        if isPalindrome(suffix) {
            palindromicSuffix = suffix
            break
        }
    }

    // Append to the end of the string the reverse of the prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = String(prefix.reversed())
    return string + reversedPrefix + palindromicSuffix
}

func isPalindrome(_ string: String) -> Bool {
    return string == String(string.reversed())
}
```
if isPalindrome(suffix) { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
palindromicSuffix = suffix // cannot assign value of type 'String.SubSequence' (aka 'Substring') to type 'String'

func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() })

    // Append to the end of the string the reverse of the string prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = prefix.reversed()
    return string + reversedPrefix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
    // Find the longest postfix of the string that is a palindrome
    let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() })

    // Append to the end of the string the reverse of the string prefix that comes before the palindromic suffix
    let prefix = string.prefix(string.count - palindromicSuffix.count)
    let reversedPrefix = prefix.reversed()
    return string + reversedPrefix
}
```
let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() }) // generic parameter 'Element' could not be inferred
let palindromicSuffix = string.suffix(while: { $0 == $0.reversed() }) // no exact matches in call to instance method 'suffix'

func stringXor(a: String, b: String) -> String {
    let aBinary = a.binary
    let bBinary = b.binary
    let result = aBinary ^ bBinary
    return result.binary
}

extension String {
    var binary: String {
        return self.map { String($0, radix: 2) }.joined()
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aBinary = a.binary
    let bBinary = b.binary
    let result = aBinary ^ bBinary
    return result.binary
}

extension String {
    var binary: String {
        return self.map { String($0, radix: 2) }.joined()
    }
}
```
let result = aBinary ^ bBinary // binary operator '^' cannot be applied to two 'String' operands
return self.map { String($0, radix: 2) }.joined() // initializer 'init(_:radix:uppercase:)' requires that 'String.Element' (aka 'Character') conform to 'BinaryInteger'

func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
```

func stringXor(a: String, b: String) -> String {
    let aBits = a.map { Int(String($0))! }
    let bBits = b.map { Int(String($0))! }
    let resultBits = zip(aBits, bBits).map { $0 ^ $1 }
    return resultBits.map { String($0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aBits = a.map { Int(String($0))! }
    let bBits = b.map { Int(String($0))! }
    let resultBits = zip(aBits, bBits).map { $0 ^ $1 }
    return resultBits.map { String($0) }.joined()
}
```

func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
```

func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
```

func stringXor(a: String, b: String) -> String {
    let aBinary = a.binary
    let bBinary = b.binary
    let result = aBinary ^ bBinary
    return result.binary
}

extension String {
    var binary: String {
        return self.reduce("") { $0 + String($1, radix: 2) }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aBinary = a.binary
    let bBinary = b.binary
    let result = aBinary ^ bBinary
    return result.binary
}

extension String {
    var binary: String {
        return self.reduce("") { $0 + String($1, radix: 2) }
    }
}
```
let result = aBinary ^ bBinary // binary operator '^' cannot be applied to two 'String' operands
return self.reduce("") { $0 + String($1, radix: 2) } // initializer 'init(_:radix:uppercase:)' requires that 'String.Element' (aka 'Character') conform to 'BinaryInteger'

func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
```

func stringXor(a: String, b: String) -> String {
    let aBinary = a.map { Int(String($0))! }
    let bBinary = b.map { Int(String($0))! }
    let result = zip(aBinary, bBinary).map { $0 ^ $1 }
    return result.map { String($0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aBinary = a.map { Int(String($0))! }
    let bBinary = b.map { Int(String($0))! }
    let result = zip(aBinary, bBinary).map { $0 ^ $1 }
    return result.map { String($0) }.joined()
}
```

func stringXor(a: String, b: String) -> String {
    let aBinary = a.map { $0 == "1" ? 1 : 0 }
    let bBinary = b.map { $0 == "1" ? 1 : 0 }
    let result = zip(aBinary, bBinary).map { $0 ^ $1 }
    return result.map { $0 == 1 ? "1" : "0" }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aBinary = a.map { $0 == "1" ? 1 : 0 }
    let bBinary = b.map { $0 == "1" ? 1 : 0 }
    let result = zip(aBinary, bBinary).map { $0 ^ $1 }
    return result.map { $0 == 1 ? "1" : "0" }.joined()
}
```

func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
    let aArray = a.map { Int(String($0))! }
    let bArray = b.map { Int(String($0))! }
    let resultArray = zip(aArray, bArray).map { $0 ^ $1 }
    return resultArray.map { String($0) }.joined()
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted(by: { $0.count > $1.count }).first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted(by: { $0.count > $1.count }).first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted(by: { $0.count > $1.count }).first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted(by: { $0.count > $1.count }).first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted(by: { $0.count > $1.count }).first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted(by: { $0.count > $1.count }).first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted(by: { $0.count > $1.count }).first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted(by: { $0.count > $1.count }).first
}
```

func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
    guard !strings.isEmpty else { return nil }
    return strings.sorted { $0.count > $1.count }.first
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let remainder = a % b
        a = b
        b = remainder
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let remainder = a % b
        a = b
        b = remainder
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let remainder = a % b
        a = b
        b = remainder
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let remainder = a % b
        a = b
        b = remainder
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let remainder = a % b
        a = b
        b = remainder
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let remainder = a % b
        a = b
        b = remainder
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
```

func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
    var a = a
    var b = b
    while b != 0 {
        let temp = b
        b = a % b
        a = temp
    }
    return a
}
```

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(String(string.prefix(i)))
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(String(string.prefix(i)))
    }
    return prefixes
}
```
 // XCTAssertTrue failed

func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
    var prefixes = [String]()
    for i in 0..<string.count {
        prefixes.append(string[..<i])
    }
    return prefixes
}
```
prefixes.append(string[..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
    return (0...n).map(String.init).joined(separator: " ")
}
```

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func countDistinctCharacters(string: String) -> Int {
    var distinctCharacters = Set<Character>()
    for character in string {
        distinctCharacters.insert(character)
    }
    return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    var distinctCharacters = Set<Character>()
    for character in string {
        distinctCharacters.insert(character)
    }
    return distinctCharacters.count
}
```
 // XCTAssertTrue failed

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
    return Set(string.lowercased()).count
}
```

func parseMusic(musicString: String) -> [Int] {
    var beats: [Int] = []
    for note in musicString {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    var beats: [Int] = []
    for note in musicString {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'

func parseMusic(musicString: String) -> [Int] {
    var beats = [Int]()
    for char in musicString {
        switch char {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    var beats = [Int]()
    for char in musicString {
        switch char {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'

func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```

func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```

func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```

func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```

func parseMusic(musicString: String) -> [Int] {
    var beats: [Int] = []
    for note in musicString {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    var beats: [Int] = []
    for note in musicString {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'

func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```

func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```

func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
    let notes = musicString.split(separator: " ")
    var beats = [Int]()
    for note in notes {
        switch note {
        case "o":
            beats.append(4)
        case "o|":
            beats.append(2)
        case ".|":
            beats.append(1)
        default:
            break
        }
    }
    return beats
}
```

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while let range = string.range(of: substring, range: index..<string.endIndex) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while let range = string.range(of: substring, range: index..<string.endIndex) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
    var count = 0
    var index = string.startIndex
    while index < string.endIndex, let range = string[index...].range(of: substring) {
        count += 1
        index = range.upperBound
    }
    return count
}
```
 // XCTAssertTrue failed

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let numberStrings = numbers.split(separator: " ")
    let sortedNumbers = numberStrings.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let numberStrings = numbers.split(separator: " ")
    let sortedNumbers = numberStrings.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numberStrings.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numberStrings.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numberStrings.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numberStrings.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // instance method 'sorted(using:)' requires the types 'String.SubSequence' (aka 'Substring') and '((String, String) -> Bool).Compared' be equivalent

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let numberalsMap = numberals.enumerated().reduce(into: [:]) { $0[$1.element] = $1.offset }
    let sortedNumbers = numbers.split(separator: " ").sorted { numberalsMap[$0]! < numberalsMap[$1]! }
    return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let numberalsMap = numberals.enumerated().reduce(into: [:]) { $0[$1.element] = $1.offset }
    let sortedNumbers = numbers.split(separator: " ").sorted { numberalsMap[$0]! < numberalsMap[$1]! }
    return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberalsMap[$0]! < numberalsMap[$1]! } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberalsMap[$0]! < numberalsMap[$1]! } // type '(String, String) -> Bool' cannot conform to 'SortComparator'

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let numberArray = numbers.split(separator: " ")
    let sortedArray = numberArray.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedArray.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let numberArray = numbers.split(separator: " ")
    let sortedArray = numberArray.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedArray.joined(separator: " ")
}
```
let sortedArray = numberArray.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedArray = numberArray.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedArray = numberArray.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // instance method 'sorted(using:)' requires the types 'String.SubSequence' (aka 'Substring') and '((String, String) -> Bool).Compared' be equivalent
let sortedArray = numberArray.sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ")
    return sortedNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ")
    return sortedNumbers
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ") // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ") // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ") // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ") // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ")
    return sortedNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ")
    return sortedNumbers
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ") // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ") // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ") // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }.joined(separator: " ") // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')

func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
    let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
    let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) }
    return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // type '(String, String) -> Bool' cannot conform to 'SortComparator'
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')
let sortedNumbers = numbers.split(separator: " ").sorted { numberals.firstIndex(of: $0) < numberals.firstIndex(of: $1) } // value of optional type 'Array<String>.Index?' (aka 'Optional<Int>') must be unwrapped to a value of type 'Array<String>.Index' (aka 'Int')

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    var closestPair = (numbers[0], numbers[1])
    for i in 2..<numbers.count {
        let currentPair = (numbers[i-1], numbers[i])
        if abs(currentPair.0 - currentPair.1) < abs(closestPair.0 - closestPair.1) {
            closestPair = currentPair
        }
    }
    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    var closestPair = (numbers[0], numbers[1])
    for i in 2..<numbers.count {
        let currentPair = (numbers[i-1], numbers[i])
        if abs(currentPair.0 - currentPair.1) < abs(closestPair.0 - closestPair.1) {
            closestPair = currentPair
        }
    }
    return closestPair
}
```
 // XCTAssertTrue failed

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    let closestPair = (sortedNumbers[0], sortedNumbers[1])
    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    let closestPair = (sortedNumbers[0], sortedNumbers[1])
    return closestPair
}
```
 // XCTAssertTrue failed

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    let closestPair = (sortedNumbers[0], sortedNumbers[1])
    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    let closestPair = (sortedNumbers[0], sortedNumbers[1])
    return closestPair
}
```
 // XCTAssertTrue failed

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    var closestPair = (sortedNumbers[0], sortedNumbers[1])
    for i in 2..<numbers.count {
        let currentPair = (sortedNumbers[i-1], sortedNumbers[i])
        if abs(currentPair.0 - currentPair.1) < abs(closestPair.0 - closestPair.1) {
            closestPair = currentPair
        }
    }
    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    var closestPair = (sortedNumbers[0], sortedNumbers[1])
    for i in 2..<numbers.count {
        let currentPair = (sortedNumbers[i-1], sortedNumbers[i])
        if abs(currentPair.0 - currentPair.1) < abs(closestPair.0 - closestPair.1) {
            closestPair = currentPair
        }
    }
    return closestPair
}
```

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    let closestPair = (sortedNumbers[0], sortedNumbers[1])
    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    let closestPair = (sortedNumbers[0], sortedNumbers[1])
    return closestPair
}
```
 // XCTAssertTrue failed

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    var closestPair = (sortedNumbers[0], sortedNumbers[1])
    for i in 2..<numbers.count {
        let currentPair = (sortedNumbers[i-1], sortedNumbers[i])
        if abs(currentPair.0 - currentPair.1) < abs(closestPair.0 - closestPair.1) {
            closestPair = currentPair
        }
    }
    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    let sortedNumbers = numbers.sorted()
    var closestPair = (sortedNumbers[0], sortedNumbers[1])
    for i in 2..<numbers.count {
        let currentPair = (sortedNumbers[i-1], sortedNumbers[i])
        if abs(currentPair.0 - currentPair.1) < abs(closestPair.0 - closestPair.1) {
            closestPair = currentPair
        }
    }
    return closestPair
}
```

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else {
        fatalError("Array must have at least two elements")
    }

    var closestPair: (Double, Double) = (numbers[0], numbers[1])
    var minDistance = abs(closestPair.0 - closestPair.1)

    for i in 2..<numbers.count {
        let distance = abs(numbers[i] - numbers[i - 1])
        if distance < minDistance {
            minDistance = distance
            closestPair = (numbers[i - 1], numbers[i])
        }
    }

    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else {
        fatalError("Array must have at least two elements")
    }

    var closestPair: (Double, Double) = (numbers[0], numbers[1])
    var minDistance = abs(closestPair.0 - closestPair.1)

    for i in 2..<numbers.count {
        let distance = abs(numbers[i] - numbers[i - 1])
        if distance < minDistance {
            minDistance = distance
            closestPair = (numbers[i - 1], numbers[i])
        }
    }

    return closestPair
}
```
 // XCTAssertTrue failed

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else {
        fatalError("Array must have at least two elements")
    }

    var closestPair = (numbers[0], numbers[1])
    var minDistance = abs(closestPair.0 - closestPair.1)

    for i in 2..<numbers.count {
        let distance = abs(numbers[i] - numbers[i - 1])
        if distance < minDistance {
            minDistance = distance
            closestPair = (numbers[i - 1], numbers[i])
        }
    }

    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else {
        fatalError("Array must have at least two elements")
    }

    var closestPair = (numbers[0], numbers[1])
    var minDistance = abs(closestPair.0 - closestPair.1)

    for i in 2..<numbers.count {
        let distance = abs(numbers[i] - numbers[i - 1])
        if distance < minDistance {
            minDistance = distance
            closestPair = (numbers[i - 1], numbers[i])
        }
    }

    return closestPair
}
```
 // XCTAssertTrue failed

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    var closestPair: (Double, Double) = (numbers[0], numbers[1])
    for i in 2..<numbers.count {
        let currentPair = (numbers[i-1], numbers[i])
        if abs(currentPair.0 - currentPair.1) < abs(closestPair.0 - closestPair.1) {
            closestPair = currentPair
        }
    }
    return closestPair
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else { return (0.0, 0.0) }
    var closestPair: (Double, Double) = (numbers[0], numbers[1])
    for i in 2..<numbers.count {
        let currentPair = (numbers[i-1], numbers[i])
        if abs(currentPair.0 - currentPair.1) < abs(closestPair.0 - closestPair.1) {
            closestPair = currentPair
        }
    }
    return closestPair
}
```
 // XCTAssertTrue failed

func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else {
        fatalError("Array must have at least two elements")
    }

    var closestElements = (numbers[0], numbers[1])
    var closestDistance = abs(closestElements.0 - closestElements.1)

    for i in 2..<numbers.count {
        let distance = abs(numbers[i] - numbers[i - 1])
        if distance < closestDistance {
            closestElements = (numbers[i - 1], numbers[i])
            closestDistance = distance
        }
    }

    return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
    guard numbers.count >= 2 else {
        fatalError("Array must have at least two elements")
    }

    var closestElements = (numbers[0], numbers[1])
    var closestDistance = abs(closestElements.0 - closestElements.1)

    for i in 2..<numbers.count {
        let distance = abs(numbers[i] - numbers[i - 1])
        if distance < closestDistance {
            closestElements = (numbers[i - 1], numbers[i])
            closestDistance = distance
        }
    }

    return closestElements
}
```
 // XCTAssertTrue failed

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    
    let min = numbers.min()!
    let max = numbers.max()!
    let range = max - min
    
    return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    
    let min = numbers.min()!
    let max = numbers.max()!
    let range = max - min
    
    return numbers.map { ($0 - min) / range }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    
    let min = numbers.min()!
    let max = numbers.max()!
    let range = max - min
    
    return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    
    let min = numbers.min()!
    let max = numbers.max()!
    let range = max - min
    
    return numbers.map { ($0 - min) / range }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    
    let min = numbers.min()!
    let max = numbers.max()!
    let range = max - min
    
    return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    
    let min = numbers.min()!
    let max = numbers.max()!
    let range = max - min
    
    return numbers.map { ($0 - min) / range }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
```

func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
    guard numbers.count >= 2 else { return numbers }
    let min = numbers.min()!
    let max = numbers.max()!
    return numbers.map { ($0 - min) / (max - min) }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap {
        if let intValue = $0 as? Int {
            return intValue
        }
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap {
        if let intValue = $0 as? Int {
            return intValue
        }
        return nil
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap {
        if let int = $0 as? Int {
            return int
        } else {
            return nil
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap {
        if let int = $0 as? Int {
            return int
        } else {
            return nil
        }
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap {
        if let intValue = $0 as? Int {
            return intValue
        }
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap {
        if let intValue = $0 as? Int {
            return intValue
        }
        return nil
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        } else {
            return nil
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        } else {
            return nil
        }
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap { value in
        if let intValue = value as? Int {
            return intValue
        }
        return nil
    }
}
```

func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap {
        if let intValue = $0 as? Int {
            return intValue
        }
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
    return values.compactMap {
        if let intValue = $0 as? Int {
            return intValue
        }
        return nil
    }
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func strlen(string: String) -> Int {
    return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
    return string.count
}
```

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor * divisor <= n {
        divisor += 1
    }
    return divisor - 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor * divisor <= n {
        divisor += 1
    }
    return divisor - 1
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor * divisor <= n {
        divisor += 1
    }
    return divisor - 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor * divisor <= n {
        divisor += 1
    }
    return divisor - 1
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return 1
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return 1
}
```
 // XCTAssertTrue failed

func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
    var divisor = 1
    while divisor < n {
        if n % divisor == 0 {
            return divisor
        }
        divisor += 1
    }
    return n
}
```
 // XCTAssertTrue failed

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var currentFactor = 2
    while currentFactor * currentFactor <= n {
        if n % currentFactor == 0 {
            factors.append(currentFactor)
            n /= currentFactor
        } else {
            currentFactor += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var currentFactor = 2
    while currentFactor * currentFactor <= n {
        if n % currentFactor == 0 {
            factors.append(currentFactor)
            n /= currentFactor
        } else {
            currentFactor += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var currentFactor = 2
    while currentFactor * currentFactor <= n {
        if n % currentFactor == 0 {
            factors.append(currentFactor)
            n /= currentFactor
        } else {
            currentFactor += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var currentFactor = 2
    while currentFactor * currentFactor <= n {
        if n % currentFactor == 0 {
            factors.append(currentFactor)
            n /= currentFactor
        } else {
            currentFactor += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var currentFactor = 2
    while currentFactor * currentFactor <= n {
        if n % currentFactor == 0 {
            factors.append(currentFactor)
            n /= currentFactor
        } else {
            currentFactor += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var currentFactor = 2
    while currentFactor * currentFactor <= n {
        if n % currentFactor == 0 {
            factors.append(currentFactor)
            n /= currentFactor
        } else {
            currentFactor += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var currentFactor = 2
    while currentFactor <= n {
        if n % currentFactor == 0 {
            factors.append(currentFactor)
            n /= currentFactor
        } else {
            currentFactor += 1
        }
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var currentFactor = 2
    while currentFactor <= n {
        if n % currentFactor == 0 {
            factors.append(currentFactor)
            n /= currentFactor
        } else {
            currentFactor += 1
        }
    }
    return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
    var factors = [Int]()
    var i = 2
    while i * i <= n {
        if n % i == 0 {
            factors.append(i)
            n /= i
        } else {
            i += 1
        }
    }
    if n > 1 {
        factors.append(n)
    }
    return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant

func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    return numbers.filter { seen.insert($0).inserted }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    return numbers.filter { seen.insert($0).inserted }
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    var result = [Int]()
    for number in numbers {
        if !seen.contains(number) {
            seen.insert(number)
            result.append(number)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    var result = [Int]()
    for number in numbers {
        if !seen.contains(number) {
            seen.insert(number)
            result.append(number)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    return numbers.filter { seen.insert($0).inserted }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    return numbers.filter { seen.insert($0).inserted }
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var uniqueNumbers = [Int]()
    for number in numbers {
        if !uniqueNumbers.contains(number) {
            uniqueNumbers.append(number)
        }
    }
    return uniqueNumbers
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    var result = [Int]()

    for number in numbers {
        if !seen.contains(number) {
            result.append(number)
            seen.insert(number)
        }
    }

    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    var result = [Int]()

    for number in numbers {
        if !seen.contains(number) {
            result.append(number)
            seen.insert(number)
        }
    }

    return result
}
```
 // XCTAssertTrue failed

func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    return numbers.filter { seen.insert($0).inserted }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
    var seen = Set<Int>()
    return numbers.filter { seen.insert($0).inserted }
}
```
 // XCTAssertTrue failed

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }
}
```
return string.map { // cannot convert return expression of type '[String]' to return type 'String'

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }
}
```
return string.map { // cannot convert return expression of type '[String]' to return type 'String'

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
```

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
```

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
```

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
```

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
```

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
```

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
```

func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
    return string.map {
        if $0.isLowercase {
            return $0.uppercased()
        } else {
            return $0.lowercased()
        }
    }.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func concatenate(strings: [String]) -> String {
    return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
    return strings.joined()
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
    return strings.filter { $0.hasPrefix(prefix) }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
    return l.filter { $0 > 0 }
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n <= 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n <= 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n <= 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n <= 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n <= 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n <= 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else {
        for i in 2...Int(sqrt(Double(n))) {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 || n == 3 {
        return true
    } else {
        for i in 2...Int(sqrt(Double(n))) {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n <= 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n <= 3 {
        return true
    } else if n % 2 == 0 || n % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= n {
        if n % i == 0 || n % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        let index = i + 1
        if index < l.count {
            let value = l[index]
            lPrime[index] = l[i]
            lPrime[i] = value
        }
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        let index = i + 1
        if index < l.count {
            let value = l[index]
            lPrime[index] = l[i]
            lPrime[i] = value
        }
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
    var lPrime = l
    for i in stride(from: 0, to: l.count, by: 3) {
        lPrime[i] = l[i]
    }
    return lPrime
}
```
 // XCTAssertTrue failed

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var seen = Set<Element>()
        return filter { seen.insert($0).inserted }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var seen = Set<Element>()
        return filter { seen.insert($0).inserted }
    }
}
```
var seen = Set<Element>() // type 'Element' does not conform to protocol 'Hashable'

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Sequence where Element: Hashable {
    func unique() -> [Element] {
        var seen = Set<Element>()
        return filter { seen.insert($0).inserted }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Sequence where Element: Hashable {
    func unique() -> [Element] {
        var seen = Set<Element>()
        return filter { seen.insert($0).inserted }
    }
}
```

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var seen = Set<Element>()
        return filter { seen.insert($0).inserted }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var seen = Set<Element>()
        return filter { seen.insert($0).inserted }
    }
}
```
var seen = Set<Element>() // type 'Element' does not conform to protocol 'Hashable'

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var seen = Set<Element>()
        return filter { seen.insert($0).inserted }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var seen = Set<Element>()
        return filter { seen.insert($0).inserted }
    }
}
```
var seen = Set<Element>() // type 'Element' does not conform to protocol 'Hashable'

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var result = [Element]()
        for element in self {
            if !result.contains(element) {
                result.append(element)
            }
        }
        return result
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var result = [Element]()
        for element in self {
            if !result.contains(element) {
                result.append(element)
            }
        }
        return result
    }
}
```

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var result = [Element]()
        for element in self {
            if !result.contains(element) {
                result.append(element)
            }
        }
        return result
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var result = [Element]()
        for element in self {
            if !result.contains(element) {
                result.append(element)
            }
        }
        return result
    }
}
```

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var uniqueElements = [Element]()
        for element in self {
            if !uniqueElements.contains(element) {
                uniqueElements.append(element)
            }
        }
        return uniqueElements
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var uniqueElements = [Element]()
        for element in self {
            if !uniqueElements.contains(element) {
                uniqueElements.append(element)
            }
        }
        return uniqueElements
    }
}
```

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var result = [Element]()
        for element in self {
            if !result.contains(element) {
                result.append(element)
            }
        }
        return result
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var result = [Element]()
        for element in self {
            if !result.contains(element) {
                result.append(element)
            }
        }
        return result
    }
}
```

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var result = [Element]()
        for element in self {
            if !result.contains(element) {
                result.append(element)
            }
        }
        return result
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        var result = [Element]()
        for element in self {
            if !result.contains(element) {
                result.append(element)
            }
        }
        return result
    }
}
```

func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        return self.reduce([]) { $0.contains($1) ? $0 : $0 + [$1] }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
    return l.sorted().unique()
}

extension Array where Element: Equatable {
    func unique() -> [Element] {
        return self.reduce([]) { $0.contains($1) ? $0 : $0 + [$1] }
    }
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func maxElement(l: [Int]) -> Int {
    return l.max()!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
    return l.max()!
}
```

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = i % 10
            if digit == 7 {
                count += 1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = i % 10
            if digit == 7 {
                count += 1
            }
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = String(i).last!
            if digit == "7" {
                count += 1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = String(i).last!
            if digit == "7" {
                count += 1
            }
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = String(i).last!
            if digit == "7" {
                count += 1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = String(i).last!
            if digit == "7" {
                count += 1
            }
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = String(i).last!
            if digit == "7" {
                count += 1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = String(i).last!
            if digit == "7" {
                count += 1
            }
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digits = String(i).map { Int(String($0))! }
            count += digits.filter { $0 == 7 }.count
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digits = String(i).map { Int(String($0))! }
            count += digits.filter { $0 == 7 }.count
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = String(i).last!
            if digit == "7" {
                count += 1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 11 == 0 || i % 13 == 0 {
            let digit = String(i).last!
            if digit == "7" {
                count += 1
            }
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func sortEven(l: [Int]) -> [Int] {
    var l' = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l'[i] = l[i]
    }
    for i in stride(from: 1, to: l.count, by: 2) {
        l'[i] = l[i]
    }
    return l'
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l' = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l'[i] = l[i]
    }
    for i in stride(from: 1, to: l.count, by: 2) {
        l'[i] = l[i]
    }
    return l'
}
```
var l' = l // type annotation missing in pattern
var l' = l // unterminated string literal
l'[i] = l[i] // unterminated string literal
l'[i] = l[i] // unterminated string literal
return l' // unterminated string literal

func sortEven(l: [Int]) -> [Int] {
    var l' = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l'[i] = l[i]
    }
    for i in stride(from: 1, to: l.count, by: 2) {
        l'[i] = l[i]
    }
    return l'
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l' = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l'[i] = l[i]
    }
    for i in stride(from: 1, to: l.count, by: 2) {
        l'[i] = l[i]
    }
    return l'
}
```
var l' = l // type annotation missing in pattern
var l' = l // unterminated string literal
l'[i] = l[i] // unterminated string literal
l'[i] = l[i] // unterminated string literal
return l' // unterminated string literal

func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i+1]
    }
    return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i+1]
    }
    return l
}
```
 // Fatal error: Index out of range

func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i]
    }
    for i in stride(from: 1, to: l.count, by: 2) {
        l[i] = l[i]
    }
    return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i]
    }
    for i in stride(from: 1, to: l.count, by: 2) {
        l[i] = l[i]
    }
    return l
}
```
 // XCTAssertTrue failed

func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i..<l.count].sorted()[i]
    }
    return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i..<l.count].sorted()[i]
    }
    return l
}
```
 // Fatal error: Index out of range

func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 1, to: l.count, by: 2) {
        l[i] = l[i..<l.count].sorted()[0]
    }
    return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 1, to: l.count, by: 2) {
        l[i] = l[i..<l.count].sorted()[0]
    }
    return l
}
```
 // XCTAssertTrue failed

func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 1, to: l.count, by: 2) {
        l[i] = l[i..<l.count].sorted()[i]
    }
    return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 1, to: l.count, by: 2) {
        l[i] = l[i..<l.count].sorted()[i]
    }
    return l
}
```
 // XCTAssertTrue failed

func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i..<l.count].sorted()[i]
    }
    return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i..<l.count].sorted()[i]
    }
    return l
}
```
 // Fatal error: Index out of range

func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i+1]
    }
    return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i+1]
    }
    return l
}
```
 // Fatal error: Index out of range

func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i+1]
    }
    return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
    var l = l
    for i in stride(from: 0, to: l.count, by: 2) {
        l[i] = l[i+1]
    }
    return l
}
```
 // Fatal error: Index out of range

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var primeFibs = [2]

    while primeFibs.count < n {
        let nextFib = fib[0] + fib[1]
        fib[0] = fib[1]
        fib[1] = nextFib

        if isPrime(nextFib) && !primeFibs.contains(nextFib) {
            primeFibs.append(nextFib)
        }
    }

    return primeFibs[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }

    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var primeFibs = [2]

    while primeFibs.count < n {
        let nextFib = fib[0] + fib[1]
        fib[0] = fib[1]
        fib[1] = nextFib

        if isPrime(nextFib) && !primeFibs.contains(nextFib) {
            primeFibs.append(nextFib)
        }
    }

    return primeFibs[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }

    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }

    return true
}
```
if isPrime(nextFib) && !primeFibs.contains(nextFib) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        fib.append(fib[i - 1] + fib[i - 2])
        if isPrime(fib[i]) {
            prime.append(fib[i])
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        fib.append(fib[i - 1] + fib[i - 2])
        if isPrime(fib[i]) {
            prime.append(fib[i])
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(fib[i]) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        fib.append(fib[i - 1] + fib[i - 2])
        if isPrime(fib[i]) {
            prime.append(fib[i])
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        fib.append(fib[i - 1] + fib[i - 2])
        if isPrime(fib[i]) {
            prime.append(fib[i])
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(fib[i]) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [2, 3]
    var prime = [2, 3]
    var i = 4
    while i < n {
        fib.append(fib[i - 1] + fib[i - 2])
        if isPrime(fib[i]) {
            prime.append(fib[i])
        }
        i += 1
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [2, 3]
    var prime = [2, 3]
    var i = 4
    while i < n {
        fib.append(fib[i - 1] + fib[i - 2])
        if isPrime(fib[i]) {
            prime.append(fib[i])
        }
        i += 1
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(fib[i]) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i - 2]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i - 2]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(nextFib) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(nextFib) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(nextFib) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i - 2]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i - 2]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(nextFib) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        fib.append(fib[i - 1] + fib[i - 2])
        if isPrime(fib[i]) {
            prime.append(fib[i])
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        fib.append(fib[i - 1] + fib[i - 2])
        if isPrime(fib[i]) {
            prime.append(fib[i])
            i += 1
        }
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(fib[i]) { // missing argument label 'n:' in call

func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
        }
        i += 1
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
    var fib = [1, 1]
    var prime = [2, 3]
    var i = 2
    while i < n {
        let nextFib = fib[i - 1] + fib[i]
        if isPrime(nextFib) {
            fib.append(nextFib)
            prime.append(nextFib)
        }
        i += 1
    }
    return prime[n - 1]
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(nextFib) { // missing argument label 'n:' in call

func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```

func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```

func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```

func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```

func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    guard l.count >= 3 else { return false }
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```

func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```

func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count-2 {
        for j in i+1..<l.count-1 {
            for k in j+1..<l.count {
                if l[i] + l[j] + l[k] == 0 {
                    return true
                }
            }
        }
    }
    return false
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(direction: .left))
        rightCars.append(Car(direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.first!
        let rightCar = rightCars.first!
        if leftCar.position == rightCar.position {
            collisions += 1
            leftCars.removeFirst()
            rightCars.removeFirst()
        } else if leftCar.position < rightCar.position {
            leftCars.removeFirst()
        } else {
            rightCars.removeFirst()
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(direction: .left))
        rightCars.append(Car(direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.first!
        let rightCar = rightCars.first!
        if leftCar.position == rightCar.position {
            collisions += 1
            leftCars.removeFirst()
            rightCars.removeFirst()
        } else if leftCar.position < rightCar.position {
            leftCars.removeFirst()
        } else {
            rightCars.removeFirst()
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
```
leftCars.append(Car(direction: .left)) // missing argument for parameter 'position' in call
rightCars.append(Car(direction: .right)) // missing argument for parameter 'position' in call

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(direction: .left))
        rightCars.append(Car(direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.first!
        let rightCar = rightCars.first!
        if leftCar.position == rightCar.position {
            collisions += 1
            leftCars.removeFirst()
            rightCars.removeFirst()
        } else if leftCar.position < rightCar.position {
            leftCars.removeFirst()
        } else {
            rightCars.removeFirst()
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(direction: .left))
        rightCars.append(Car(direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.first!
        let rightCar = rightCars.first!
        if leftCar.position == rightCar.position {
            collisions += 1
            leftCars.removeFirst()
            rightCars.removeFirst()
        } else if leftCar.position < rightCar.position {
            leftCars.removeFirst()
        } else {
            rightCars.removeFirst()
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
```
leftCars.append(Car(direction: .left)) // missing argument for parameter 'position' in call
rightCars.append(Car(direction: .right)) // missing argument for parameter 'position' in call

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let leftCar = Car(direction: .left)
        let rightCar = Car(direction: .right)
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.first!
        let rightCar = rightCars.first!
        if leftCar.position == rightCar.position {
            collisions += 1
            leftCars.removeFirst()
            rightCars.removeFirst()
        } else if leftCar.position < rightCar.position {
            leftCars.removeFirst()
        } else {
            rightCars.removeFirst()
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let leftCar = Car(direction: .left)
        let rightCar = Car(direction: .right)
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.first!
        let rightCar = rightCars.first!
        if leftCar.position == rightCar.position {
            collisions += 1
            leftCars.removeFirst()
            rightCars.removeFirst()
        } else if leftCar.position < rightCar.position {
            leftCars.removeFirst()
        } else {
            rightCars.removeFirst()
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
```
let leftCar = Car(direction: .left) // missing argument for parameter 'position' in call
let rightCar = Car(direction: .right) // missing argument for parameter 'position' in call

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let leftCar = Car(direction: .left)
        let rightCar = Car(direction: .right)
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position == rightCar.position {
            collisions += 1
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let leftCar = Car(direction: .left)
        let rightCar = Car(direction: .right)
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position == rightCar.position {
            collisions += 1
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
```
let leftCar = Car(direction: .left) // missing argument for parameter 'position' in call
let rightCar = Car(direction: .right) // missing argument for parameter 'position' in call

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(speed: 10, direction: .left))
        rightCars.append(Car(speed: 10, direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        for leftCar in leftCars {
            for rightCar in rightCars {
                if leftCar.position == rightCar.position {
                    collisions += 1
                    leftCar.position += 1
                    rightCar.position -= 1
                }
            }
        }
    }
    return collisions
}

struct Car {
    var speed: Int
    var direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(speed: 10, direction: .left))
        rightCars.append(Car(speed: 10, direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        for leftCar in leftCars {
            for rightCar in rightCars {
                if leftCar.position == rightCar.position {
                    collisions += 1
                    leftCar.position += 1
                    rightCar.position -= 1
                }
            }
        }
    }
    return collisions
}

struct Car {
    var speed: Int
    var direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
```
leftCars.append(Car(speed: 10, direction: .left)) // missing argument for parameter 'position' in call
rightCars.append(Car(speed: 10, direction: .right)) // missing argument for parameter 'position' in call
leftCar.position += 1 // left side of mutating operator isn't mutable: 'leftCar' is a 'let' constant
rightCar.position -= 1 // left side of mutating operator isn't mutable: 'rightCar' is a 'let' constant

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let car = Car(direction: .left)
        leftCars.append(car)
        let car = Car(direction: .right)
        rightCars.append(car)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.first!
        let rightCar = rightCars.first!
        if leftCar.position == rightCar.position {
            collisions += 1
            leftCars.removeFirst()
            rightCars.removeFirst()
        } else if leftCar.position < rightCar.position {
            leftCars.removeFirst()
        } else {
            rightCars.removeFirst()
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let car = Car(direction: .left)
        leftCars.append(car)
        let car = Car(direction: .right)
        rightCars.append(car)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.first!
        let rightCar = rightCars.first!
        if leftCar.position == rightCar.position {
            collisions += 1
            leftCars.removeFirst()
            rightCars.removeFirst()
        } else if leftCar.position < rightCar.position {
            leftCars.removeFirst()
        } else {
            rightCars.removeFirst()
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
```
let car = Car(direction: .left) // missing argument for parameter 'position' in call
let car = Car(direction: .right) // missing argument for parameter 'position' in call

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(direction: .left))
        rightCars.append(Car(direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position < rightCar.position {
            collisions += 1
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Double
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(direction: .left))
        rightCars.append(Car(direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position < rightCar.position {
            collisions += 1
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Double
}

enum Direction {
    case left
    case right
}
```
leftCars.append(Car(direction: .left)) // missing argument for parameter 'position' in call
rightCars.append(Car(direction: .right)) // missing argument for parameter 'position' in call

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(direction: .left))
        rightCars.append(Car(direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position < rightCar.position {
            collisions += 1
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        leftCars.append(Car(direction: .left))
        rightCars.append(Car(direction: .right))
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position < rightCar.position {
            collisions += 1
        }
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
```
leftCars.append(Car(direction: .left)) // missing argument for parameter 'position' in call
rightCars.append(Car(direction: .right)) // missing argument for parameter 'position' in call

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let leftCar = Car(direction: .left)
        let rightCar = Car(direction: .right)
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position == rightCar.position {
            collisions += 1
        }
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let leftCar = Car(direction: .left)
        let rightCar = Car(direction: .right)
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position == rightCar.position {
            collisions += 1
        }
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    return collisions
}

struct Car {
    let direction: Direction
    var position: Int
}

enum Direction {
    case left
    case right
}
```
let leftCar = Car(direction: .left) // missing argument for parameter 'position' in call
let rightCar = Car(direction: .right) // missing argument for parameter 'position' in call

func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let leftCar = Car(speed: 10, direction: .left)
        let rightCar = Car(speed: 10, direction: .right)
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position < rightCar.position {
            collisions += 1
        }
    }
    return collisions
}

struct Car {
    let speed: Int
    let direction: Direction
    var position: Int
    
    init(speed: Int, direction: Direction) {
        self.speed = speed
        self.direction = direction
        self.position = 0
    }
}

enum Direction {
    case left
    case right
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right;  simultaneously, a different set of n cars
are driving right to left.   The two sets of cars start out being very far from
each other.  All cars move in the same speed.  Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
    var leftCars = [Car]()
    var rightCars = [Car]()
    for i in 0..<n {
        let leftCar = Car(speed: 10, direction: .left)
        let rightCar = Car(speed: 10, direction: .right)
        leftCars.append(leftCar)
        rightCars.append(rightCar)
    }
    var collisions = 0
    while leftCars.count > 0 && rightCars.count > 0 {
        let leftCar = leftCars.removeFirst()
        let rightCar = rightCars.removeFirst()
        if leftCar.position < rightCar.position {
            collisions += 1
        }
    }
    return collisions
}

struct Car {
    let speed: Int
    let direction: Direction
    var position: Int
    
    init(speed: Int, direction: Direction) {
        self.speed = speed
        self.direction = direction
        self.position = 0
    }
}

enum Direction {
    case left
    case right
}
```
for i in 0..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it
 // XCTAssertTrue failed

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
    return l.map { $0 + 1 }
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
    for i in 0..<l.count {
        for j in i+1..<l.count {
            if l[i] + l[j] == 0 {
                return true
            }
        }
    }
    return false
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x

    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }

    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x

    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }

    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x

    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }

    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x

    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }

    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var x = x
    while x > 0 {
        result = String(x % base) + result
        x /= base
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var x = x
    while x > 0 {
        result = String(x % base) + result
        x /= base
    }
    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
```

func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
    var result = ""
    var remainder = x
    while remainder > 0 {
        result = String(remainder % base) + result
        remainder /= base
    }
    return result
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
    return Double(a) * Double(h) / 2
}
```

func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
```
 // XCTAssertTrue failed

func fib4(n: Int) -> Int {
    guard n > 3 else { return n }
    var fib4 = [Int](repeating: 0, count: n + 1)
    fib4[0] = 0
    fib4[1] = 0
    fib4[2] = 2
    fib4[3] = 0
    for i in 4...n {
        fib4[i] = fib4[i - 1] + fib4[i - 2] + fib4[i - 3] + fib4[i - 4]
    }
    return fib4[n]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    guard n > 3 else { return n }
    var fib4 = [Int](repeating: 0, count: n + 1)
    fib4[0] = 0
    fib4[1] = 0
    fib4[2] = 2
    fib4[3] = 0
    for i in 4...n {
        fib4[i] = fib4[i - 1] + fib4[i - 2] + fib4[i - 3] + fib4[i - 4]
    }
    return fib4[n]
}
```

func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
```
 // XCTAssertTrue failed

func fib4(n: Int) -> Int {
    if n <= 3 {
        return n
    }

    var fib4 = [Int](repeating: 0, count: n)
    fib4[0] = 0
    fib4[1] = 0
    fib4[2] = 2
    fib4[3] = 0

    for i in 4...n {
        fib4[i] = fib4[i-1] + fib4[i-2] + fib4[i-3] + fib4[i-4]
    }

    return fib4[n]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    if n <= 3 {
        return n
    }

    var fib4 = [Int](repeating: 0, count: n)
    fib4[0] = 0
    fib4[1] = 0
    fib4[2] = 2
    fib4[3] = 0

    for i in 4...n {
        fib4[i] = fib4[i-1] + fib4[i-2] + fib4[i-3] + fib4[i-4]
    }

    return fib4[n]
}
```
 // Fatal error: Index out of range

func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
```
 // XCTAssertTrue failed

func fib4(n: Int) -> Int {
    var a = 0, b = 0, c = 2, d = 0
    for _ in 0..<n {
        let temp = a
        a = b
        b = c
        c = d
        d = temp + b + c + d
    }
    return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    var a = 0, b = 0, c = 2, d = 0
    for _ in 0..<n {
        let temp = a
        a = b
        b = c
        c = d
        d = temp + b + c + d
    }
    return d
}
```
 // XCTAssertTrue failed

func fib4(n: Int) -> Int {
    if n <= 3 {
        return n
    }

    var fib4 = [Int](repeating: 0, count: n)
    fib4[0] = 0
    fib4[1] = 0
    fib4[2] = 2
    fib4[3] = 0

    for i in 4...n {
        fib4[i] = fib4[i-1] + fib4[i-2] + fib4[i-3] + fib4[i-4]
    }

    return fib4[n]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    if n <= 3 {
        return n
    }

    var fib4 = [Int](repeating: 0, count: n)
    fib4[0] = 0
    fib4[1] = 0
    fib4[2] = 2
    fib4[3] = 0

    for i in 4...n {
        fib4[i] = fib4[i-1] + fib4[i-2] + fib4[i-3] + fib4[i-4]
    }

    return fib4[n]
}
```
 // Fatal error: Index out of range

func fib4(n: Int) -> Int {
    var fib4 = [Int](repeating: 0, count: n + 1)
    fib4[0] = 0
    fib4[1] = 0
    fib4[2] = 2
    fib4[3] = 0

    for i in 4...n {
        fib4[i] = fib4[i - 1] + fib4[i - 2] + fib4[i - 3] + fib4[i - 4]
    }

    return fib4[n]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    var fib4 = [Int](repeating: 0, count: n + 1)
    fib4[0] = 0
    fib4[1] = 0
    fib4[2] = 2
    fib4[3] = 0

    for i in 4...n {
        fib4[i] = fib4[i - 1] + fib4[i - 2] + fib4[i - 3] + fib4[i - 4]
    }

    return fib4[n]
}
```

func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
```
 // XCTAssertTrue failed

func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence.  Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
    var fib = [0, 0, 2, 0]
    for i in 4..<n {
        fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
    }
    return fib[n-1]
}
```
 // XCTAssertTrue failed

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middle = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middle - 1] + sorted[middle]) / 2
    } else {
        return Double(sorted[middle])
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middle = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middle - 1] + sorted[middle]) / 2
    } else {
        return Double(sorted[middle])
    }
}
```

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
```

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let mid = sorted.count / 2
    return Double(sorted[mid])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let mid = sorted.count / 2
    return Double(sorted[mid])
}
```
 // XCTAssertTrue failed

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
```

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
```

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
```

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middle = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middle - 1] + sorted[middle]) / 2
    } else {
        return Double(sorted[middle])
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middle = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middle - 1] + sorted[middle]) / 2
    } else {
        return Double(sorted[middle])
    }
}
```

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
```

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let mid = sorted.count / 2
    return Double(sorted[mid])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let mid = sorted.count / 2
    return Double(sorted[mid])
}
```
 // XCTAssertTrue failed

func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
    let sorted = l.sorted()
    let middleIndex = sorted.count / 2
    if sorted.count % 2 == 0 {
        return Double(sorted[middleIndex - 1] + sorted[middleIndex]) / 2
    } else {
        return Double(sorted[middleIndex])
    }
}
```

func isPalindrome(text: String) -> Bool {
    return text.reversed() == text
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    return text.reversed() == text
}
```
return text.reversed() == text // binary operator '==' cannot be applied to operands of type '[String.Element]' (aka 'Array<Character>') and 'String'

func isPalindrome(text: String) -> Bool {
    return text.reversed() == text
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    return text.reversed() == text
}
```
return text.reversed() == text // binary operator '==' cannot be applied to operands of type '[String.Element]' (aka 'Array<Character>') and 'String'

func isPalindrome(text: String) -> Bool {
    return text.reversed() == text
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    return text.reversed() == text
}
```
return text.reversed() == text // binary operator '==' cannot be applied to operands of type '[String.Element]' (aka 'Array<Character>') and 'String'

func isPalindrome(text: String) -> Bool {
    let reversedText = String(text.reversed())
    return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    let reversedText = String(text.reversed())
    return text == reversedText
}
```

func isPalindrome(text: String) -> Bool {
    return text == String(text.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    return text == String(text.reversed())
}
```

func isPalindrome(text: String) -> Bool {
    let text = text.lowercased()
    let textReversed = String(text.reversed())
    return text == textReversed
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    let text = text.lowercased()
    let textReversed = String(text.reversed())
    return text == textReversed
}
```

func isPalindrome(text: String) -> Bool {
    return text == String(text.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    return text == String(text.reversed())
}
```

func isPalindrome(text: String) -> Bool {
    let text = text.lowercased()
    let reversedText = String(text.reversed())
    return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    let text = text.lowercased()
    let reversedText = String(text.reversed())
    return text == reversedText
}
```

func isPalindrome(text: String) -> Bool {
    let reversedText = String(text.reversed())
    return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    let reversedText = String(text.reversed())
    return text == reversedText
}
```

func isPalindrome(text: String) -> Bool {
    return text == String(text.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
    return text == String(text.reversed())
}
```

func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
```

func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
```

func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
```

func modp(n: Int, p: Int) -> Int {
    var result = 1
    for i in 0..<n {
        result = (result * 2) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    for i in 0..<n {
        result = (result * 2) % p
    }
    return result
}
```
for i in 0..<n { // immutable value 'i' was never used; consider replacing with '_' or removing it

func modp(n: Int, p: Int) -> Int {
    var result = 1
    var power = n
    var modulus = p
    while power > 0 {
        if power % 2 == 1 {
            result = (result * modulus) % p
        }
        power /= 2
        modulus = (modulus * modulus) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    var power = n
    var modulus = p
    while power > 0 {
        if power % 2 == 1 {
            result = (result * modulus) % p
        }
        power /= 2
        modulus = (modulus * modulus) % p
    }
    return result
}
```
 // XCTAssertTrue failed

func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
```

func modp(n: Int, p: Int) -> Int {
    var result = 1
    var power = n
    var modulus = p

    while power > 0 {
        if power % 2 == 1 {
            result = (result * modulus) % p
        }
        power /= 2
        modulus = (modulus * modulus) % p
    }

    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    var power = n
    var modulus = p

    while power > 0 {
        if power % 2 == 1 {
            result = (result * modulus) % p
        }
        power /= 2
        modulus = (modulus * modulus) % p
    }

    return result
}
```
 // XCTAssertTrue failed

func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
```

func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
```

func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
    var result = 1
    for _ in 0..<n {
        result = (result * 2) % p
    }
    return result
}
```

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    return String(text.filter { !vowels.contains($0) })
}
```
return String(text.filter { !vowels.contains($0) }) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
    return l.allSatisfy { $0 < t }
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func add(x: Int, y: Int) -> Int {
    return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
    return x + y
}
```

func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
```

func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
```

func sameChars(s0: String, s1: String) -> Bool {
    let set0 = Set(s0)
    let set1 = Set(s1)
    return set0 == set1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let set0 = Set(s0)
    let set1 = Set(s1)
    return set0 == set1
}
```

func sameChars(s0: String, s1: String) -> Bool {
    let set0 = Set(s0)
    let set1 = Set(s1)
    return set0 == set1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let set0 = Set(s0)
    let set1 = Set(s1)
    return set0 == set1
}
```

func sameChars(s0: String, s1: String) -> Bool {
    let set0 = Set(s0)
    let set1 = Set(s1)
    return set0 == set1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let set0 = Set(s0)
    let set1 = Set(s1)
    return set0 == set1
}
```

func sameChars(s0: String, s1: String) -> Bool {
    return Set(s0).intersection(Set(s1)).count == s0.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    return Set(s0).intersection(Set(s1)).count == s0.count
}
```
 // XCTAssertTrue failed

func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
```

func sameChars(s0: String, s1: String) -> Bool {
    let set0 = Set(s0)
    let set1 = Set(s1)
    return set0 == set1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let set0 = Set(s0)
    let set1 = Set(s1)
    return set0 == set1
}
```

func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
```

func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
    let s0Chars = Set(s0)
    let s1Chars = Set(s1)
    return s0Chars == s1Chars
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n - 1) + fib(n: n - 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n - 1) + fib(n: n - 2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n - 1) + fib(n: n - 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n - 1) + fib(n: n - 2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
```

func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
    if n <= 1 {
        return n
    }
    return fib(n: n-1) + fib(n: n-2)
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "<" {
            stack.append(char)
        } else if char == ">" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let diff = l.dropFirst().map { $0 - l.first! }
    return diff.allSatisfy { $0 >= 0 } || diff.allSatisfy { $0 <= 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let diff = l.dropFirst().map { $0 - l.first! }
    return diff.allSatisfy { $0 >= 0 } || diff.allSatisfy { $0 <= 0 }
}
```
 // XCTAssertTrue failed

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let diffs = zip(l, l.dropFirst()).map(-)
    let increasing = diffs.allSatisfy { $0 >= 0 }
    let decreasing = diffs.allSatisfy { $0 <= 0 }
    return increasing || decreasing
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let diffs = zip(l, l.dropFirst()).map(-)
    let increasing = diffs.allSatisfy { $0 >= 0 }
    let decreasing = diffs.allSatisfy { $0 <= 0 }
    return increasing || decreasing
}
```

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    var previous = l[0]
    for i in 1..<l.count {
        if l[i] < previous {
            return false
        }
        previous = l[i]
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    var previous = l[0]
    for i in 1..<l.count {
        if l[i] < previous {
            return false
        }
        previous = l[i]
    }
    return true
}
```
 // XCTAssertTrue failed

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    var previous = l[0]
    for i in 1..<l.count {
        let current = l[i]
        if previous > current {
            return false
        }
        previous = current
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    var previous = l[0]
    for i in 1..<l.count {
        let current = l[i]
        if previous > current {
            return false
        }
        previous = current
    }
    return true
}
```
 // XCTAssertTrue failed

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i-1] != direction {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i-1] != direction {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i-1] != direction {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i-1] != direction {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i - 1] != direction {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i - 1] != direction {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i - 1] != direction {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i - 1] != direction {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let diffs = zip(l, l.dropFirst()).map(-)
    return diffs.allSatisfy { $0 >= 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let diffs = zip(l, l.dropFirst()).map(-)
    return diffs.allSatisfy { $0 >= 0 }
}
```
 // XCTAssertTrue failed

func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i-1] != direction {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
    guard l.count > 1 else { return true }
    let direction = l[1] - l[0]
    for i in 2..<l.count {
        if l[i] - l[i-1] != direction {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result.sorted()
}
```

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result: [Int] = []
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result: [Int] = []
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result.sorted()
}
```

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result: [Int] = []
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result: [Int] = []
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result: [Int] = []
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result: [Int] = []
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result.sorted()
}
```

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for i in l1 {
        for j in l2 {
            if i == j {
                result.append(i)
                break
            }
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for i in l1 {
        for j in l2 {
            if i == j {
                result.append(i)
                break
            }
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result: [Int] = []
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result: [Int] = []
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
    var result = [Int]()
    for element in l1 {
        if l2.contains(element) {
            result.append(element)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
```

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
```

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
```

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
```

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
```

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var largestFactor = 1
    for i in 2...Int(sqrt(Double(n))) {
        while n % i == 0 {
            largestFactor = i
            n /= i
        }
    }
    return largestFactor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var largestFactor = 1
    for i in 2...Int(sqrt(Double(n))) {
        while n % i == 0 {
            largestFactor = i
            n /= i
        }
    }
    return largestFactor
}
```
 // XCTAssertTrue failed

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var factor = 2
    while n > 1 {
        if n % factor == 0 {
            n /= factor
        } else {
            factor += 1
        }
    }
    return factor
}
```

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var largestFactor = 1
    for factor in 2...n {
        if n % factor == 0 {
            largestFactor = factor
            n /= factor
        }
    }
    return largestFactor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var largestFactor = 1
    for factor in 2...n {
        if n % factor == 0 {
            largestFactor = factor
            n /= factor
        }
    }
    return largestFactor
}
```
 // XCTAssertTrue failed

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var largestFactor = 1

    for i in 2...Int(sqrt(Double(n))) {
        while n % i == 0 {
            n /= i
            largestFactor = i
        }
    }

    return largestFactor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var largestFactor = 1

    for i in 2...Int(sqrt(Double(n))) {
        while n % i == 0 {
            n /= i
            largestFactor = i
        }
    }

    return largestFactor
}
```
 // XCTAssertTrue failed

func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var largestFactor = 1
    for i in 2...Int(sqrt(Double(n))) {
        while n % i == 0 {
            largestFactor = i
            n /= i
        }
    }
    return largestFactor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
    var n = n
    var largestFactor = 1
    for i in 2...Int(sqrt(Double(n))) {
        while n % i == 0 {
            largestFactor = i
            n /= i
        }
    }
    return largestFactor
}
```
 // XCTAssertTrue failed

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
    return (n * (n + 1)) / 2
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
    var stack = [Character]()
    for char in brackets {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
    var result = [Int]()
    for i in 1..<xs.count {
        result.append(xs[i] * i)
    }
    return result
}
```

func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
```

func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
```

func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
```

func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
```

func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
```

func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
```

func fibfib(n: Int) -> Int {
    if n <= 2 {
        return n
    }

    var a = 0
    var b = 1
    var c = 1

    for _ in 3...n {
        let temp = a + b + c
        a = b
        b = c
        c = temp
    }

    return c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n <= 2 {
        return n
    }

    var a = 0
    var b = 1
    var c = 1

    for _ in 3...n {
        let temp = a + b + c
        a = b
        b = c
        c = temp
    }

    return c
}
```
 // XCTAssertTrue failed

func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
```

func fibfib(n: Int) -> Int {
    if n <= 2 {
        return n
    }
    var a = 0
    var b = 1
    var c = 1
    for _ in 3...n {
        let temp = a + b + c
        a = b
        b = c
        c = temp
    }
    return c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n <= 2 {
        return n
    }
    var a = 0
    var b = 1
    var c = 1
    for _ in 3...n {
        let temp = a + b + c
        a = b
        b = c
        c = temp
    }
    return c
}
```
 // XCTAssertTrue failed

func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
    if n == 0 {
        return 0
    } else if n == 1 {
        return 0
    } else if n == 2 {
        return 1
    } else {
        return fibfib(n: n-1) + fibfib(n: n-2) + fibfib(n: n-3)
    }
}
```

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    return s.filter { vowels.contains($0) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    return s.filter { vowels.contains($0) }.count
}
```
return s.filter { vowels.contains($0) }.count // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for c in s {
        if vowels.contains(c) {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for c in s {
        if vowels.contains(c) {
            count += 1
        }
    }
    return count
}
```
if vowels.contains(c) { // cannot convert value of type 'Character' to expected argument type 'String'

func vowelsCount(s: String) -> Int {
    var vowels = 0
    for c in s {
        switch c {
        case "a", "e", "i", "o", "u":
            vowels += 1
        case "y":
            if s.last == c {
                vowels += 1
            }
        default:
            break
        }
    }
    return vowels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    var vowels = 0
    for c in s {
        switch c {
        case "a", "e", "i", "o", "u":
            vowels += 1
        case "y":
            if s.last == c {
                vowels += 1
            }
        default:
            break
        }
    }
    return vowels
}
```
 // XCTAssertTrue failed

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'

func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
    let vowels = ["a", "e", "i", "o", "u", "y"]
    var count = 0
    for char in s {
        if vowels.contains(char) {
            count += 1
        }
    }
    return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return shifted.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return shifted.joined()
}
```
return reversed.joined() // no exact matches in call to instance method 'joined'
let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift)) // reference to member 'appending' cannot be resolved without a contextual type

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    } else {
        let shifted = digits.dropFirst(shift).appending(digits.prefix(shift))
        return shifted.joined()
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    } else {
        let shifted = digits.dropFirst(shift).appending(digits.prefix(shift))
        return shifted.joined()
    }
}
```
return reversed.joined() // no exact matches in call to instance method 'joined'
let shifted = digits.dropFirst(shift).appending(digits.prefix(shift)) // reference to member 'appending' cannot be resolved without a contextual type

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    let shifted = digits.dropLast(shift).reversed() + reversed.prefix(shift)
    return String(shifted)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    let shifted = digits.dropLast(shift).reversed() + reversed.prefix(shift)
    return String(shifted)
}
```
return String(reversed) // no exact matches in call to initializer
return String(shifted) // no exact matches in call to initializer

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return shifted.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return shifted.joined()
}
```
return reversed.joined() // no exact matches in call to instance method 'joined'
let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift)) // reference to member 'appending' cannot be resolved without a contextual type

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return String(shifted)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return String(shifted)
}
```
return String(reversed) // no exact matches in call to initializer
let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift)) // reference to member 'appending' cannot be resolved without a contextual type

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return shifted.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return shifted.joined()
}
```
return reversed.joined() // no exact matches in call to instance method 'joined'
let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift)) // reference to member 'appending' cannot be resolved without a contextual type

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return String(shifted)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift))
    return String(shifted)
}
```
return String(reversed) // no exact matches in call to initializer
let shifted = digits.dropFirst(shift).appending(reversed.prefix(shift)) // reference to member 'appending' cannot be resolved without a contextual type

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    return String(reversed[shift...])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    return String(reversed[shift...])
}
```
return String(reversed) // no exact matches in call to initializer
return String(reversed[shift...]) // no exact matches in call to subscript
return String(reversed[shift...]) // cannot convert value of type 'ReversedCollection<[Int]>.SubSequence' (aka 'Slice<ReversedCollection<Array<Int>>>') to expected argument type 'Slice<AttributedString.CharacterView>'

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    return String(reversed[shift..<digits.count] + reversed[0..<shift])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return String(reversed)
    }
    return String(reversed[shift..<digits.count] + reversed[0..<shift])
}
```
return String(reversed) // no exact matches in call to initializer
return String(reversed[shift..<digits.count] + reversed[0..<shift]) // cannot convert value of type 'Range<Int>' to expected argument type 'ReversedCollection<[Int]>.Index'
return String(reversed[shift..<digits.count] + reversed[0..<shift]) // cannot convert value of type 'Range<Int>' to expected argument type 'ReversedCollection<[Int]>.Index'

func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    }
    return String(reversed[shift..<digits.count] + reversed[0..<shift])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
    let digits = String(x).map { Int(String($0))! }
    let reversed = digits.reversed()
    if shift > digits.count {
        return reversed.joined()
    }
    return String(reversed[shift..<digits.count] + reversed[0..<shift])
}
```
return reversed.joined() // no exact matches in call to instance method 'joined'
return String(reversed[shift..<digits.count] + reversed[0..<shift]) // cannot convert value of type 'Range<Int>' to expected argument type 'ReversedCollection<[Int]>.Index'
return String(reversed[shift..<digits.count] + reversed[0..<shift]) // cannot convert value of type 'Range<Int>' to expected argument type 'ReversedCollection<[Int]>.Index'

func digitSum(s: String) -> Int {
    var sum = 0
    for c in s {
        if c.isUppercase {
            sum += Int(c.unicodeScalars.first!.value)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for c in s {
        if c.isUppercase {
            sum += Int(c.unicodeScalars.first!.value)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.asciiValue!)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.asciiValue!)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for c in s {
        if c.isUppercase {
            sum += Int(c.unicodeScalars.first!.value)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for c in s {
        if c.isUppercase {
            sum += Int(c.unicodeScalars.first!.value)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for c in s {
        if c.isUppercase {
            sum += Int(c.unicodeScalars.first!.value)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for c in s {
        if c.isUppercase {
            sum += Int(c.unicodeScalars.first!.value)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for c in s {
        if c.isUppercase {
            sum += Int(c.asciiValue!)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for c in s {
        if c.isUppercase {
            sum += Int(c.asciiValue!)
        }
    }
    return sum
}
```

func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
    var sum = 0
    for char in s {
        if char.isUppercase {
            sum += Int(char.unicodeScalars.first!.value)
        }
    }
    return sum
}
```

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let totalFruits = apples + oranges
    return n - totalFruits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let totalFruits = apples + oranges
    return n - totalFruits
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0]) ?? 0
    let oranges = Int(components[2]) ?? 0
    return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0]) ?? 0
    let oranges = Int(components[2]) ?? 0
    return n - apples - oranges
}
```
 // XCTAssertTrue failed

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0]) ?? 0
    let oranges = Int(components[2]) ?? 0
    let totalFruits = apples + oranges
    return n - totalFruits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0]) ?? 0
    let oranges = Int(components[2]) ?? 0
    let totalFruits = apples + oranges
    return n - totalFruits
}
```
 // XCTAssertTrue failed

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0]) ?? 0
    let oranges = Int(components[2]) ?? 0
    return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0]) ?? 0
    let oranges = Int(components[2]) ?? 0
    return n - apples - oranges
}
```
 // XCTAssertTrue failed

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0]) ?? 0
    let oranges = Int(components[2]) ?? 0
    return n - apples - oranges
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0]) ?? 0
    let oranges = Int(components[2]) ?? 0
    return n - apples - oranges
}
```
 // XCTAssertTrue failed

func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges 
that are distributed in a basket of fruit this basket contains 
apples, oranges, and mango fruits. Given the string that represents the total number of 
the oranges and apples and an integer that represent the total number of the fruits 
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
    let components = s.components(separatedBy: " ")
    let apples = Int(components[0])!
    let oranges = Int(components[2])!
    let mangoes = n - apples - oranges
    return mangoes
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var smallestEvenValue: Int?
    var smallestEvenValueIndex: Int?

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 && (smallestEvenValue == nil || value < smallestEvenValue!) {
            smallestEvenValue = value
            smallestEvenValueIndex = index
        }
    }

    return smallestEvenValueIndex.map { [$0, $1] } ?? []
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var smallestEvenValue: Int?
    var smallestEvenValueIndex: Int?

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 && (smallestEvenValue == nil || value < smallestEvenValue!) {
            smallestEvenValue = value
            smallestEvenValueIndex = index
        }
    }

    return smallestEvenValueIndex.map { [$0, $1] } ?? []
}
```
return smallestEvenValueIndex.map { [$0, $1] } ?? [] // contextual closure type '(Int) throws -> [Int]' expects 1 argument, but 2 were used in closure body

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = 0

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestEvenValue {
                smallestEvenValue = value
                smallestEvenValueIndex = index
            }
        }
    }

    if !evenValues.isEmpty {
        return [smallestEvenValue, smallestEvenValueIndex]
    } else {
        return []
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = 0

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestEvenValue {
                smallestEvenValue = value
                smallestEvenValueIndex = index
            }
        }
    }

    if !evenValues.isEmpty {
        return [smallestEvenValue, smallestEvenValueIndex]
    } else {
        return []
    }
}
```

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var smallestEvenValue: Int?
    var smallestEvenValueIndex: Int?

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 && (smallestEvenValue == nil || value < smallestEvenValue!) {
            smallestEvenValue = value
            smallestEvenValueIndex = index
        }
    }

    return smallestEvenValueIndex.map { [$0, $1] } ?? []
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var smallestEvenValue: Int?
    var smallestEvenValueIndex: Int?

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 && (smallestEvenValue == nil || value < smallestEvenValue!) {
            smallestEvenValue = value
            smallestEvenValueIndex = index
        }
    }

    return smallestEvenValueIndex.map { [$0, $1] } ?? []
}
```
return smallestEvenValueIndex.map { [$0, $1] } ?? [] // contextual closure type '(Int) throws -> [Int]' expects 1 argument, but 2 were used in closure body

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }
    
    var evenValues = [Int]()
    var smallestIndex = 0
    
    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            smallestIndex = index
        }
    }
    
    if evenValues.isEmpty {
        return []
    }
    
    return [evenValues.min()!, smallestIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }
    
    var evenValues = [Int]()
    var smallestIndex = 0
    
    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            smallestIndex = index
        }
    }
    
    if evenValues.isEmpty {
        return []
    }
    
    return [evenValues.min()!, smallestIndex]
}
```
 // XCTAssertTrue failed

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestIndex = 0

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            smallestIndex = index
        }
    }

    if evenValues.isEmpty {
        return []
    } else {
        return [evenValues.min()!, smallestIndex]
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestIndex = 0

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            smallestIndex = index
        }
    }

    if evenValues.isEmpty {
        return []
    } else {
        return [evenValues.min()!, smallestIndex]
    }
}
```
 // XCTAssertTrue failed

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = -1

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 && value < smallestEvenValue {
            smallestEvenValue = value
            smallestEvenValueIndex = index
        }
    }

    if smallestEvenValueIndex != -1 {
        return [smallestEvenValue, smallestEvenValueIndex]
    } else {
        return []
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = -1

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 && value < smallestEvenValue {
            smallestEvenValue = value
            smallestEvenValueIndex = index
        }
    }

    if smallestEvenValueIndex != -1 {
        return [smallestEvenValue, smallestEvenValueIndex]
    } else {
        return []
    }
}
```
var evenValues = [Int]() // initialization of variable 'evenValues' was never used; consider replacing with assignment to '_' or removing it

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = Int.max

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestEvenValue {
                smallestEvenValue = value
                smallestEvenValueIndex = index
            }
        }
    }

    if smallestEvenValueIndex < Int.max {
        return [smallestEvenValue, smallestEvenValueIndex]
    } else {
        return []
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = Int.max

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestEvenValue {
                smallestEvenValue = value
                smallestEvenValueIndex = index
            }
        }
    }

    if smallestEvenValueIndex < Int.max {
        return [smallestEvenValue, smallestEvenValueIndex]
    } else {
        return []
    }
}
```

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = 0

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestEvenValue {
                smallestEvenValue = value
                smallestEvenValueIndex = index
            }
        }
    }

    if evenValues.isEmpty {
        return []
    } else {
        return [smallestEvenValue, smallestEvenValueIndex]
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = 0

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestEvenValue {
                smallestEvenValue = value
                smallestEvenValueIndex = index
            }
        }
    }

    if evenValues.isEmpty {
        return []
    } else {
        return [smallestEvenValue, smallestEvenValueIndex]
    }
}
```

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }
    
    var evenValues = [Int]()
    var smallestIndex = 0
    var smallestValue = Int.max
    
    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestValue {
                smallestValue = value
                smallestIndex = index
            }
        }
    }
    
    if evenValues.isEmpty {
        return []
    } else {
        return [smallestValue, smallestIndex]
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }
    
    var evenValues = [Int]()
    var smallestIndex = 0
    var smallestValue = Int.max
    
    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestValue {
                smallestValue = value
                smallestIndex = index
            }
        }
    }
    
    if evenValues.isEmpty {
        return []
    } else {
        return [smallestValue, smallestIndex]
    }
}
```

func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = Int.max

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestEvenValue {
                smallestEvenValue = value
                smallestEvenValueIndex = index
            }
        }
    }

    if !evenValues.isEmpty {
        return [smallestEvenValue, smallestEvenValueIndex]
    } else {
        return []
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but  there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
    guard !arr.isEmpty else { return [] }

    var evenValues = [Int]()
    var smallestEvenValue = Int.max
    var smallestEvenValueIndex = Int.max

    for (index, value) in arr.enumerated() {
        if value % 2 == 0 {
            evenValues.append(value)
            if value < smallestEvenValue {
                smallestEvenValue = value
                smallestEvenValueIndex = index
            }
        }
    }

    if !evenValues.isEmpty {
        return [smallestEvenValue, smallestEvenValueIndex]
    } else {
        return []
    }
}
```

func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }
    for (num, frequency) in frequencyMap {
        if frequency >= num && num > 0 {
            return num
        }
    }
    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }
    for (num, frequency) in frequencyMap {
        if frequency >= num && num > 0 {
            return num
        }
    }
    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequency = [Int: Int]()
    for element in lst {
        frequency[element] = (frequency[element] ?? 0) + 1
    }

    for (element, count) in frequency {
        if count >= element && element > 0 {
            return element
        }
    }

    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequency = [Int: Int]()
    for element in lst {
        frequency[element] = (frequency[element] ?? 0) + 1
    }

    for (element, count) in frequency {
        if count >= element && element > 0 {
            return element
        }
    }

    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }
    for num in lst {
        if frequencyMap[num]! >= num {
            return num
        }
    }
    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }
    for num in lst {
        if frequencyMap[num]! >= num {
            return num
        }
    }
    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequency = [Int: Int]()
    for num in lst {
        frequency[num, default: 0] += 1
    }
    for num in lst {
        if frequency[num]! >= num && num > 0 {
            return num
        }
    }
    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequency = [Int: Int]()
    for num in lst {
        frequency[num, default: 0] += 1
    }
    for num in lst {
        if frequency[num]! >= num && num > 0 {
            return num
        }
    }
    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }
    for (num, frequency) in frequencyMap {
        if frequency >= num && num > 0 {
            return num
        }
    }
    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }
    for (num, frequency) in frequencyMap {
        if frequency >= num && num > 0 {
            return num
        }
    }
    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }
    for num in lst {
        if frequencyMap[num]! >= num && num > 0 {
            return num
        }
    }
    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }
    for num in lst {
        if frequencyMap[num]! >= num && num > 0 {
            return num
        }
    }
    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for element in lst {
        frequencyMap[element] = (frequencyMap[element] ?? 0) + 1
    }
    for (element, frequency) in frequencyMap {
        if frequency >= element && element > 0 {
            return element
        }
    }
    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for element in lst {
        frequencyMap[element] = (frequencyMap[element] ?? 0) + 1
    }
    for (element, frequency) in frequencyMap {
        if frequency >= element && element > 0 {
            return element
        }
    }
    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }

    for (num, frequency) in frequencyMap {
        if frequency >= num && num > 0 {
            return num
        }
    }

    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequencyMap = [Int: Int]()
    for num in lst {
        frequencyMap[num, default: 0] += 1
    }

    for (num, frequency) in frequencyMap {
        if frequency >= num && num > 0 {
            return num
        }
    }

    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequencies = [Int: Int]()
    for num in lst {
        frequencies[num, default: 0] += 1
    }
    for (num, freq) in frequencies {
        if freq >= num && num > 0 {
            return num
        }
    }
    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequencies = [Int: Int]()
    for num in lst {
        frequencies[num, default: 0] += 1
    }
    for (num, freq) in frequencies {
        if freq >= num && num > 0 {
            return num
        }
    }
    return -1
}
```
 // XCTAssertTrue failed

func search(lst: [Int]) -> Int {
    var frequencies = [Int: Int]()
    for num in lst {
        frequencies[num, default: 0] += 1
    }
    for (num, freq) in frequencies {
        if freq >= num && num > 0 {
            return num
        }
    }
    return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than 
zero, and has a frequency greater than or equal to the value of the integer itself. 
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
    var frequencies = [Int: Int]()
    for num in lst {
        frequencies[num, default: 0] += 1
    }
    for (num, freq) in frequencies {
        if freq >= num && num > 0 {
            return num
        }
    }
    return -1
}
```
 // XCTAssertTrue failed

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var result = [Int]()
    var min = lst[0]
    var max = lst[0]
    for i in 1..<lst.count {
        if lst[i] < min {
            min = lst[i]
        } else if lst[i] > max {
            max = lst[i]
        }
    }
    result.append(min)
    result.append(max)
    for i in 1..<lst.count {
        if lst[i] != min && lst[i] != max {
            result.append(lst[i])
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var result = [Int]()
    var min = lst[0]
    var max = lst[0]
    for i in 1..<lst.count {
        if lst[i] < min {
            min = lst[i]
        } else if lst[i] > max {
            max = lst[i]
        }
    }
    result.append(min)
    result.append(max)
    for i in 1..<lst.count {
        if lst[i] != min && lst[i] != max {
            result.append(lst[i])
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }

    var sortedList = lst
    var minIndex = 0
    var maxIndex = sortedList.count - 1

    while minIndex < maxIndex {
        let minValue = sortedList[minIndex]
        let maxValue = sortedList[maxIndex]

        sortedList[minIndex] = maxValue
        sortedList[maxIndex] = minValue

        minIndex += 1
        maxIndex -= 1
    }

    return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }

    var sortedList = lst
    var minIndex = 0
    var maxIndex = sortedList.count - 1

    while minIndex < maxIndex {
        let minValue = sortedList[minIndex]
        let maxValue = sortedList[maxIndex]

        sortedList[minIndex] = maxValue
        sortedList[maxIndex] = minValue

        minIndex += 1
        maxIndex -= 1
    }

    return sortedList
}
```
 // XCTAssertTrue failed

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var sorted = lst
    for i in 0..<sorted.count {
        let min = sorted.min()!
        let max = sorted.max()!
        sorted.removeAll(where: { $0 == min || $0 == max })
        sorted.insert(min, at: i)
        sorted.insert(max, at: i + 1)
    }
    return sorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var sorted = lst
    for i in 0..<sorted.count {
        let min = sorted.min()!
        let max = sorted.max()!
        sorted.removeAll(where: { $0 == min || $0 == max })
        sorted.insert(min, at: i)
        sorted.insert(max, at: i + 1)
    }
    return sorted
}
```
 // Fatal error: Array index is out of range

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var result = [Int]()
    var sorted = lst.sorted()
    while sorted.count > 0 {
        result.append(sorted.first!)
        sorted.removeFirst()
        if sorted.count > 0 {
            result.append(sorted.last!)
            sorted.removeLast()
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var result = [Int]()
    var sorted = lst.sorted()
    while sorted.count > 0 {
        result.append(sorted.first!)
        sorted.removeFirst()
        if sorted.count > 0 {
            result.append(sorted.last!)
            sorted.removeLast()
        }
    }
    return result
}
```

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    
    var result = [Int]()
    var remaining = lst
    
    while remaining.count > 0 {
        let min = remaining.min()!
        result.append(min)
        remaining.remove(at: remaining.firstIndex(of: min)!)
        
        let max = remaining.max()!
        result.append(max)
        remaining.remove(at: remaining.firstIndex(of: max)!)
    }
    
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    
    var result = [Int]()
    var remaining = lst
    
    while remaining.count > 0 {
        let min = remaining.min()!
        result.append(min)
        remaining.remove(at: remaining.firstIndex(of: min)!)
        
        let max = remaining.max()!
        result.append(max)
        remaining.remove(at: remaining.firstIndex(of: max)!)
    }
    
    return result
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    
    var sortedList = lst
    var minIndex = 0
    var maxIndex = sortedList.count - 1
    
    while minIndex < maxIndex {
        let minValue = sortedList[minIndex]
        let maxValue = sortedList[maxIndex]
        
        sortedList[minIndex] = maxValue
        sortedList[maxIndex] = minValue
        
        minIndex += 1
        maxIndex -= 1
    }
    
    return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    
    var sortedList = lst
    var minIndex = 0
    var maxIndex = sortedList.count - 1
    
    while minIndex < maxIndex {
        let minValue = sortedList[minIndex]
        let maxValue = sortedList[maxIndex]
        
        sortedList[minIndex] = maxValue
        sortedList[maxIndex] = minValue
        
        minIndex += 1
        maxIndex -= 1
    }
    
    return sortedList
}
```
 // XCTAssertTrue failed

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    
    var sortedList = lst
    var minIndex = 0
    var maxIndex = sortedList.count - 1
    
    while minIndex < maxIndex {
        let minValue = sortedList[minIndex]
        let maxValue = sortedList[maxIndex]
        
        sortedList[minIndex] = maxValue
        sortedList[maxIndex] = minValue
        
        minIndex += 1
        maxIndex -= 1
    }
    
    return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    
    var sortedList = lst
    var minIndex = 0
    var maxIndex = sortedList.count - 1
    
    while minIndex < maxIndex {
        let minValue = sortedList[minIndex]
        let maxValue = sortedList[maxIndex]
        
        sortedList[minIndex] = maxValue
        sortedList[maxIndex] = minValue
        
        minIndex += 1
        maxIndex -= 1
    }
    
    return sortedList
}
```
 // XCTAssertTrue failed

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var sorted = lst
    var minIndex = 0
    var maxIndex = sorted.count - 1
    while minIndex < maxIndex {
        let minValue = sorted[minIndex]
        let maxValue = sorted[maxIndex]
        sorted[minIndex] = maxValue
        sorted[maxIndex] = minValue
        minIndex += 1
        maxIndex -= 1
    }
    return sorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var sorted = lst
    var minIndex = 0
    var maxIndex = sorted.count - 1
    while minIndex < maxIndex {
        let minValue = sorted[minIndex]
        let maxValue = sorted[maxIndex]
        sorted[minIndex] = maxValue
        sorted[maxIndex] = minValue
        minIndex += 1
        maxIndex -= 1
    }
    return sorted
}
```
 // XCTAssertTrue failed

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var result = [Int]()
    var remaining = lst
    while remaining.count > 0 {
        let min = remaining.min()!
        result.append(min)
        remaining.removeAll(where: { $0 == min })
        if remaining.count > 0 {
            let max = remaining.max()!
            result.append(max)
            remaining.removeAll(where: { $0 == max })
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    var result = [Int]()
    var remaining = lst
    while remaining.count > 0 {
        let min = remaining.min()!
        result.append(min)
        remaining.removeAll(where: { $0 == min })
        if remaining.count > 0 {
            let max = remaining.max()!
            result.append(max)
            remaining.removeAll(where: { $0 == max })
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    
    var sortedList = [Int]()
    var remainingList = lst
    
    while remainingList.count > 0 {
        let minValue = remainingList.min()!
        sortedList.append(minValue)
        remainingList.remove(at: remainingList.firstIndex(of: minValue)!)
        
        let maxValue = remainingList.max()!
        sortedList.append(maxValue)
        remainingList.remove(at: remainingList.firstIndex(of: maxValue)!)
    }
    
    return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
    guard lst.count > 1 else { return lst }
    
    var sortedList = [Int]()
    var remainingList = lst
    
    while remainingList.count > 0 {
        let minValue = remainingList.min()!
        sortedList.append(minValue)
        remainingList.remove(at: remainingList.firstIndex(of: minValue)!)
        
        let maxValue = remainingList.max()!
        sortedList.append(maxValue)
        remainingList.remove(at: remainingList.firstIndex(of: maxValue)!)
    }
    
    return sortedList
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return sqrt(s * (s - a) * (s - b) * (s - c))
    } else {
        return -1
    }
}
```
return sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return Double(sqrt(s * (s - a) * (s - b) * (s - c)))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return Double(sqrt(s * (s - a) * (s - b) * (s - c)))
    } else {
        return -1
    }
}
```

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return Double(sqrt(s * (s - a) * (s - b) * (s - c)))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return Double(sqrt(s * (s - a) * (s - b) * (s - c)))
    } else {
        return -1
    }
}
```

func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return Double(sqrt(s * (s - a) * (s - b) * (s - c)))
    } else {
        return -1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle. 
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater 
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
    if a + b > c && b + c > a && a + c > b {
        let s = (a + b + c) / 2
        return Double(sqrt(s * (s - a) * (s - b) * (s - c)))
    } else {
        return -1
    }
}
```

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) <= w {
        return true
    }

    return false
}

func isBalanced(q: [Int]) -> Bool {
    // Check if the array is palindromic
    if q == q.reversed() {
        return true
    }

    return false
}

func sum(q: [Int]) -> Int {
    return q.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) <= w {
        return true
    }

    return false
}

func isBalanced(q: [Int]) -> Bool {
    // Check if the array is palindromic
    if q == q.reversed() {
        return true
    }

    return false
}

func sum(q: [Int]) -> Int {
    return q.reduce(0, +)
}
```
if !isBalanced(q) { // missing argument label 'q:' in call
if sum(q) <= w { // missing argument label 'q:' in call

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) > w {
        return false
    }

    return true
}

func isBalanced(_ q: [Int]) -> Bool {
    // Check if the array is palindromic
    if q.count % 2 == 0 {
        return q[0] == q[q.count - 1] && isBalanced(q[1..<q.count - 1])
    } else {
        return q[0] == q[q.count - 1]
    }
}

func sum(_ q: [Int]) -> Int {
    return q.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) > w {
        return false
    }

    return true
}

func isBalanced(_ q: [Int]) -> Bool {
    // Check if the array is palindromic
    if q.count % 2 == 0 {
        return q[0] == q[q.count - 1] && isBalanced(q[1..<q.count - 1])
    } else {
        return q[0] == q[q.count - 1]
    }
}

func sum(_ q: [Int]) -> Int {
    return q.reduce(0, +)
}
```
return q[0] == q[q.count - 1] && isBalanced(q[1..<q.count - 1]) // cannot convert value of type 'ArraySlice<Int>' to expected argument type '[Int]'

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) > w {
        return false
    }

    return true
}

func isBalanced(q: [Int]) -> Bool {
    // Check if the array is palindromic
    if !isPalindromic(q) {
        return false
    }

    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    return true
}

func isPalindromic(q: [Int]) -> Bool {
    // Check if the array is palindromic
    if !isPalindromic(q) {
        return false
    }

    return true
}

func sum(q: [Int]) -> Int {
    // Calculate the sum of the elements
    var sum = 0
    for element in q {
        sum += element
    }

    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) > w {
        return false
    }

    return true
}

func isBalanced(q: [Int]) -> Bool {
    // Check if the array is palindromic
    if !isPalindromic(q) {
        return false
    }

    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    return true
}

func isPalindromic(q: [Int]) -> Bool {
    // Check if the array is palindromic
    if !isPalindromic(q) {
        return false
    }

    return true
}

func sum(q: [Int]) -> Int {
    // Calculate the sum of the elements
    var sum = 0
    for element in q {
        sum += element
    }

    return sum
}
```
if !isBalanced(q) { // missing argument label 'q:' in call
if sum(q) > w { // missing argument label 'q:' in call
if !isPalindromic(q) { // missing argument label 'q:' in call
if !isBalanced(q) { // missing argument label 'q:' in call
if !isPalindromic(q) { // missing argument label 'q:' in call

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is palindromic
    if q.reversed() != q {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if q.reduce(0, +) <= w {
        return true
    }

    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is palindromic
    if q.reversed() != q {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if q.reduce(0, +) <= w {
        return true
    }

    return false
}
```

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) > w {
        return false
    }

    return true
}

func isBalanced(_ q: [Int]) -> Bool {
    // Check if the array is palindromic
    if !isPalindromic(q) {
        return false
    }

    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    return true
}

func isPalindromic(_ q: [Int]) -> Bool {
    // Check if the array is palindromic
    if !isPalindromic(q) {
        return false
    }

    return true
}

func sum(_ q: [Int]) -> Int {
    // Calculate the sum of the elements
    var sum = 0
    for element in q {
        sum += element
    }

    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) > w {
        return false
    }

    return true
}

func isBalanced(_ q: [Int]) -> Bool {
    // Check if the array is palindromic
    if !isPalindromic(q) {
        return false
    }

    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    return true
}

func isPalindromic(_ q: [Int]) -> Bool {
    // Check if the array is palindromic
    if !isPalindromic(q) {
        return false
    }

    return true
}

func sum(_ q: [Int]) -> Int {
    // Calculate the sum of the elements
    var sum = 0
    for element in q {
        sum += element
    }

    return sum
}
```
if !isPalindromic(q) { // function call causes an infinite recursion

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if q.count % 2 == 0 {
        // If the array is balanced, check if the sum of its elements is less than or equal to the maximum possible weight
        return q.reduce(0, +) <= w
    } else {
        // If the array is not balanced, return false
        return false
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if q.count % 2 == 0 {
        // If the array is balanced, check if the sum of its elements is less than or equal to the maximum possible weight
        return q.reduce(0, +) <= w
    } else {
        // If the array is not balanced, return false
        return false
    }
}
```
 // XCTAssertTrue failed

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is palindromic
    if q.reversed() != q {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if q.reduce(0, +) <= w {
        return true
    } else {
        return false
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is palindromic
    if q.reversed() != q {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if q.reduce(0, +) <= w {
        return true
    } else {
        return false
    }
}
```

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is palindromic
    if q.reversed() != q {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if q.reduce(0, +) <= w {
        return true
    }

    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is palindromic
    if q.reversed() != q {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if q.reduce(0, +) <= w {
        return true
    }

    return false
}
```

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) <= w {
        return true
    }

    return false
}

func isBalanced(q: [Int]) -> Bool {
    // Check if the array is palindromic
    if q.count % 2 == 0 {
        return q[0] == q[q.count - 1]
    } else {
        return q[0] == q[q.count - 2]
    }
}

func sum(q: [Int]) -> Int {
    return q.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is balanced
    if !isBalanced(q) {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if sum(q) <= w {
        return true
    }

    return false
}

func isBalanced(q: [Int]) -> Bool {
    // Check if the array is palindromic
    if q.count % 2 == 0 {
        return q[0] == q[q.count - 1]
    } else {
        return q[0] == q[q.count - 2]
    }
}

func sum(q: [Int]) -> Int {
    return q.reduce(0, +)
}
```
if !isBalanced(q) { // missing argument label 'q:' in call
if sum(q) <= w { // missing argument label 'q:' in call

func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is palindromic
    if q.reversed() != q {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if q.reduce(0, +) <= w {
        return true
    }

    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
    // Check if the array is palindromic
    if q.reversed() != q {
        return false
    }

    // Check if the sum of the elements is less than or equal to the maximum possible weight
    if q.reduce(0, +) <= w {
        return true
    }

    return false
}
```

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func smallestChange(arr: [Int]) -> Int {
    // Check if the array is already palindromic
    if isPalindromic(arr) {
        return 0
    }

    // Find the minimum number of elements that need to be changed to make the array palindromic
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            count += 1
        }
    }

    return count
}

func isPalindromic(_ arr: [Int]) -> Bool {
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    // Check if the array is already palindromic
    if isPalindromic(arr) {
        return 0
    }

    // Find the minimum number of elements that need to be changed to make the array palindromic
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            count += 1
        }
    }

    return count
}

func isPalindromic(_ arr: [Int]) -> Bool {
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    let n = arr.count
    for i in 0..<n/2 {
        if arr[i] != arr[n-i-1] {
            count += 1
            if count > 1 {
                return -1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    let n = arr.count
    for i in 0..<n/2 {
        if arr[i] != arr[n-i-1] {
            count += 1
            if count > 1 {
                return -1
            }
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    let n = arr.count
    for i in 0..<n/2 {
        if arr[i] != arr[n-i-1] {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    let n = arr.count
    for i in 0..<n/2 {
        if arr[i] != arr[n-i-1] {
            count += 1
        }
    }
    return count
}
```

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - i - 1] {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    let n = arr.count
    for i in 0..<n/2 {
        if arr[i] != arr[n-i-1] {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    let n = arr.count
    for i in 0..<n/2 {
        if arr[i] != arr[n-i-1] {
            count += 1
        }
    }
    return count
}
```

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - 1 - i] {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - 1 - i] {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - 1 - i] {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    for i in 0..<arr.count {
        if arr[i] != arr[arr.count - 1 - i] {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func smallestChange(arr: [Int]) -> Int {
    var count = 0
    let n = arr.count
    for i in 0..<n/2 {
        if arr[i] != arr[n-i-1] {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
    var count = 0
    let n = arr.count
    for i in 0..<n/2 {
        if arr[i] != arr[n-i-1] {
            count += 1
        }
    }
    return count
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars2 < totalChars1 {
        return lst2
    } else {
        return lst1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars2 < totalChars1 {
        return lst2
    } else {
        return lst1
    }
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars2 < totalChars1 {
        return lst2
    } else {
        return lst1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars2 < totalChars1 {
        return lst2
    } else {
        return lst1
    }
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for str in lst1 {
        totalChars1 += str.count
    }
    for str in lst2 {
        totalChars2 += str.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for str in lst1 {
        totalChars1 += str.count
    }
    for str in lst2 {
        totalChars2 += str.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for str in lst1 {
        totalChars1 += str.count
    }
    for str in lst2 {
        totalChars2 += str.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars2 < totalChars1 {
        return lst2
    } else {
        return lst1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for str in lst1 {
        totalChars1 += str.count
    }
    for str in lst2 {
        totalChars2 += str.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars2 < totalChars1 {
        return lst2
    } else {
        return lst1
    }
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var result = [String]()
    var totalChars1 = 0
    var totalChars2 = 0

    for string in lst1 {
        totalChars1 += string.count
    }

    for string in lst2 {
        totalChars2 += string.count
    }

    if totalChars1 < totalChars2 {
        result = lst1
    } else if totalChars1 > totalChars2 {
        result = lst2
    } else {
        result = lst1
    }

    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var result = [String]()
    var totalChars1 = 0
    var totalChars2 = 0

    for string in lst1 {
        totalChars1 += string.count
    }

    for string in lst2 {
        totalChars2 += string.count
    }

    if totalChars1 < totalChars2 {
        result = lst1
    } else if totalChars1 > totalChars2 {
        result = lst2
    } else {
        result = lst1
    }

    return result
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var result = [String]()
    var totalChars1 = 0
    var totalChars2 = 0

    for string in lst1 {
        totalChars1 += string.count
    }

    for string in lst2 {
        totalChars2 += string.count
    }

    if totalChars1 < totalChars2 {
        result = lst1
    } else if totalChars1 > totalChars2 {
        result = lst2
    } else {
        result = lst1
    }

    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var result = [String]()
    var totalChars1 = 0
    var totalChars2 = 0

    for string in lst1 {
        totalChars1 += string.count
    }

    for string in lst2 {
        totalChars2 += string.count
    }

    if totalChars1 < totalChars2 {
        result = lst1
    } else if totalChars1 > totalChars2 {
        result = lst2
    } else {
        result = lst1
    }

    return result
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for str in lst1 {
        totalChars1 += str.count
    }
    for str in lst2 {
        totalChars2 += str.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for str in lst1 {
        totalChars1 += str.count
    }
    for str in lst2 {
        totalChars2 += str.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
```

func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has 
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
    var totalChars1 = 0
    var totalChars2 = 0
    for string in lst1 {
        totalChars1 += string.count
    }
    for string in lst2 {
        totalChars2 += string.count
    }
    if totalChars1 < totalChars2 {
        return lst1
    } else if totalChars1 > totalChars2 {
        return lst2
    } else {
        return lst1
    }
}
```

func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        // Check if a is divisible by 5
        if a % 5 == 0 {
            // Check if a is divisible by 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        // Check if a is divisible by 5
        if a % 5 == 0 {
            // Check if a is divisible by 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    
    return false
}
```
 // XCTAssertTrue failed

func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        // Check if a is divisible by 5
        if a % 5 == 0 {
            // Check if a is divisible by 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        // Check if a is divisible by 5
        if a % 5 == 0 {
            // Check if a is divisible by 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is a multiple of 3
    if a % 3 == 0 {
        // Check if a is a multiple of 5
        if a % 5 == 0 {
            // Check if a is a multiple of 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is a multiple of 3
    if a % 3 == 0 {
        // Check if a is a multiple of 5
        if a % 5 == 0 {
            // Check if a is a multiple of 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 2, 3, or 5
    if a % 2 == 0 || a % 3 == 0 || a % 5 == 0 {
        return true
    }
    
    // Check if a is the multiplication of 3 prime numbers
    let primeFactors = [2, 3, 5]
    for factor in primeFactors {
        if a % factor == 0 {
            return true
        }
    }
    
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 2, 3, or 5
    if a % 2 == 0 || a % 3 == 0 || a % 5 == 0 {
        return true
    }
    
    // Check if a is the multiplication of 3 prime numbers
    let primeFactors = [2, 3, 5]
    for factor in primeFactors {
        if a % factor == 0 {
            return true
        }
    }
    
    return false
}
```
 // XCTAssertTrue failed

func isMultiplyPrime(a: Int) -> Bool {
    if a < 100 {
        return false
    }
    var factors = [Int]()
    for i in 2...Int(sqrt(Double(a))) {
        if a % i == 0 {
            factors.append(i)
        }
    }
    if factors.count != 3 {
        return false
    }
    var primeFactors = [Int]()
    for factor in factors {
        if isPrime(factor) {
            primeFactors.append(factor)
        }
    }
    return primeFactors.count == 3
}

func isPrime(n: Int) -> Bool {
    if n < 2 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    if a < 100 {
        return false
    }
    var factors = [Int]()
    for i in 2...Int(sqrt(Double(a))) {
        if a % i == 0 {
            factors.append(i)
        }
    }
    if factors.count != 3 {
        return false
    }
    var primeFactors = [Int]()
    for factor in factors {
        if isPrime(factor) {
            primeFactors.append(factor)
        }
    }
    return primeFactors.count == 3
}

func isPrime(n: Int) -> Bool {
    if n < 2 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(factor) { // missing argument label 'n:' in call

func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 2, 3, or 5
    if a % 2 == 0 || a % 3 == 0 || a % 5 == 0 {
        return false
    }
    
    // Check if a is the multiplication of 3 prime numbers
    var count = 0
    for i in 2...Int(sqrt(Double(a))) {
        if a % i == 0 {
            count += 1
            if count == 3 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 2, 3, or 5
    if a % 2 == 0 || a % 3 == 0 || a % 5 == 0 {
        return false
    }
    
    // Check if a is the multiplication of 3 prime numbers
    var count = 0
    for i in 2...Int(sqrt(Double(a))) {
        if a % i == 0 {
            count += 1
            if count == 3 {
                return true
            }
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func isMultiplyPrime(a: Int) -> Bool {
    guard a > 0 else { return false }
    let primeFactors = a.primeFactors()
    return primeFactors.count == 3 && primeFactors.allSatisfy { $0 > 1 }
}

extension Int {
    func primeFactors() -> [Int] {
        var factors = [Int]()
        var number = self
        for i in 2...Int(sqrt(Double(number))) {
            while number % i == 0 {
                factors.append(i)
                number /= i
            }
        }
        if number > 1 {
            factors.append(number)
        }
        return factors
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    guard a > 0 else { return false }
    let primeFactors = a.primeFactors()
    return primeFactors.count == 3 && primeFactors.allSatisfy { $0 > 1 }
}

extension Int {
    func primeFactors() -> [Int] {
        var factors = [Int]()
        var number = self
        for i in 2...Int(sqrt(Double(number))) {
            while number % i == 0 {
                factors.append(i)
                number /= i
            }
        }
        if number > 1 {
            factors.append(number)
        }
        return factors
    }
}
```

func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        // Check if a is divisible by 5
        if a % 5 == 0 {
            // Check if a is divisible by 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        // Check if a is divisible by 5
        if a % 5 == 0 {
            // Check if a is divisible by 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    
    return false
}
```
 // XCTAssertTrue failed

func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        return true
    }
    
    // Check if a is divisible by 5
    if a % 5 == 0 {
        return true
    }
    
    // Check if a is divisible by 7
    if a % 7 == 0 {
        return true
    }
    
    // If none of the above conditions are met, return false
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        return true
    }
    
    // Check if a is divisible by 5
    if a % 5 == 0 {
        return true
    }
    
    // Check if a is divisible by 7
    if a % 7 == 0 {
        return true
    }
    
    // If none of the above conditions are met, return false
    return false
}
```
 // XCTAssertTrue failed

func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        // Check if a is divisible by 5
        if a % 5 == 0 {
            // Check if a is divisible by 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. 
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
    // Check if a is less than 100
    guard a < 100 else { return false }
    
    // Check if a is divisible by 3
    if a % 3 == 0 {
        // Check if a is divisible by 5
        if a % 5 == 0 {
            // Check if a is divisible by 7
            if a % 7 == 0 {
                return true
            }
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
```
return x == n ** Int(log2(Double(x))) // no operator '**' is defined; did you mean 'pow(_:_:)'?

func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log(Double(x), base: Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log(Double(x), base: Double(n)))
}
```
return x == n ** Int(log(Double(x), base: Double(n))) // extra argument 'base' in call
return x == n ** Int(log(Double(x), base: Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?

func isSimplePower(x: Int, n: Int) -> Bool {
    return n.power(x) == x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return n.power(x) == x
}
```
return n.power(x) == x // value of type 'Int' has no member 'power'

func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
```
return x == n ** Int(log2(Double(x))) // no operator '**' is defined; did you mean 'pow(_:_:)'?

func isSimplePower(x: Int, n: Int) -> Bool {
    return n ** Int(log2(Double(x))) == x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return n ** Int(log2(Double(x))) == x
}
```
return n ** Int(log2(Double(x))) == x // no operator '**' is defined; did you mean 'pow(_:_:)'?

func isSimplePower(x: Int, n: Int) -> Bool {
    return n ** Int(log2(Double(x))) == x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return n ** Int(log2(Double(x))) == x
}
```
return n ** Int(log2(Double(x))) == x // no operator '**' is defined; did you mean 'pow(_:_:)'?

func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
```
return x == n ** Int(log2(Double(x))) // no operator '**' is defined; did you mean 'pow(_:_:)'?

func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
```
return x == n ** Int(log2(Double(x))) // no operator '**' is defined; did you mean 'pow(_:_:)'?

func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
```
return x == n ** Int(log2(Double(x))) // no operator '**' is defined; did you mean 'pow(_:_:)'?

func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
    return x == n ** Int(log2(Double(x)))
}
```
return x == n ** Int(log2(Double(x))) // no operator '**' is defined; did you mean 'pow(_:_:)'?

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true 
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
    let root = Int(sqrt(Double(a)))
    return root * root == a
}
```
 // Fatal error: Double value cannot be converted to Int because it is either infinite or NaN

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if isPrime(digit) {
                count += 1
            }
        }
    }
    return count
}

func isPrime(_ number: Int) -> Bool {
    if number < 2 {
        return false
    }
    for i in 2...Int(sqrt(Double(number))) {
        if number % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if isPrime(digit) {
                count += 1
            }
        }
    }
    return count
}

func isPrime(_ number: Int) -> Bool {
    if number < 2 {
        return false
    }
    for i in 2...Int(sqrt(Double(number))) {
        if number % i == 0 {
            return false
        }
    }
    return true
}
```
let digit = Int(char) // no exact matches in call to initializer

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if digit == 2 || digit == 3 || digit == 5 || digit == 7 || digit == 11 || digit == 13 {
                count += 1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if digit == 2 || digit == 3 || digit == 5 || digit == 7 || digit == 11 || digit == 13 {
                count += 1
            }
        }
    }
    return count
}
```
let digit = Int(char) // no exact matches in call to initializer

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if digit == 2 || digit == 3 || digit == 5 || digit == 7 || digit == 11 || digit == 13 {
                count += 1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if digit == 2 || digit == 3 || digit == 5 || digit == 7 || digit == 11 || digit == 13 {
                count += 1
            }
        }
    }
    return count
}
```
let digit = Int(char) // no exact matches in call to initializer

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if digit == 2 || digit == 3 || digit == 5 || digit == 7 || digit == 11 || digit == 13 {
                count += 1
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if digit == 2 || digit == 3 || digit == 5 || digit == 7 || digit == 11 || digit == 13 {
                count += 1
            }
        }
    }
    return count
}
```
let digit = Int(char) // no exact matches in call to initializer

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        switch char {
        case "2", "3", "5", "7", "B", "D":
            count += 1
        default:
            break
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        switch char {
        case "2", "3", "5", "7", "B", "D":
            count += 1
        default:
            break
        }
    }
    return count
}
```

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if isPrime(digit) {
                count += 1
            }
        }
    }
    return count
}

func isPrime(_ num: Int) -> Bool {
    if num < 2 {
        return false
    }
    for i in 2...Int(sqrt(Double(num))) {
        if num % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char.isNumber {
            let digit = Int(char)
            if isPrime(digit) {
                count += 1
            }
        }
    }
    return count
}

func isPrime(_ num: Int) -> Bool {
    if num < 2 {
        return false
    }
    for i in 2...Int(sqrt(Double(num))) {
        if num % i == 0 {
            return false
        }
    }
    return true
}
```
let digit = Int(char) // no exact matches in call to initializer

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        if char == "2" || char == "3" || char == "5" || char == "7" || char == "B" || char == "D" {
            count += 1
        }
    }
    return count
}
```

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        switch char {
        case "2", "3", "5", "7", "B", "D":
            count += 1
        default:
            break
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        switch char {
        case "2", "3", "5", "7", "B", "D":
            count += 1
        default:
            break
        }
    }
    return count
}
```

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        switch char {
        case "2", "3", "5", "7", "B", "D":
            count += 1
        default:
            break
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        switch char {
        case "2", "3", "5", "7", "B", "D":
            count += 1
        default:
            break
        }
    }
    return count
}
```

func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        switch char {
        case "2", "3", "5", "7", "B", "D":
            count += 1
        default:
            break
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives 
a hexadecimal number as a string and counts the number of hexadecimal 
digits that are primes (prime number, or a prime, is a natural number 
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7, 
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string, 
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
    var count = 0
    for char in num {
        switch char {
        case "2", "3", "5", "7", "B", "D":
            count += 1
        default:
            break
        }
    }
    return count
}
```

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        if remainder % 2 == 0 {
            binary = "0" + binary
        } else {
            binary = "1" + binary
        }
        remainder /= 2
    }
    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        if remainder % 2 == 0 {
            binary = "0" + binary
        } else {
            binary = "1" + binary
        }
        remainder /= 2
    }
    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        if remainder % 2 == 0 {
            binary = "0" + binary
        } else {
            binary = "1" + binary
        }
        remainder /= 2
    }
    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        if remainder % 2 == 0 {
            binary = "0" + binary
        } else {
            binary = "1" + binary
        }
        remainder /= 2
    }
    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = 0
    var quotient = decimal

    while quotient > 0 {
        remainder = quotient % 2
        binary = "\(remainder)" + binary
        quotient = quotient / 2
    }

    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = 0
    var quotient = decimal

    while quotient > 0 {
        remainder = quotient % 2
        binary = "\(remainder)" + binary
        quotient = quotient / 2
    }

    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        if remainder % 2 == 0 {
            binary = "0" + binary
        } else {
            binary = "1" + binary
        }
        remainder /= 2
    }
    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        if remainder % 2 == 0 {
            binary = "0" + binary
        } else {
            binary = "1" + binary
        }
        remainder /= 2
    }
    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = decimal
    while remainder > 0 {
        binary = String(remainder % 2) + binary
        remainder /= 2
    }
    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = 0
    var quotient = decimal

    while quotient > 0 {
        remainder = quotient % 2
        quotient /= 2
        binary = "\(remainder)" + binary
    }

    return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
    var binary = ""
    var remainder = 0
    var quotient = decimal

    while quotient > 0 {
        remainder = quotient % 2
        quotient /= 2
        binary = "\(remainder)" + binary
    }

    return "db" + binary + "db"
}
```
 // XCTAssertTrue failed

func isHappy(s: String) -> Bool {
    let length = s.count
    if length < 3 {
        return false
    }
    let distinctLetters = Set(s)
    if distinctLetters.count < 3 {
        return false
    }
    for i in 0..<length-2 {
        let letter1 = s[i]
        let letter2 = s[i+1]
        let letter3 = s[i+2]
        if letter1 == letter2 || letter2 == letter3 || letter1 == letter3 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    let length = s.count
    if length < 3 {
        return false
    }
    let distinctLetters = Set(s)
    if distinctLetters.count < 3 {
        return false
    }
    for i in 0..<length-2 {
        let letter1 = s[i]
        let letter2 = s[i+1]
        let letter3 = s[i+2]
        if letter1 == letter2 || letter2 == letter3 || letter1 == letter3 {
            return false
        }
    }
    return true
}
```
let letter1 = s[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let letter2 = s[i+1] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let letter3 = s[i+2] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.

func isHappy(s: String) -> Bool {
    let length = s.count
    if length < 3 {
        return false
    }
    for i in stride(from: 0, to: length - 2, by: 3) {
        let first = s[s.index(s.startIndex, offsetBy: i)]
        let second = s[s.index(s.startIndex, offsetBy: i + 1)]
        let third = s[s.index(s.startIndex, offsetBy: i + 2)]
        if first == second || first == third || second == third {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    let length = s.count
    if length < 3 {
        return false
    }
    for i in stride(from: 0, to: length - 2, by: 3) {
        let first = s[s.index(s.startIndex, offsetBy: i)]
        let second = s[s.index(s.startIndex, offsetBy: i + 1)]
        let third = s[s.index(s.startIndex, offsetBy: i + 2)]
        if first == second || first == third || second == third {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isHappy(s: String) -> Bool {
    guard s.count >= 3 else { return false }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        if letters[i] == letters[i + 1] && letters[i + 1] == letters[i + 2] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    guard s.count >= 3 else { return false }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        if letters[i] == letters[i + 1] && letters[i + 1] == letters[i + 2] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isHappy(s: String) -> Bool {
    if s.count < 3 {
        return false
    }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        if letters[i] == letters[i + 1] && letters[i + 1] == letters[i + 2] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    if s.count < 3 {
        return false
    }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        if letters[i] == letters[i + 1] && letters[i + 1] == letters[i + 2] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isHappy(s: String) -> Bool {
    if s.count < 3 {
        return false
    }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || second == third || first == third {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    if s.count < 3 {
        return false
    }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || second == third || first == third {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isHappy(s: String) -> Bool {
    let length = s.count
    if length < 3 {
        return false
    }
    let letters = s.map { String($0) }
    for i in stride(from: 0, to: length - 2, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || second == third || first == third {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    let length = s.count
    if length < 3 {
        return false
    }
    let letters = s.map { String($0) }
    for i in stride(from: 0, to: length - 2, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || second == third || first == third {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isHappy(s: String) -> Bool {
    guard s.count >= 3 else { return false }
    let letters = s.map { String($0) }
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || first == third || second == third {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    guard s.count >= 3 else { return false }
    let letters = s.map { String($0) }
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || first == third || second == third {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isHappy(s: String) -> Bool {
    if s.count < 3 {
        return false
    }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || first == third || second == third {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    if s.count < 3 {
        return false
    }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || first == third || second == third {
            return false
        }
    }
    return true
}
```
 // Fatal error: Index out of range

func isHappy(s: String) -> Bool {
    let length = s.count
    if length < 3 {
        return false
    }
    for i in stride(from: 0, to: length - 2, by: 3) {
        let first = s[i]
        let second = s[i + 1]
        let third = s[i + 2]
        if first == second || second == third || first == third {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    let length = s.count
    if length < 3 {
        return false
    }
    for i in stride(from: 0, to: length - 2, by: 3) {
        let first = s[i]
        let second = s[i + 1]
        let third = s[i + 2]
        if first == second || second == third || first == third {
            return false
        }
    }
    return true
}
```
let first = s[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let second = s[i + 1] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
let third = s[i + 2] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.

func isHappy(s: String) -> Bool {
    guard s.count >= 3 else { return false }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || first == third || second == third {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
    guard s.count >= 3 else { return false }
    let letters = Array(s)
    for i in stride(from: 0, to: letters.count - 2, by: 3) {
        let first = letters[i]
        let second = letters[i + 1]
        let third = letters[i + 2]
        if first == second || first == third || second == third {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func numericalLetterGrade(grades: [Double]) -> [String] {
    let letterGrades = ["A+", "A", "A-", "B+", "B", "B-", "C+", "C", "C-", "D+", "D", "D-", "E"]
    return grades.map { letterGrades[$0] }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let letterGrades = ["A+", "A", "A-", "B+", "B", "B-", "C+", "C", "C-", "D+", "D", "D-", "E"]
    return grades.map { letterGrades[$0] }
}
```
return grades.map { letterGrades[$0] } // cannot convert value of type 'Double' to expected argument type 'Int'

func numericalLetterGrade(grades: [Double]) -> [String] {
    let letterGrades = [
        "A+": 4.0,
        "A": 3.7,
        "A-": 3.3,
        "B+": 3.0,
        "B": 2.7,
        "B-": 2.3,
        "C+": 2.0,
        "C": 1.7,
        "C-": 1.3,
        "D+": 1.0,
        "D": 0.7,
        "D-": 0.0,
        "E": 0.0
    ]
    
    return grades.map { letterGrades[$0] }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let letterGrades = [
        "A+": 4.0,
        "A": 3.7,
        "A-": 3.3,
        "B+": 3.0,
        "B": 2.7,
        "B-": 2.3,
        "C+": 2.0,
        "C": 1.7,
        "C-": 1.3,
        "D+": 1.0,
        "D": 0.7,
        "D-": 0.0,
        "E": 0.0
    ]
    
    return grades.map { letterGrades[$0] }
}
```
return grades.map { letterGrades[$0] } // no exact matches in call to subscript

func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
 // Fatal error: Dictionary literal contains duplicate keys

func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
 // Fatal error: Dictionary literal contains duplicate keys

func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
 // Fatal error: Dictionary literal contains duplicate keys

func numericalLetterGrade(grades: [Double]) -> [String] {
    let letterGrades = [
        "A+": 4.0,
        "A": 3.7,
        "A-": 3.3,
        "B+": 3.0,
        "B": 2.7,
        "B-": 2.3,
        "C+": 2.0,
        "C": 1.7,
        "C-": 1.3,
        "D+": 1.0,
        "D": 0.7,
        "D-": 0.0,
        "E": 0.0
    ]
    
    return grades.map { grade in
        for (letterGrade, threshold) in letterGrades {
            if grade >= threshold {
                return letterGrade
            }
        }
        return "E"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let letterGrades = [
        "A+": 4.0,
        "A": 3.7,
        "A-": 3.3,
        "B+": 3.0,
        "B": 2.7,
        "B-": 2.3,
        "C+": 2.0,
        "C": 1.7,
        "C-": 1.3,
        "D+": 1.0,
        "D": 0.7,
        "D-": 0.0,
        "E": 0.0
    ]
    
    return grades.map { grade in
        for (letterGrade, threshold) in letterGrades {
            if grade >= threshold {
                return letterGrade
            }
        }
        return "E"
    }
}
```
 // XCTAssertTrue failed

func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
 // Fatal error: Dictionary literal contains duplicate keys

func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
 // Fatal error: Dictionary literal contains duplicate keys

func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
 // Fatal error: Dictionary literal contains duplicate keys

func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write 
a function that can output an array of letter grades using the following table:
GPA       |    Letter grade
4.0                A+
> 3.7                A 
> 3.3                A- 
> 3.0                B+
> 2.7                B 
> 2.3                B-
> 2.0                C+
> 1.7                C
> 1.3                C-
> 1.0                D+ 
> 0.7                D 
> 0.0                D-
0.0                E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
    let gradeMap: [Double: String] = [
        4.0: "A+",
        3.7: "A",
        3.3: "A-",
        3.0: "B+",
        2.7: "B",
        2.3: "B-",
        2.0: "C+",
        1.7: "C",
        1.3: "C-",
        1.0: "D+",
        0.7: "D",
        0.0: "D-",
        0.0: "E"
    ]
    
    return grades.map { gradeMap[$0]! }
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
 // Fatal error: Dictionary literal contains duplicate keys

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2..<length {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2..<length {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...length {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...length {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2..<length {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2..<length {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2...Int(sqrt(Double(length))) {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2..<length {
        if length % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
    let length = string.count
    if length == 1 {
        return true
    }
    for i in 2..<length {
        if length % i == 0 {
            return false
        }
    }
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...Int(pow(10, n)) {
        if i % 10 == 1 || i / 10 % 10 == 1 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...Int(pow(10, n)) {
        if i % 10 == 1 || i / 10 % 10 == 1 {
            count += 1
        }
    }
    return count
}
```
for i in 1...Int(pow(10, n)) { // initializer 'init(_:)' requires that 'Decimal' conform to 'BinaryInteger'

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i.description.starts(with: "1") || i.description.ends(with: "1") {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i.description.starts(with: "1") || i.description.ends(with: "1") {
            count += 1
        }
    }
    return count
}
```
if i.description.starts(with: "1") || i.description.ends(with: "1") { // value of type 'String' has no member 'ends'

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 == 1 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 == 1 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i.description.starts(with: "1") || i.description.ends(with: "1") {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i.description.starts(with: "1") || i.description.ends(with: "1") {
            count += 1
        }
    }
    return count
}
```
if i.description.starts(with: "1") || i.description.ends(with: "1") { // value of type 'String' has no member 'ends'

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 % 10 == 1 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 % 10 == 1 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i.description.hasPrefix("1") || i.description.hasSuffix("1") {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i.description.hasPrefix("1") || i.description.hasSuffix("1") {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 % 10 == 1 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 % 10 == 1 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i.description.hasPrefix("1") || i.description.hasSuffix("1") {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i.description.hasPrefix("1") || i.description.hasSuffix("1") {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 % 10 == 1 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 % 10 == 1 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 == 1 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
    var count = 0
    for i in 1...n {
        if i % 10 == 1 || i / 10 == 1 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        let digit = N % 2
        sum += digit
        binary = digit.description + binary
        N /= 2
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        let digit = N % 2
        sum += digit
        binary = digit.description + binary
        N /= 2
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 2 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        let digit = N % 2
        sum += digit
        binary = digit.description + binary
        N /= 2
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        let digit = N % 2
        sum += digit
        binary = digit.description + binary
        N /= 2
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 2 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        let digit = N % 2
        sum += digit
        binary = digit.description + binary
        N /= 2
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        let digit = N % 2
        sum += digit
        binary = digit.description + binary
        N /= 2
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 2 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        let digit = N % 10
        sum += digit
        binary = "\(digit)" + binary
        N /= 10
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        let digit = N % 10
        sum += digit
        binary = "\(digit)" + binary
        N /= 10
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 10 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 10
        N /= 10
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 10
        N /= 10
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 10 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 10
        N /= 10
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 10
        N /= 10
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 10 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 10
        N /= 10
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 10
        N /= 10
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 10 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 2
        N /= 2
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 2
        N /= 2
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 2 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binaryString = ""
    var currentDigit = N
    while currentDigit > 0 {
        let remainder = currentDigit % 2
        binaryString = "\(remainder)" + binaryString
        currentDigit /= 2
    }
    return binaryString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binaryString = ""
    var currentDigit = N
    while currentDigit > 0 {
        let remainder = currentDigit % 2
        binaryString = "\(remainder)" + binaryString
        currentDigit /= 2
    }
    return binaryString
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope

@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 2
        N /= 2
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
    var binary = ""
    var sum = 0
    while N > 0 {
        sum += N % 2
        N /= 2
    }
    while sum > 0 {
        binary = String(sum % 2) + binary
        sum /= 2
    }
    return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
N /= 2 // left side of mutating operator isn't mutable: 'N' is a 'let' constant

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if index % 2 == 0 && element % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func antiShuffle(s: String) -> String {
    var orderedString = ""
    let words = s.split(separator: " ")
    for word in words {
        let chars = word.map { String($0) }
        let sortedChars = chars.sorted { $0 < $1 }
        orderedString += sortedChars.joined(separator: "")
        orderedString += " "
    }
    return orderedString.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    var orderedString = ""
    let words = s.split(separator: " ")
    for word in words {
        let chars = word.map { String($0) }
        let sortedChars = chars.sorted { $0 < $1 }
        orderedString += sortedChars.joined(separator: "")
        orderedString += " "
    }
    return orderedString.trimmingCharacters(in: .whitespaces)
}
```

func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
```

func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
```

func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
```

func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
```

func antiShuffle(s: String) -> String {
    var orderedString = ""
    let words = s.components(separatedBy: " ")
    for word in words {
        let characters = word.map { String($0) }.sorted()
        orderedString += characters.joined()
        orderedString += " "
    }
    return orderedString.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    var orderedString = ""
    let words = s.components(separatedBy: " ")
    for word in words {
        let characters = word.map { String($0) }.sorted()
        orderedString += characters.joined()
        orderedString += " "
    }
    return orderedString.trimmingCharacters(in: .whitespaces)
}
```

func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
```

func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
```

func antiShuffle(s: String) -> String {
    let words = s.components(separatedBy: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    let words = s.components(separatedBy: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
```

func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
    let words = s.split(separator: " ")
    return words.map { word in
        let chars = word.map { $0 }
        return String(chars.sorted())
    }.joined(separator: " ")
}
```

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result.sorted { $0.0 < $1.0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result.sorted { $0.0 < $1.0 }
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
    var result: [(Int, Int)] = []
    for (row, columns) in lst.enumerated() {
        if let index = columns.firstIndex(of: x) {
            result.append((row, index))
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted(by: <)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted(by: <)
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }

    let sum = array[0] + array[array.count - 1]
    let isEven = sum % 2 == 0

    if isEven {
        return array.sorted(by: >)
    } else {
        return array.sorted(by: <)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }

    let sum = array[0] + array[array.count - 1]
    let isEven = sum % 2 == 0

    if isEven {
        return array.sorted(by: >)
    } else {
        return array.sorted(by: <)
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }

    let sum = array[0] + array[array.count - 1]
    let sortedArray = array.sorted()

    if sum % 2 == 0 {
        return sortedArray.reversed()
    } else {
        return sortedArray
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }

    let sum = array[0] + array[array.count - 1]
    let sortedArray = array.sorted()

    if sum % 2 == 0 {
        return sortedArray.reversed()
    } else {
        return sortedArray
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }

    let sum = array[0] + array[array.count - 1]
    let isEven = sum % 2 == 0

    if isEven {
        return array.sorted(by: >)
    } else {
        return array.sorted(by: <)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }

    let sum = array[0] + array[array.count - 1]
    let isEven = sum % 2 == 0

    if isEven {
        return array.sorted(by: >)
    } else {
        return array.sorted(by: <)
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }
    let sum = array[0] + array[array.count - 1]
    if sum % 2 == 0 {
        return array.sorted(by: >)
    } else {
        return array.sorted()
    }
}
```

func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }

    let sum = array[0] + array[array.count - 1]
    let isEven = sum % 2 == 0

    let sortedArray = array.sorted { $0 < $1 }
    if isEven {
        return sortedArray.reversed()
    } else {
        return sortedArray
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
    guard array.count > 1 else { return array }

    let sum = array[0] + array[array.count - 1]
    let isEven = sum % 2 == 0

    let sortedArray = array.sorted { $0 < $1 }
    if isEven {
        return sortedArray.reversed()
    } else {
        return sortedArray
    }
}
```

func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newIndex = (index + 2) % alphabet.count // cannot find 'alphabet' in scope
encrypted.append(alphabet[newIndex]) // cannot find 'alphabet' in scope

func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index ?? 0) + 2
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index ?? 0) + 2
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
encrypted.append(alphabet[newIndex]) // cannot find 'alphabet' in scope

func encrypt(s: String) -> String {
    let alphabet = "abcdefghijklmnopqrstuvwxyz"
    var encrypted = ""
    for char in s {
        if let index = alphabet.firstIndex(of: char) {
            let newIndex = index + 2
            if newIndex < alphabet.count {
                encrypted.append(alphabet[newIndex])
            } else {
                encrypted.append(alphabet[newIndex - alphabet.count])
            }
        } else {
            encrypted.append(char)
        }
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    let alphabet = "abcdefghijklmnopqrstuvwxyz"
    var encrypted = ""
    for char in s {
        if let index = alphabet.firstIndex(of: char) {
            let newIndex = index + 2
            if newIndex < alphabet.count {
                encrypted.append(alphabet[newIndex])
            } else {
                encrypted.append(alphabet[newIndex - alphabet.count])
            }
        } else {
            encrypted.append(char)
        }
    }
    return encrypted
}
```
let newIndex = index + 2 // cannot convert value of type 'String.Index' to expected argument type 'Int'

func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newIndex = (index + 2) % alphabet.count // cannot find 'alphabet' in scope
encrypted.append(alphabet[newIndex]) // cannot find 'alphabet' in scope

func encrypt(s: String) -> String {
    let alphabet = "abcdefghijklmnopqrstuvwxyz"
    var encrypted = ""
    for char in s {
        if let index = alphabet.firstIndex(of: char) {
            let newIndex = (index + 2) % alphabet.count
            encrypted.append(alphabet[newIndex])
        } else {
            encrypted.append(char)
        }
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    let alphabet = "abcdefghijklmnopqrstuvwxyz"
    var encrypted = ""
    for char in s {
        if let index = alphabet.firstIndex(of: char) {
            let newIndex = (index + 2) % alphabet.count
            encrypted.append(alphabet[newIndex])
        } else {
            encrypted.append(char)
        }
    }
    return encrypted
}
```
let newIndex = (index + 2) % alphabet.count // cannot convert value of type 'String.Index' to expected argument type 'Int'

func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newIndex = (index + 2) % alphabet.count // cannot find 'alphabet' in scope
encrypted.append(alphabet[newIndex]) // cannot find 'alphabet' in scope

func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index ?? 0) + 2
        let newChar = alphabet[newIndex % alphabet.count]
        encrypted.append(newChar)
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index ?? 0) + 2
        let newChar = alphabet[newIndex % alphabet.count]
        encrypted.append(newChar)
    }
    return encrypted
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newChar = alphabet[newIndex % alphabet.count] // cannot find 'alphabet' in scope
let newChar = alphabet[newIndex % alphabet.count] // cannot find 'alphabet' in scope

func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newIndex = (index + 2) % alphabet.count // cannot find 'alphabet' in scope
encrypted.append(alphabet[newIndex]) // cannot find 'alphabet' in scope

func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newIndex = (index + 2) % alphabet.count // cannot find 'alphabet' in scope
encrypted.append(alphabet[newIndex]) // cannot find 'alphabet' in scope

func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated. 
The alphabet should be rotated in a manner such that the letters 
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
    var encrypted = ""
    for char in s {
        let index = alphabet.firstIndex(of: char)
        let newIndex = (index + 2) % alphabet.count
        encrypted.append(alphabet[newIndex])
    }
    return encrypted
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newIndex = (index + 2) % alphabet.count // cannot find 'alphabet' in scope
encrypted.append(alphabet[newIndex]) // cannot find 'alphabet' in scope

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
    guard lst.count > 1 else { return nil }
    let sorted = lst.sorted()
    return sorted[1]
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    let sentences = S.components(separatedBy: ["."])
    var boredoms = 0
    for sentence in sentences {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    let sentences = S.components(separatedBy: ["."])
    var boredoms = 0
    for sentence in sentences {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    let sentences = S.components(separatedBy: ["."])
    var boredoms = 0
    for sentence in sentences {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    let sentences = S.components(separatedBy: ["."])
    var boredoms = 0
    for sentence in sentences {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    var boredoms = 0
    for word in S.split(separator: " ") {
        if word == "I" {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    var boredoms = 0
    for word in S.split(separator: " ") {
        if word == "I" {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    var boredoms = 0
    for sentence in S.split(separator: ".") {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    let sentences = S.split(separator: ".")
    var boredoms = 0
    for sentence in sentences {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    let sentences = S.split(separator: ".")
    var boredoms = 0
    for sentence in sentences {
        if sentence.hasPrefix("I") {
            boredoms += 1
        }
    }
    return boredoms
}
```
 // XCTAssertTrue failed

func isBored(S: String) -> Int {
    var boredCount = 0
    let sentences = S.components(separatedBy: ["."])
    for sentence in sentences {
        if sentence.hasPrefix("I") {
            boredCount += 1
        }
    }
    return boredCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
    var boredCount = 0
    let sentences = S.components(separatedBy: ["."])
    for sentence in sentences {
        if sentence.hasPrefix("I") {
            boredCount += 1
        }
    }
    return boredCount
}
```
 // XCTAssertTrue failed

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || y + z == x || z + x == y
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || y + z == x || z + x == y
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return (x + y == z) || (x + z == y) || (y + z == x)
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return (x + y == z) || (x + z == y) || (y + z == x)
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || y + z == x || z + x == y
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || y + z == x || z + x == y
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
    if x.isInteger && y.isInteger && z.isInteger {
        return x + y == z || x + z == y || y + z == x
    }
    return false
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = char.asciiValue! - 97
            if char.isLowercase {
                encodedMessage.append(Character(UnicodeScalar(index + 2)!))
            } else {
                encodedMessage.append(Character(UnicodeScalar(index - 2)!))
            }
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = char.asciiValue! - 97
            if char.isLowercase {
                encodedMessage.append(Character(UnicodeScalar(index + 2)!))
            } else {
                encodedMessage.append(Character(UnicodeScalar(index - 2)!))
            }
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
```
encodedMessage.append(Character(UnicodeScalar(index + 2)!)) // cannot force unwrap value of non-optional type 'UnicodeScalar' (aka 'Unicode.Scalar')
encodedMessage.append(Character(UnicodeScalar(index - 2)!)) // cannot force unwrap value of non-optional type 'UnicodeScalar' (aka 'Unicode.Scalar')

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = "abcdefghijklmnopqrstuvwxyz".firstIndex(of: char)
            let newIndex = index! + 2
            let newChar = "abcdefghijklmnopqrstuvwxyz"[newIndex]
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = "abcdefghijklmnopqrstuvwxyz".firstIndex(of: char)
            let newIndex = index! + 2
            let newChar = "abcdefghijklmnopqrstuvwxyz"[newIndex]
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
```
let newIndex = index! + 2 // cannot convert value of type 'String.Index' to expected argument type 'Int'

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = alphabet.firstIndex(of: char)
            let newIndex = (index + 2) % alphabet.count
            let newChar = alphabet[newIndex]
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = alphabet.firstIndex(of: char)
            let newIndex = (index + 2) % alphabet.count
            let newChar = alphabet[newIndex]
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}

let alphabet = "abcdefghijklmnopqrstuvwxyz"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newIndex = (index + 2) % alphabet.count // cannot find 'alphabet' in scope
let newChar = alphabet[newIndex] // cannot find 'alphabet' in scope

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = alphabet.firstIndex(of: char)
            let newIndex = index + 2
            let newChar = alphabet[newIndex]
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = alphabet.firstIndex(of: char)
            let newIndex = index + 2
            let newChar = alphabet[newIndex]
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}

let alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newChar = alphabet[newIndex] // cannot find 'alphabet' in scope

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = char.asciiValue! - 97
            let newIndex = (index + 2) % 26
            let newChar = Character(UnicodeScalar(newIndex + 97)!)
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = char.asciiValue! - 97
            let newIndex = (index + 2) % 26
            let newChar = Character(UnicodeScalar(newIndex + 97)!)
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
```
let newChar = Character(UnicodeScalar(newIndex + 97)!) // cannot force unwrap value of non-optional type 'UnicodeScalar' (aka 'Unicode.Scalar')

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = Character(char).asciiValue! - 97
            let newIndex = (index + 2) % 26
            let newChar = Character(UnicodeScalar(newIndex + 97)!)
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = Character(char).asciiValue! - 97
            let newIndex = (index + 2) % 26
            let newChar = Character(UnicodeScalar(newIndex + 97)!)
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
```
let index = Character(char).asciiValue! - 97 // missing argument label 'extendedGraphemeClusterLiteral:' in call

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = alphabet.firstIndex(of: char)
            let newIndex = (index + 2) % alphabet.count
            let newChar = alphabet[newIndex]
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = alphabet.firstIndex(of: char)
            let newIndex = (index + 2) % alphabet.count
            let newChar = alphabet[newIndex]
            encodedMessage.append(newChar)
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}

let alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
```
let index = alphabet.firstIndex(of: char) // cannot find 'alphabet' in scope
let newIndex = (index + 2) % alphabet.count // cannot find 'alphabet' in scope
let newChar = alphabet[newIndex] // cannot find 'alphabet' in scope

func encode(message: String) -> String {
    var encodedMessage = ""
    for character in message {
        if character.isLetter {
            let index = character.asciiValue! - 97
            if index < 5 {
                encodedMessage.append(Character(UnicodeScalar(index + 2)!))
            } else {
                encodedMessage.append(Character(UnicodeScalar(index - 5)!))
            }
        } else {
            encodedMessage.append(character)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for character in message {
        if character.isLetter {
            let index = character.asciiValue! - 97
            if index < 5 {
                encodedMessage.append(Character(UnicodeScalar(index + 2)!))
            } else {
                encodedMessage.append(Character(UnicodeScalar(index - 5)!))
            }
        } else {
            encodedMessage.append(character)
        }
    }
    return encodedMessage
}
```
encodedMessage.append(Character(UnicodeScalar(index + 2)!)) // cannot force unwrap value of non-optional type 'UnicodeScalar' (aka 'Unicode.Scalar')
encodedMessage.append(Character(UnicodeScalar(index - 5)!)) // cannot force unwrap value of non-optional type 'UnicodeScalar' (aka 'Unicode.Scalar')

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = char.asciiValue! - 97
            if char.isLowercase {
                encodedMessage.append(Character(UnicodeScalar(index + 2)!))
            } else {
                encodedMessage.append(Character(UnicodeScalar(index - 2)!))
            }
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLetter {
            let index = char.asciiValue! - 97
            if char.isLowercase {
                encodedMessage.append(Character(UnicodeScalar(index + 2)!))
            } else {
                encodedMessage.append(Character(UnicodeScalar(index - 2)!))
            }
        } else {
            encodedMessage.append(char)
        }
    }
    return encodedMessage
}
```
encodedMessage.append(Character(UnicodeScalar(index + 2)!)) // cannot force unwrap value of non-optional type 'UnicodeScalar' (aka 'Unicode.Scalar')
encodedMessage.append(Character(UnicodeScalar(index - 2)!)) // cannot force unwrap value of non-optional type 'UnicodeScalar' (aka 'Unicode.Scalar')

func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLowercase {
            encodedMessage.append(char.uppercased())
        } else {
            encodedMessage.append(char.lowercased())
        }
    }
    return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a 
way that it swaps case of all letters, replaces all vowels in 
the message with the letter that appears 2 places ahead of that 
vowel in the english alphabet. 
Assume only letters. 
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
    var encodedMessage = ""
    for char in message {
        if char.isLowercase {
            encodedMessage.append(char.uppercased())
        } else {
            encodedMessage.append(char.lowercased())
        }
    }
    return encodedMessage
}
```
 // XCTAssertTrue failed

func skjkasdkd(lst: [Int]) -> Int {
    var largestPrime = 0
    var sumOfDigits = 0

    for num in lst {
        if isPrime(num) && num > largestPrime {
            largestPrime = num
        }
    }

    for digit in String(largestPrime) {
        sumOfDigits += Int(digit)
    }

    return sumOfDigits
}

func isPrime(_ num: Int) -> Bool {
    if num <= 1 {
        return false
    } else if num <= 3 {
        return true
    } else if num % 2 == 0 || num % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= num {
        if num % i == 0 || num % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    var largestPrime = 0
    var sumOfDigits = 0

    for num in lst {
        if isPrime(num) && num > largestPrime {
            largestPrime = num
        }
    }

    for digit in String(largestPrime) {
        sumOfDigits += Int(digit)
    }

    return sumOfDigits
}

func isPrime(_ num: Int) -> Bool {
    if num <= 1 {
        return false
    } else if num <= 3 {
        return true
    } else if num % 2 == 0 || num % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= num {
        if num % i == 0 || num % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```
sumOfDigits += Int(digit) // no exact matches in call to initializer

func skjkasdkd(lst: [Int]) -> Int {
    var largestPrime = 0
    var sumOfDigits = 0

    for num in lst {
        if isPrime(num) {
            largestPrime = num
            break
        }
    }

    for digit in String(largestPrime) {
        sumOfDigits += Int(digit) ?? 0
    }

    return sumOfDigits
}

func isPrime(_ num: Int) -> Bool {
    if num <= 1 {
        return false
    } else if num <= 3 {
        return true
    } else if num % 2 == 0 || num % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= num {
        if num % i == 0 || num % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    var largestPrime = 0
    var sumOfDigits = 0

    for num in lst {
        if isPrime(num) {
            largestPrime = num
            break
        }
    }

    for digit in String(largestPrime) {
        sumOfDigits += Int(digit) ?? 0
    }

    return sumOfDigits
}

func isPrime(_ num: Int) -> Bool {
    if num <= 1 {
        return false
    } else if num <= 3 {
        return true
    } else if num % 2 == 0 || num % 3 == 0 {
        return false
    }

    var i = 5
    while i * i <= num {
        if num % i == 0 || num % (i + 2) == 0 {
            return false
        }
        i += 6
    }

    return true
}
```
sumOfDigits += Int(digit) ?? 0 // cannot convert value of type 'Character' to expected argument type 'String'

func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let prime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return prime.digits.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let prime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return prime.digits.reduce(0, +)
}
```
return prime.digits.reduce(0, +) // value of type 'Int' has no member 'digits'

func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Convert the largest prime value to a string
    let largestPrimeString = String(largestPrime)

    // Sum the digits of the largest prime value
    let sumOfDigits = largestPrimeString.reduce(0) { $0 + Int($1) }

    return sumOfDigits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Convert the largest prime value to a string
    let largestPrimeString = String(largestPrime)

    // Sum the digits of the largest prime value
    let sumOfDigits = largestPrimeString.reduce(0) { $0 + Int($1) }

    return sumOfDigits
}
```
let sumOfDigits = largestPrimeString.reduce(0) { $0 + Int($1) } // no exact matches in call to initializer

func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return String(largestPrime).compactMap { Int(String($0)) }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return String(largestPrime).compactMap { Int(String($0)) }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Convert the largest prime value to a string
    let largestPrimeString = String(largestPrime)

    // Sum the digits of the largest prime value
    let sumOfDigits = largestPrimeString.reduce(0) { $0 + Int($1) }

    return sumOfDigits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Convert the largest prime value to a string
    let largestPrimeString = String(largestPrime)

    // Sum the digits of the largest prime value
    let sumOfDigits = largestPrimeString.reduce(0) { $0 + Int($1) }

    return sumOfDigits
}
```
let sumOfDigits = largestPrimeString.reduce(0) { $0 + Int($1) } // no exact matches in call to initializer

func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let prime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return String(prime).compactMap { Int(String($0)) }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let prime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return String(prime).compactMap { Int(String($0)) }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return String(largestPrime).compactMap { Int(String($0)) }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return String(largestPrime).compactMap { Int(String($0)) }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Convert the largest prime value to a string
    let largestPrimeString = String(largestPrime)

    // Sum the digits of the largest prime value
    var sum = 0
    for digit in largestPrimeString {
        sum += Int(digit.wholeNumberValue!)
    }

    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let largestPrime = lst.max()!

    // Convert the largest prime value to a string
    let largestPrimeString = String(largestPrime)

    // Sum the digits of the largest prime value
    var sum = 0
    for digit in largestPrimeString {
        sum += Int(digit.wholeNumberValue!)
    }

    return sum
}
```
 // XCTAssertTrue failed

func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let prime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return String(prime).compactMap { Int(String($0)) }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
    // Find the largest prime value in the array
    let prime = lst.max()!

    // Return the sum of the digits of the largest prime value
    return String(prime).compactMap { Int(String($0)) }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(i) { // missing argument label 'n:' in call

func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(i) { // missing argument label 'n:' in call

func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(i) { // missing argument label 'n:' in call

func countUpTo(n: Int) -> [Int] {
    var primes: [Int] = []
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes: [Int] = []
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(i) { // missing argument label 'n:' in call

func countUpTo(n: Int) -> [Int] {
    var primes: [Int] = []
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes: [Int] = []
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(i) { // missing argument label 'n:' in call

func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(i) { // missing argument label 'n:' in call

func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        var isPrime = true
        for j in 2...Int(sqrt(Double(i))) {
            if i % j == 0 {
                isPrime = false
                break
            }
        }
        if isPrime {
            primes.append(i)
        }
    }
    return primes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        var isPrime = true
        for j in 2...Int(sqrt(Double(i))) {
            if i % j == 0 {
                isPrime = false
                break
            }
        }
        if isPrime {
            primes.append(i)
        }
    }
    return primes
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        if isPrime(i) {
            primes.append(i)
        }
    }
    return primes
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(i) { // missing argument label 'n:' in call

func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        var isPrime = true
        for j in 2...Int(sqrt(Double(i))) {
            if i % j == 0 {
                isPrime = false
                break
            }
        }
        if isPrime {
            primes.append(i)
        }
    }
    return primes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes = [Int]()
    for i in 2...n {
        var isPrime = true
        for j in 2...Int(sqrt(Double(i))) {
            if i % j == 0 {
                isPrime = false
                break
            }
        }
        if isPrime {
            primes.append(i)
        }
    }
    return primes
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func countUpTo(n: Int) -> [Int] {
    var primes: [Int] = []
    for i in 2...n {
        var isPrime = true
        for j in 2...Int(sqrt(Double(i))) {
            if i % j == 0 {
                isPrime = false
                break
            }
        }
        if isPrime {
            primes.append(i)
        }
    }
    return primes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
    var primes: [Int] = []
    for i in 2...n {
        var isPrime = true
        for j in 2...Int(sqrt(Double(i))) {
            if i % j == 0 {
                isPrime = false
                break
            }
        }
        if isPrime {
            primes.append(i)
        }
    }
    return primes
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func multiply(a: Int, b: Int) -> Int {
    let unitDigits = [a % 10, b % 10]
    return unitDigits.reduce(1, *)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let unitDigits = [a % 10, b % 10]
    return unitDigits.reduce(1, *)
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let unitDigitA = a % 10
    let unitDigitB = b % 10
    return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let unitDigitA = a % 10
    let unitDigitB = b % 10
    return unitDigitA * unitDigitB
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let unitDigits = [a % 10, b % 10]
    return unitDigits.reduce(1, *)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let unitDigits = [a % 10, b % 10]
    return unitDigits.reduce(1, *)
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let unitDigitA = a % 10
    let unitDigitB = b % 10
    return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let unitDigitA = a % 10
    let unitDigitB = b % 10
    return unitDigitA * unitDigitB
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let unitDigits = [a % 10, b % 10]
    return unitDigits.reduce(1, *)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let unitDigits = [a % 10, b % 10]
    return unitDigits.reduce(1, *)
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
```
 // XCTAssertTrue failed

func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns 
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
    let aUnitDigit = a % 10
    let bUnitDigit = b % 10
    return aUnitDigit * bUnitDigit
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
    var count = 0
    for (index, char) in s.enumerated() {
        if char.isUppercase && index % 2 == 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func closestInteger(value: String) -> Int {
    let number = Double(value)
    let rounded = round(number)
    if rounded == number {
        return Int(rounded)
    } else {
        let roundedAwayFromZero = rounded > 0 ? rounded + 1 : rounded - 1
        return Int(roundedAwayFromZero)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    let number = Double(value)
    let rounded = round(number)
    if rounded == number {
        return Int(rounded)
    } else {
        let roundedAwayFromZero = rounded > 0 ? rounded + 1 : rounded - 1
        return Int(roundedAwayFromZero)
    }
}
```
let rounded = round(number) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'

func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if rounded - number == 0.5 {
        return Int(rounded) + (number > 0 ? 1 : -1)
    } else {
        return Int(rounded)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if rounded - number == 0.5 {
        return Int(rounded) + (number > 0 ? 1 : -1)
    } else {
        return Int(rounded)
    }
}
```
 // XCTAssertTrue failed

func closestInteger(value: String) -> Int {
    let number = Double(value)
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    let number = Double(value)
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
```
let rounded = round(number) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
if number - rounded == 0.5 { // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Int(number) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'

func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
```
 // XCTAssertTrue failed

func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
```
 // XCTAssertTrue failed

func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
```
 // XCTAssertTrue failed

func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    return Int(round(number))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    return Int(round(number))
}
```

func closestInteger(value: String) -> Int {
    let number = Double(value)
    let rounded = round(number)
    if rounded - number == 0.5 {
        return Int(rounded) + 1
    } else {
        return Int(rounded)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    let number = Double(value)
    let rounded = round(number)
    if rounded - number == 0.5 {
        return Int(rounded) + 1
    } else {
        return Int(rounded)
    }
}
```
let rounded = round(number) // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
if rounded - number == 0.5 { // value of optional type 'Double?' must be unwrapped to a value of type 'Double'

func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if number - rounded == 0.5 {
        return Int(number)
    } else {
        return Int(rounded)
    }
}
```
 // XCTAssertTrue failed

func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if rounded == number {
        return Int(rounded)
    } else {
        return Int(rounded + (rounded > 0 ? 1 : -1))
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
    guard let number = Double(value) else { return 0 }
    let rounded = round(number)
    if rounded == number {
        return Int(rounded)
    } else {
        return Int(rounded + (rounded > 0 ? 1 : -1))
    }
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    var level = n
    while level > 0 {
        if level % 2 == 0 {
            pile.append(level + 1)
        } else {
            pile.append(level + 2)
        }
        level -= 1
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    var level = n
    while level > 0 {
        if level % 2 == 0 {
            pile.append(level + 1)
        } else {
            pile.append(level + 2)
        }
        level -= 1
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    var level = n
    while level > 0 {
        if level % 2 == 0 {
            pile.append(level + 1)
        } else {
            pile.append(level + 2)
        }
        level -= 1
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    var level = n
    while level > 0 {
        if level % 2 == 0 {
            pile.append(level + 1)
        } else {
            pile.append(level + 2)
        }
        level -= 1
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level % 2 == 0 {
            pile.append(level + 1)
        } else {
            pile.append(level + 2)
        }
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level % 2 == 0 {
            pile.append(level + 1)
        } else {
            pile.append(level + 2)
        }
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for i in 1...n {
        if i % 2 == 0 {
            pile.append(i + 1)
        } else {
            pile.append(i + 2)
        }
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for i in 1...n {
        if i % 2 == 0 {
            pile.append(i + 1)
        } else {
            pile.append(i + 2)
        }
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level.isMultiple(of: 2) {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
```
 // XCTAssertTrue failed

func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level % 2 == 0 {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
    var pile = [Int]()
    for level in 1...n {
        if level % 2 == 0 {
            pile.append(level * 2)
        } else {
            pile.append(level * 2 + 1)
        }
    }
    return pile
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: ", ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: ", ")
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
    return s.components(separatedBy: [" ", ","])
}
```
 // XCTAssertTrue failed

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0, y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0, y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0, y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0, y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0, y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0, y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0, y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0, y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If 
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
    guard x > 0 && y > 0 else { return -1 }
    let range = x...y
    let evenNumbers = range.filter { $0 % 2 == 0 }
    return evenNumbers.max() ?? -1
}
```
 // Fatal error: Range requires lowerBound <= upperBound

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    let binary = String(rounded, radix: 2)

    return .success(binary)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    let binary = String(rounded, radix: 2)

    return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    return .success(String(rounded, radix: 2))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    return .success(String(rounded, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else { return .failure(-1) }
    let sum = (n...m).reduce(0, +)
    let avg = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(avg))
    return .success(String(rounded, radix: 2))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else { return .failure(-1) }
    let sum = (n...m).reduce(0, +)
    let avg = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(avg))
    return .success(String(rounded, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    let binary = String(rounded, radix: 2)

    return .success(binary)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    let binary = String(rounded, radix: 2)

    return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else { return .failure(-1) }
    let sum = (n...m).reduce(0, +)
    let avg = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(avg))
    return .success(String(rounded, radix: 2))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else { return .failure(-1) }
    let sum = (n...m).reduce(0, +)
    let avg = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(avg))
    return .success(String(rounded, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else { return .failure(-1) }
    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    return .success(String(rounded, radix: 2))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else { return .failure(-1) }
    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    return .success(String(rounded, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    let binary = String(rounded, radix: 2)
    return .success(binary)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    let binary = String(rounded, radix: 2)
    return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))

    return .success(String(rounded, radix: 2))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))

    return .success(String(rounded, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))

    return .success(String(rounded, radix: 2))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else {
        return .failure(-1)
    }

    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))

    return .success(String(rounded, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else { return .failure(-1) }
    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    return .success(String(rounded, radix: 2))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m). 
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}

func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
    guard n <= m else { return .failure(-1) }
    let sum = (n...m).reduce(0, +)
    let average = Double(sum) / Double(m - n + 1)
    let rounded = Int(round(average))
    return .success(String(rounded, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

func uniqueDigits(x: [Int]) -> [Int] {
    var sortedArray = x.sorted()
    var result = [Int]()
    
    for element in sortedArray {
        let digits = String(element).map { Int(String($0))! }
        if digits.contains(where: { $0 % 2 == 0 }) {
            continue
        }
        result.append(element)
    }
    
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var sortedArray = x.sorted()
    var result = [Int]()
    
    for element in sortedArray {
        let digits = String(element).map { Int(String($0))! }
        if digits.contains(where: { $0 % 2 == 0 }) {
            continue
        }
        result.append(element)
    }
    
    return result
}
```
var sortedArray = x.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant

func uniqueDigits(x: [Int]) -> [Int] {
    var sortedArray = x.sorted()
    var result = [Int]()
    
    for element in sortedArray {
        if !element.hasEvenDigit() {
            result.append(element)
        }
    }
    
    return result
}

extension Int {
    func hasEvenDigit() -> Bool {
        var number = self
        while number > 0 {
            if number % 2 == 0 {
                return true
            }
            number /= 10
        }
        return false
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var sortedArray = x.sorted()
    var result = [Int]()
    
    for element in sortedArray {
        if !element.hasEvenDigit() {
            result.append(element)
        }
    }
    
    return result
}

extension Int {
    func hasEvenDigit() -> Bool {
        var number = self
        while number > 0 {
            if number % 2 == 0 {
                return true
            }
            number /= 10
        }
        return false
    }
}
```
var sortedArray = x.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant

func uniqueDigits(x: [Int]) -> [Int] {
    let sortedX = x.sorted()
    var result = [Int]()
    for i in 0..<sortedX.count {
        let current = sortedX[i]
        if current % 2 == 1 {
            result.append(current)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    let sortedX = x.sorted()
    var result = [Int]()
    for i in 0..<sortedX.count {
        let current = sortedX[i]
        if current % 2 == 1 {
            result.append(current)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.contains(where: { $0 % 2 == 0 }) {
            continue
        }
        result.append(element)
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.contains(where: { $0 % 2 == 0 }) {
            continue
        }
        result.append(element)
    }
    return result.sorted()
}
```

func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for num in x {
        var hasEvenDigit = false
        var digits = [Int]()
        var currentNum = num
        while currentNum > 0 {
            let digit = currentNum % 10
            if digit % 2 == 0 {
                hasEvenDigit = true
                break
            }
            digits.append(digit)
            currentNum /= 10
        }
        if !hasEvenDigit {
            result.append(num)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for num in x {
        var hasEvenDigit = false
        var digits = [Int]()
        var currentNum = num
        while currentNum > 0 {
            let digit = currentNum % 10
            if digit % 2 == 0 {
                hasEvenDigit = true
                break
            }
            digits.append(digit)
            currentNum /= 10
        }
        if !hasEvenDigit {
            result.append(num)
        }
    }
    return result.sorted()
}
```

func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(element)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(element)
        }
    }
    return result.sorted()
}
```

func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(element)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(element)
        }
    }
    return result.sorted()
}
```

func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(element)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(element)
        }
    }
    return result.sorted()
}
```

func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(element)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var result = [Int]()
    for element in x {
        let digits = String(element).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(element)
        }
    }
    return result.sorted()
}
```

func uniqueDigits(x: [Int]) -> [Int] {
    var result: [Int] = []
    for num in x {
        let digits = String(num).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(num)
        }
    }
    return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all 
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
    var result: [Int] = []
    for num in x {
        let digits = String(num).map { Int(String($0))! }
        if digits.allSatisfy({ $0 % 2 == 1 }) {
            result.append(num)
        }
    }
    return result.sorted()
}
```

func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
```

func byLength(arr: [Int]) -> [String] {
    // Filter out any numbers that are not between 1 and 9
    let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
    
    // Sort the filtered array
    let sorted = filtered.sorted()
    
    // Reverse the sorted array
    let reversed = sorted.reversed()
    
    // Map each digit to its corresponding name
    let mapped = reversed.map {
        switch $0 {
        case 1: return "One"
        case 2: return "Two"
        case 3: return "Three"
        case 4: return "Four"
        case 5: return "Five"
        case 6: return "Six"
        case 7: return "Seven"
        case 8: return "Eight"
        case 9: return "Nine"
        default: return ""
        }
    }
    
    return mapped
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    // Filter out any numbers that are not between 1 and 9
    let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
    
    // Sort the filtered array
    let sorted = filtered.sorted()
    
    // Reverse the sorted array
    let reversed = sorted.reversed()
    
    // Map each digit to its corresponding name
    let mapped = reversed.map {
        switch $0 {
        case 1: return "One"
        case 2: return "Two"
        case 3: return "Three"
        case 4: return "Four"
        case 5: return "Five"
        case 6: return "Six"
        case 7: return "Seven"
        case 8: return "Eight"
        case 9: return "Nine"
        default: return ""
        }
    }
    
    return mapped
}
```

func byLength(arr: [Int]) -> [String] {
    let numbers = arr.filter { $0 >= 1 && $0 <= 9 }
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    return numbers.map { names[$0 - 1] }.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    let numbers = arr.filter { $0 >= 1 && $0 <= 9 }
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    return numbers.map { names[$0 - 1] }.reversed()
}
```
 // XCTAssertTrue failed

func byLength(arr: [Int]) -> [String] {
    // Sort the integers that are between 1 and 9 inclusive
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()

    // Reverse the resulting array
    let reversed = sorted.reversed()

    // Replace each digit by its corresponding name from "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"
    let names = reversed.map {
        switch $0 {
        case 1: return "One"
        case 2: return "Two"
        case 3: return "Three"
        case 4: return "Four"
        case 5: return "Five"
        case 6: return "Six"
        case 7: return "Seven"
        case 8: return "Eight"
        case 9: return "Nine"
        default: return ""
        }
    }

    return names
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    // Sort the integers that are between 1 and 9 inclusive
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()

    // Reverse the resulting array
    let reversed = sorted.reversed()

    // Replace each digit by its corresponding name from "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"
    let names = reversed.map {
        switch $0 {
        case 1: return "One"
        case 2: return "Two"
        case 3: return "Three"
        case 4: return "Four"
        case 5: return "Five"
        case 6: return "Six"
        case 7: return "Seven"
        case 8: return "Eight"
        case 9: return "Nine"
        default: return ""
        }
    }

    return names
}
```

func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
```

func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
```

func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
```

func byLength(arr: [Int]) -> [String] {
    // Filter out any numbers that are not between 1 and 9
    let filtered = arr.filter { $0 >= 1 && $0 <= 9 }

    // Sort the filtered array
    let sorted = filtered.sorted()

    // Reverse the sorted array
    let reversed = sorted.reversed()

    // Map each digit to its corresponding name
    let mapped = reversed.map { digit in
        switch digit {
        case 1: return "One"
        case 2: return "Two"
        case 3: return "Three"
        case 4: return "Four"
        case 5: return "Five"
        case 6: return "Six"
        case 7: return "Seven"
        case 8: return "Eight"
        case 9: return "Nine"
        default: return ""
        }
    }

    return mapped
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    // Filter out any numbers that are not between 1 and 9
    let filtered = arr.filter { $0 >= 1 && $0 <= 9 }

    // Sort the filtered array
    let sorted = filtered.sorted()

    // Reverse the sorted array
    let reversed = sorted.reversed()

    // Map each digit to its corresponding name
    let mapped = reversed.map { digit in
        switch digit {
        case 1: return "One"
        case 2: return "Two"
        case 3: return "Three"
        case 4: return "Four"
        case 5: return "Five"
        case 6: return "Six"
        case 7: return "Seven"
        case 8: return "Eight"
        case 9: return "Nine"
        default: return ""
        }
    }

    return mapped
}
```

func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
    let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
    let reversed = sorted.reversed()
    return reversed.map { names[$0 - 1] }
}
```

func byLength(arr: [Int]) -> [String] {
    var sortedArray = arr.filter { $0 >= 1 && $0 <= 9 }
    sortedArray.sort()
    sortedArray.reverse()
    return sortedArray.map {
        switch $0 {
        case 1: return "One"
        case 2: return "Two"
        case 3: return "Three"
        case 4: return "Four"
        case 5: return "Five"
        case 6: return "Six"
        case 7: return "Seven"
        case 8: return "Eight"
        case 9: return "Nine"
        default: return ""
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
    var sortedArray = arr.filter { $0 >= 1 && $0 <= 9 }
    sortedArray.sort()
    sortedArray.reverse()
    return sortedArray.map {
        switch $0 {
        case 1: return "One"
        case 2: return "Two"
        case 3: return "Three"
        case 4: return "Four"
        case 5: return "Five"
        case 6: return "Six"
        case 7: return "Seven"
        case 8: return "Eight"
        case 9: return "Nine"
        default: return ""
        }
    }
}
```

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = factorial(i)
        } else {
            result[i] = sum(1...i)
        }
    }
    return result
}

func factorial(_ n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}

func sum(_ range: Range<Int>) -> Int {
    return range.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = factorial(i)
        } else {
            result[i] = sum(1...i)
        }
    }
    return result
}

func factorial(_ n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}

func sum(_ range: Range<Int>) -> Int {
    return range.reduce(0, +)
}
```
result[i] = sum(1...i) // cannot convert value of type 'ClosedRange<Int>' to expected argument type 'Range<Int>'

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i!
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}
```
result[i] = i! // cannot force unwrap value of non-optional type 'Int'

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i.factorial()
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}

extension Int {
    func factorial() -> Int {
        return (1...self).reduce(1, *)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i.factorial()
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}

extension Int {
    func factorial() -> Int {
        return (1...self).reduce(1, *)
    }
}
```
 // Fatal error: Index out of range

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i.factorial()
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}

extension Int {
    func factorial() -> Int {
        return (1...self).reduce(1, *)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i.factorial()
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}

extension Int {
    func factorial() -> Int {
        return (1...self).reduce(1, *)
    }
}
```
 // Fatal error: Index out of range

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i
        } else {
            var sum = 0
            for j in 1...i {
                sum += j
            }
            result[i] = sum
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i
        } else {
            var sum = 0
            for j in 1...i {
                sum += j
            }
            result[i] = sum
        }
    }
    return result
}
```
 // Fatal error: Index out of range

func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i.factorial()
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}

extension Int {
    func factorial() -> Int {
        return (1...self).reduce(1, *)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
    var result = [Int](repeating: 0, count: n)
    for i in 1...n {
        if i % 2 == 0 {
            result[i] = i.factorial()
        } else {
            result[i] = (1...i).reduce(0, +)
        }
    }
    return result
}

extension Int {
    func factorial() -> Int {
        return (1...self).reduce(1, *)
    }
}
```
 // Fatal error: Index out of range

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    return (evenCount, oddCount)
}

func isPalindrome(n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    return (evenCount, oddCount)
}

func isPalindrome(n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```
if isPalindrome(i) { // missing argument label 'n:' in call

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }

    return (evenCount, oddCount)
}

func isPalindrome(n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }

    return (evenCount, oddCount)
}

func isPalindrome(n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```
if isPalindrome(i) { // missing argument label 'n:' in call

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }

    return (evenCount, oddCount)
}

func isPalindrome(n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }

    return (evenCount, oddCount)
}

func isPalindrome(n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```
if isPalindrome(i) { // missing argument label 'n:' in call

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

func isPalindrome(n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

func isPalindrome(n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```
if isPalindrome(i) { // missing argument label 'n:' in call

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }

    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }

    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }

    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for i in 1...n {
        if isPalindrome(i) {
            if i % 2 == 0 {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }

    return (evenCount, oddCount)
}

func isPalindrome(_ n: Int) -> Bool {
    let str = String(n)
    return str == String(str.reversed())
}
```

func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if i.isPalindrome {
            if i.isEven {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

extension Int {
    var isPalindrome: Bool {
        return String(self).reversed() == String(self)
    }
    
    var isEven: Bool {
        return self % 2 == 0
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for i in 1...n {
        if i.isPalindrome {
            if i.isEven {
                evenCount += 1
            } else {
                oddCount += 1
            }
        }
    }
    
    return (evenCount, oddCount)
}

extension Int {
    var isPalindrome: Bool {
        return String(self).reversed() == String(self)
    }
    
    var isEven: Bool {
        return self % 2 == 0
    }
}
```
return String(self).reversed() == String(self) // cannot convert value of type 'ReversedCollection<String>' to expected argument type 'String'

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count -= 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count -= 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        var sum = 0
        var absNum = abs(num)
        while absNum > 0 {
            sum += absNum % 10
            absNum /= 10
        }
        if sum > 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        var sum = 0
        var absNum = abs(num)
        while absNum > 0 {
            sum += absNum % 10
            absNum /= 10
        }
        if sum > 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count -= 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count -= 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        var sum = 0
        var absNum = abs(num)
        while absNum > 0 {
            sum += absNum % 10
            absNum /= 10
        }
        if sum > 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        var sum = 0
        var absNum = abs(num)
        while absNum > 0 {
            sum += absNum % 10
            absNum /= 10
        }
        if sum > 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        var sum = 0
        var absNum = abs(num)
        while absNum > 0 {
            sum += absNum % 10
            absNum /= 10
        }
        if sum > 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        var sum = 0
        var absNum = abs(num)
        while absNum > 0 {
            sum += absNum % 10
            absNum /= 10
        }
        if sum > 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count -= 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count -= 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        if num > 0 {
            count += 1
        } else if num < 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        var sum = 0
        var absNum = abs(num)
        while absNum > 0 {
            sum += absNum % 10
            absNum /= 10
        }
        if sum > 0 {
            count += 1
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
    var count = 0
    for num in arr {
        var sum = 0
        var absNum = abs(num)
        while absNum > 0 {
            sum += absNum % 10
            absNum /= 10
        }
        if sum > 0 {
            count += 1
        }
    }
    return count
}
```
 // XCTAssertTrue failed

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count-1 {
        if sortedArr[i] > sortedArr[i+1] {
            isSorted = false
            break
        }
    }
    return isSorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count-1 {
        if sortedArr[i] > sortedArr[i+1] {
            isSorted = false
            break
        }
    }
    return isSorted
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
 // XCTAssertTrue failed

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count {
        if arr[i] != sortedArr[i] {
            isSorted = false
            break
        }
    }
    return isSorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count {
        if arr[i] != sortedArr[i] {
            isSorted = false
            break
        }
    }
    return isSorted
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
 // XCTAssertTrue failed

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count-1 {
        if arr[i] > arr[i+1] {
            isSorted = false
            break
        }
    }
    if isSorted { return true }
    for _ in 0..<arr.count {
        let last = sortedArr.removeLast()
        sortedArr.insert(last, at: 0)
        if sortedArr == arr { return true }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count-1 {
        if arr[i] > arr[i+1] {
            isSorted = false
            break
        }
    }
    if isSorted { return true }
    for _ in 0..<arr.count {
        let last = sortedArr.removeLast()
        sortedArr.insert(last, at: 0)
        if sortedArr == arr { return true }
    }
    return false
}
```

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count {
        if arr[i] != sortedArr[i] {
            isSorted = false
            break
        }
    }
    return isSorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count {
        if arr[i] != sortedArr[i] {
            isSorted = false
            break
        }
    }
    return isSorted
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
 // XCTAssertTrue failed

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count {
        if arr[i] != sortedArr[i] {
            isSorted = false
            break
        }
    }
    return isSorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var isSorted = true
    for i in 0..<arr.count {
        if arr[i] != sortedArr[i] {
            isSorted = false
            break
        }
    }
    return isSorted
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
 // XCTAssertTrue failed

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var shiftCount = 0
    while sortedArr != arr {
        shiftCount += 1
        sortedArr.insert(sortedArr.removeLast(), at: 0)
    }
    return shiftCount % 2 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var sortedArr = arr.sorted()
    var shiftCount = 0
    while sortedArr != arr {
        shiftCount += 1
        sortedArr.insert(sortedArr.removeLast(), at: 0)
    }
    return shiftCount % 2 == 0
}
```
 // XCTAssertTrue failed

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var arr = arr
    var sorted = false
    while !sorted {
        sorted = true
        for i in 1..<arr.count {
            if arr[i] < arr[i-1] {
                arr.insert(arr.remove(at: i), at: i-1)
                sorted = false
            }
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var arr = arr
    var sorted = false
    while !sorted {
        sorted = true
        for i in 1..<arr.count {
            if arr[i] < arr[i-1] {
                arr.insert(arr.remove(at: i), at: i-1)
                sorted = false
            }
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var arr = arr
    var sorted = false
    while !sorted {
        sorted = true
        for i in 0..<arr.count-1 {
            if arr[i] > arr[i+1] {
                arr.swapAt(i, i+1)
                sorted = false
            }
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 1 else { return true }
    var arr = arr
    var sorted = false
    while !sorted {
        sorted = true
        for i in 0..<arr.count-1 {
            if arr[i] > arr[i+1] {
                arr.swapAt(i, i+1)
                sorted = false
            }
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 0 else { return true }
    var sortedArr = arr.sorted()
    var shiftCount = 0
    while sortedArr != arr {
        shiftCount += 1
        sortedArr.append(sortedArr.removeFirst())
    }
    return shiftCount % 2 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard arr.count > 0 else { return true }
    var sortedArr = arr.sorted()
    var shiftCount = 0
    while sortedArr != arr {
        shiftCount += 1
        sortedArr.append(sortedArr.removeFirst())
    }
    return shiftCount % 2 == 0
}
```

func moveOneBall(arr: [Int]) -> Bool {
    guard !arr.isEmpty else { return true }

    var sortedArr = arr.sorted()
    var shiftCount = 0

    while sortedArr != arr {
        shiftCount += 1
        sortedArr.insert(sortedArr.removeFirst(), at: 0)
    }

    return shiftCount % 2 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing 
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index. 
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
    guard !arr.isEmpty else { return true }

    var sortedArr = arr.sorted()
    var shiftCount = 0

    while sortedArr != arr {
        shiftCount += 1
        sortedArr.insert(sortedArr.removeFirst(), at: 0)
    }

    return shiftCount % 2 == 0
}
```

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()
    
    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }
    
    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
    var evenNumbers = [Int]()
    var oddNumbers = [Int]()

    for number in lst1 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    for number in lst2 {
        if number % 2 == 0 {
            evenNumbers.append(number)
        } else {
            oddNumbers.append(number)
        }
    }

    if evenNumbers.count == lst1.count {
        return "YES"
    } else {
        return "NO"
    }
}
```
 // XCTAssertTrue failed

func histogram(test: String) -> [String : Int] {
    var counts = [String : Int]()
    for letter in test.split(separator: " ") {
        if let count = counts[letter] {
            counts[letter] = count + 1
        } else {
            counts[letter] = 1
        }
    }
    return counts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var counts = [String : Int]()
    for letter in test.split(separator: " ") {
        if let count = counts[letter] {
            counts[letter] = count + 1
        } else {
            counts[letter] = 1
        }
    }
    return counts
}
```
if let count = counts[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
counts[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
counts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var counts = [String : Int]()
    for letter in test.lowercased().split(separator: " ") {
        if let count = counts[letter] {
            counts[letter] = count + 1
        } else {
            counts[letter] = 1
        }
    }
    return counts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var counts = [String : Int]()
    for letter in test.lowercased().split(separator: " ") {
        if let count = counts[letter] {
            counts[letter] = count + 1
        } else {
            counts[letter] = 1
        }
    }
    return counts
}
```
if let count = counts[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
counts[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
counts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
```
if letterCounts[letter] == nil { // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter]! += 1 // cannot convert value of type 'Character' to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased() {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased() {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
```
if letterCounts[letter] == nil { // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter]! += 1 // cannot convert value of type 'Character' to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased() {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased() {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
```
if letterCounts[letter] == nil { // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter]! += 1 // cannot convert value of type 'Character' to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased() {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased() {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
```
if letterCounts[letter] == nil { // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter]! += 1 // cannot convert value of type 'Character' to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.split(separator: " ") {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.split(separator: " ") {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
```
if letterCounts[letter] == nil { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter]! += 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
```
if letterCounts[letter] == nil { // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter]! += 1 // cannot convert value of type 'Character' to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased() {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased() {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
```
if letterCounts[letter] == nil { // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'Character' to expected argument type 'String'
letterCounts[letter]! += 1 // cannot convert value of type 'Character' to expected argument type 'String'

func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased().split(separator: " ") {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
    var letterCounts: [String : Int] = [:]
    for letter in test.lowercased().split(separator: " ") {
        if letterCounts[letter] == nil {
            letterCounts[letter] = 1
        } else {
            letterCounts[letter]! += 1
        }
    }
    return letterCounts
}
```
if letterCounts[letter] == nil { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
letterCounts[letter]! += 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
    var result = ""
    for char in s {
        if !c.contains(char) {
            result.append(char)
        }
    }
    return (result, result == String(result.reversed()))
}
```

func oddCount(lst: [String]) -> [String] {
    return lst.map { (str) -> String in
        let oddCount = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(str) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { (str) -> String in
        let oddCount = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(str) of the input."
    }
}
```
let oddCount = str.filter { $0.isOdd }.count // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddCount = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(str) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddCount = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(str) of the input."
    }
}
```
let oddCount = str.filter { $0.isOdd }.count // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let count = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(count) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let count = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(count) of the input."
    }
}
```
let count = str.filter { $0.isOdd }.count // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let count = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(count) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let count = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(count) of the input."
    }
}
```
let count = str.filter { $0.isOdd }.count // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddDigits = str.filter { $0.isOdd }
        return "the number of odd elements in the string \(str) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddDigits = str.filter { $0.isOdd }
        return "the number of odd elements in the string \(str) of the input."
    }
}
```
let oddDigits = str.filter { $0.isOdd } // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddCount = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(str) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddCount = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(str) of the input."
    }
}
```
let oddCount = str.filter { $0.isOdd }.count // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let count = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(count) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let count = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(count) of the input."
    }
}
```
let count = str.filter { $0.isOdd }.count // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddCount = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(str) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddCount = str.filter { $0.isOdd }.count
        return "the number of odd elements in the string \(str) of the input."
    }
}
```
let oddCount = str.filter { $0.isOdd }.count // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    var result = [String]()
    for string in lst {
        var count = 0
        for char in string {
            if char.isOdd {
                count += 1
            }
        }
        result.append("the number of odd elements in the string \(count) of the input.")
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    var result = [String]()
    for string in lst {
        var count = 0
        for char in string {
            if char.isOdd {
                count += 1
            }
        }
        result.append("the number of odd elements in the string \(count) of the input.")
    }
    return result
}
```
if char.isOdd { // value of type 'Character' has no member 'isOdd'

func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddDigits = str.filter { $0.isOdd }
        return "the number of odd elements in the string \(str) of the input."
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
    return lst.map { str in
        let oddDigits = str.filter { $0.isOdd }
        return "the number of odd elements in the string \(str) of the input."
    }
}
```
let oddDigits = str.filter { $0.isOdd } // value of type 'String.Element' (aka 'Character') has no member 'isOdd'

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            if sum < minSum {
                minSum = sum
            }
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            if sum < minSum {
                minSum = sum
            }
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            if sum < minSum {
                minSum = sum
            }
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            if sum < minSum {
                minSum = sum
            }
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            if sum < minSum {
                minSum = sum
            }
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            if sum < minSum {
                minSum = sum
            }
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            minSum = min(minSum, sum)
        }
    }
    return minSum
}
```

func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            if sum < minSum {
                minSum = sum
            }
        }
    }
    return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
    var minSum = Int.max
    for i in 0..<nums.count {
        var sum = 0
        for j in i..<nums.count {
            sum += nums[j]
            if sum < minSum {
                minSum = sum
            }
        }
    }
    return minSum
}
```

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = Array(repeating: 0, count: grid.count)
    var filled = 0
    var lowered = 0

    for row in grid {
        for cell in row {
            if cell == 1 {
                filled += 1
            }
        }
    }

    while filled > 0 {
        for row in grid {
            for cell in row {
                if cell == 1 {
                    buckets[row] += 1
                    filled -= 1
                }
            }
        }

        for row in grid {
            if buckets[row] > capacity {
                lowered += 1
                buckets[row] = 0
            }
        }
    }

    return lowered
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = Array(repeating: 0, count: grid.count)
    var filled = 0
    var lowered = 0

    for row in grid {
        for cell in row {
            if cell == 1 {
                filled += 1
            }
        }
    }

    while filled > 0 {
        for row in grid {
            for cell in row {
                if cell == 1 {
                    buckets[row] += 1
                    filled -= 1
                }
            }
        }

        for row in grid {
            if buckets[row] > capacity {
                lowered += 1
                buckets[row] = 0
            }
        }
    }

    return lowered
}
```
buckets[row] += 1 // cannot convert value of type '[Int]' to expected argument type 'Int'
if buckets[row] > capacity { // cannot convert value of type '[Int]' to expected argument type 'Int'
buckets[row] = 0 // cannot convert value of type '[Int]' to expected argument type 'Int'

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var rows = grid.count
    var cols = grid[0].count
    var buckets = capacity
    var loweredBuckets = 0

    for row in 0..<rows {
        for col in 0..<cols {
            if grid[row][col] == 1 {
                if buckets > 0 {
                    buckets -= 1
                    loweredBuckets += 1
                } else {
                    return loweredBuckets
                }
            }
        }
    }

    return loweredBuckets
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var rows = grid.count
    var cols = grid[0].count
    var buckets = capacity
    var loweredBuckets = 0

    for row in 0..<rows {
        for col in 0..<cols {
            if grid[row][col] == 1 {
                if buckets > 0 {
                    buckets -= 1
                    loweredBuckets += 1
                } else {
                    return loweredBuckets
                }
            }
        }
    }

    return loweredBuckets
}
```
var rows = grid.count // variable 'rows' was never mutated; consider changing to 'let' constant
var cols = grid[0].count // variable 'cols' was never mutated; consider changing to 'let' constant
 // XCTAssertTrue failed

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = 0
    var filled = 0
    var rows = grid.count
    var cols = grid[0].count
    var wells = Array(repeating: Array(repeating: 0, count: cols), count: rows)
    var bucketCapacity = capacity

    for row in 0..<rows {
        for col in 0..<cols {
            if grid[row][col] == 1 {
                filled += 1
                if filled > bucketCapacity {
                    buckets += 1
                    filled = 1
                }
                wells[row][col] = 1
            }
        }
    }

    return buckets
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = 0
    var filled = 0
    var rows = grid.count
    var cols = grid[0].count
    var wells = Array(repeating: Array(repeating: 0, count: cols), count: rows)
    var bucketCapacity = capacity

    for row in 0..<rows {
        for col in 0..<cols {
            if grid[row][col] == 1 {
                filled += 1
                if filled > bucketCapacity {
                    buckets += 1
                    filled = 1
                }
                wells[row][col] = 1
            }
        }
    }

    return buckets
}
```
var rows = grid.count // variable 'rows' was never mutated; consider changing to 'let' constant
var cols = grid[0].count // variable 'cols' was never mutated; consider changing to 'let' constant
var bucketCapacity = capacity // variable 'bucketCapacity' was never mutated; consider changing to 'let' constant
 // XCTAssertTrue failed

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var filled = 0
    var lowered = 0
    var buckets = Array(repeating: 0, count: capacity)

    for row in grid {
        for cell in row {
            if cell == 1 {
                filled += 1
                if filled > capacity {
                    lowered += 1
                    filled = capacity
                }
            }
        }
    }

    return lowered
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var filled = 0
    var lowered = 0
    var buckets = Array(repeating: 0, count: capacity)

    for row in grid {
        for cell in row {
            if cell == 1 {
                filled += 1
                if filled > capacity {
                    lowered += 1
                    filled = capacity
                }
            }
        }
    }

    return lowered
}
```
var buckets = Array(repeating: 0, count: capacity) // initialization of variable 'buckets' was never used; consider replacing with assignment to '_' or removing it
 // XCTAssertTrue failed

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int]()
    var wells = [Int]()
    var filled = 0
    var lowered = 0

    for row in grid {
        wells.append(row.filter { $0 == 1 }.count)
    }

    while filled < capacity {
        for i in 0..<wells.count {
            if wells[i] > 0 {
                buckets.append(wells[i])
                wells[i] = 0
                filled += buckets[i]
            }
        }
        lowered += 1
    }

    return lowered
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int]()
    var wells = [Int]()
    var filled = 0
    var lowered = 0

    for row in grid {
        wells.append(row.filter { $0 == 1 }.count)
    }

    while filled < capacity {
        for i in 0..<wells.count {
            if wells[i] > 0 {
                buckets.append(wells[i])
                wells[i] = 0
                filled += buckets[i]
            }
        }
        lowered += 1
    }

    return lowered
}
```
 // XCTAssertTrue failed

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int](repeating: 0, count: capacity)
    var wells = [Int](repeating: 0, count: grid.count)
    var loweredBuckets = 0

    for row in grid {
        for i in 0..<row.count {
            if row[i] == 1 {
                if buckets[i] < capacity {
                    buckets[i] += 1
                    wells[i] -= 1
                } else {
                    loweredBuckets += 1
                    buckets[i] = 0
                    wells[i] -= 1
                }
            }
        }
    }

    return loweredBuckets
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int](repeating: 0, count: capacity)
    var wells = [Int](repeating: 0, count: grid.count)
    var loweredBuckets = 0

    for row in grid {
        for i in 0..<row.count {
            if row[i] == 1 {
                if buckets[i] < capacity {
                    buckets[i] += 1
                    wells[i] -= 1
                } else {
                    loweredBuckets += 1
                    buckets[i] = 0
                    wells[i] -= 1
                }
            }
        }
    }

    return loweredBuckets
}
```
 // Fatal error: Index out of range

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var filled = 0
    var buckets = capacity
    for row in grid {
        for cell in row {
            if cell == 1 {
                filled += 1
                buckets -= 1
                if buckets == 0 {
                    return filled
                }
            }
        }
    }
    return filled
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var filled = 0
    var buckets = capacity
    for row in grid {
        for cell in row {
            if cell == 1 {
                filled += 1
                buckets -= 1
                if buckets == 0 {
                    return filled
                }
            }
        }
    }
    return filled
}
```
 // XCTAssertTrue failed

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int](repeating: 0, count: capacity)
    var loweredBuckets = 0
    
    for row in grid {
        for cell in row {
            if cell == 1 {
                var bucketIndex = 0
                while bucketIndex < buckets.count && buckets[bucketIndex] == capacity {
                    bucketIndex += 1
                }
                
                if bucketIndex < buckets.count {
                    buckets[bucketIndex] += 1
                    loweredBuckets += 1
                }
            }
        }
    }
    
    return loweredBuckets
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int](repeating: 0, count: capacity)
    var loweredBuckets = 0
    
    for row in grid {
        for cell in row {
            if cell == 1 {
                var bucketIndex = 0
                while bucketIndex < buckets.count && buckets[bucketIndex] == capacity {
                    bucketIndex += 1
                }
                
                if bucketIndex < buckets.count {
                    buckets[bucketIndex] += 1
                    loweredBuckets += 1
                }
            }
        }
    }
    
    return loweredBuckets
}
```
 // XCTAssertTrue failed

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int](repeating: 0, count: capacity)
    var loweredBuckets = 0

    for row in grid {
        for cell in row {
            if cell == 1 {
                let bucketIndex = buckets.firstIndex(where: { $0 == 0 }) ?? 0
                buckets[bucketIndex] += 1
                loweredBuckets += 1
            }
        }
    }

    return loweredBuckets
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int](repeating: 0, count: capacity)
    var loweredBuckets = 0

    for row in grid {
        for cell in row {
            if cell == 1 {
                let bucketIndex = buckets.firstIndex(where: { $0 == 0 }) ?? 0
                buckets[bucketIndex] += 1
                loweredBuckets += 1
            }
        }
    }

    return loweredBuckets
}
```
 // XCTAssertTrue failed

func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int](repeating: 0, count: grid.count)
    var filled = 0
    var lowered = 0

    for row in grid {
        for cell in row {
            if cell == 1 {
                filled += 1
                if filled > capacity {
                    lowered += 1
                    filled = 0
                }
            }
        }
    }

    return lowered
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it, 
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
    var buckets = [Int](repeating: 0, count: grid.count)
    var filled = 0
    var lowered = 0

    for row in grid {
        for cell in row {
            if cell == 1 {
                filled += 1
                if filled > capacity {
                    lowered += 1
                    filled = 0
                }
            }
        }
    }

    return lowered
}
```
var buckets = [Int](repeating: 0, count: grid.count) // initialization of variable 'buckets' was never used; consider replacing with assignment to '_' or removing it
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) -> Bool in
        let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
        let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}

extension Int {
    var binaryRepresentation: [Int] {
        var result = [Int]()
        var num = self
        while num > 0 {
            result.append(num % 2)
            num /= 2
        }
        return result.reversed()
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) -> Bool in
        let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
        let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}

extension Int {
    var binaryRepresentation: [Int] {
        var result = [Int]()
        var num = self
        while num > 0 {
            result.append(num % 2)
            num /= 2
        }
        return result.reversed()
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) -> Bool in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) -> Bool in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) -> Bool in
        let aOnes = a.onesCount()
        let bOnes = b.onesCount()
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}

extension Int {
    func onesCount() -> Int {
        var count = 0
        var num = self
        while num > 0 {
            if num % 2 == 1 {
                count += 1
            }
            num /= 2
        }
        return count
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) -> Bool in
        let aOnes = a.onesCount()
        let bOnes = b.onesCount()
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}

extension Int {
    func onesCount() -> Int {
        var count = 0
        var num = self
        while num > 0 {
            if num % 2 == 1 {
                count += 1
            }
            num /= 2
        }
        return count
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) -> Bool in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) -> Bool in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
```
 // XCTAssertTrue failed

func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
    return arr.sorted { (a, b) in
        let aOnes = a.nonzeroBitCount
        let bOnes = b.nonzeroBitCount
        if aOnes == bOnes {
            return a < b
        } else {
            return aOnes < bOnes
        }
    }
}
```
 // XCTAssertTrue failed

func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.split(separator: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.split(separator: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
```
if word.countConsonants() == n { // value of type 'String.SubSequence' (aka 'Substring') has no member 'countConsonants'
words.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.split(separator: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.split(separator: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
```
if word.countConsonants() == n { // value of type 'String.SubSequence' (aka 'Substring') has no member 'countConsonants'
words.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func selectWords(s: String, n: Int) -> [String] {
    guard !s.isEmpty else { return [] }
    let words = s.components(separatedBy: " ")
    return words.filter { $0.countConsonants() == n }
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    guard !s.isEmpty else { return [] }
    let words = s.components(separatedBy: " ")
    return words.filter { $0.countConsonants() == n }
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
```
 // XCTAssertTrue failed

func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.split(separator: " ") {
        if word.filter { !$0.isLetter }.count == n {
            words.append(word)
        }
    }
    return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.split(separator: " ") {
        if word.filter { !$0.isLetter }.count == n {
            words.append(word)
        }
    }
    return words
}
```
if word.filter { !$0.isLetter }.count == n { // trailing closure in this context is confusable with the body of the statement; pass as a parenthesized argument to silence this warning
words.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func selectWords(s: String, n: Int) -> [String] {
    guard !s.isEmpty else { return [] }
    let words = s.components(separatedBy: " ")
    return words.filter { $0.countConsonants() == n }
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        let consonants = "bcdfghjklmnpqrstvwxyz"
        return consonants.contains(self)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    guard !s.isEmpty else { return [] }
    let words = s.components(separatedBy: " ")
    return words.filter { $0.countConsonants() == n }
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        let consonants = "bcdfghjklmnpqrstvwxyz"
        return consonants.contains(self)
    }
}
```
 // XCTAssertTrue failed

func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
```
 // XCTAssertTrue failed

func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.filter({ !$0.isLetter }).count == n {
            words.append(word)
        }
    }
    return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.filter({ !$0.isLetter }).count == n {
            words.append(word)
        }
    }
    return words
}
```
 // XCTAssertTrue failed

func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
```
 // XCTAssertTrue failed

func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
```
 // XCTAssertTrue failed

func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement 
a function that returns an array of all words from string s that contain exactly 
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
    var words = [String]()
    for word in s.components(separatedBy: " ") {
        if word.countConsonants() == n {
            words.append(word)
        }
    }
    return words
}

extension String {
    func countConsonants() -> Int {
        var count = 0
        for char in self {
            if char.isConsonant() {
                count += 1
            }
        }
        return count
    }
}

extension Character {
    func isConsonant() -> Bool {
        return !isVowel()
    }

    func isVowel() -> Bool {
        return self == "a" || self == "e" || self == "i" || self == "o" || self == "u"
    }
}
```
 // XCTAssertTrue failed

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for char in word {
        if consonants.contains(char) {
            lastConsonant = char
        } else if vowels.contains(char) {
            if lastConsonant != "" {
                closestVowel = char
                break
            }
        }
    }
    
    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for char in word {
        if consonants.contains(char) {
            lastConsonant = char
        } else if vowels.contains(char) {
            if lastConsonant != "" {
                closestVowel = char
                break
            }
        }
    }
    
    return closestVowel
}
```
if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
lastConsonant = char // cannot assign value of type 'Character' to type 'String'
} else if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'

func getClosestVowel(word: String) -> String {
    let vowels = "aeiouAEIOU"
    let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
    
    guard word.count > 2 else { return "" }
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for i in (1..<word.count - 1).reversed() {
        let char = word[word.index(word.startIndex, offsetBy: i)]
        if consonants.contains(char) {
            lastConsonant = char
            break
        }
    }
    
    for i in (1..<word.count - 1) {
        let char = word[word.index(word.startIndex, offsetBy: i)]
        if vowels.contains(char) {
            closestVowel = char
            break
        }
    }
    
    if closestVowel.isEmpty {
        return ""
    }
    
    if lastConsonant.isEmpty {
        return closestVowel
    }
    
    let lastConsonantIndex = word.lastIndex(of: lastConsonant)!
    let closestVowelIndex = word.firstIndex(of: closestVowel)!
    
    if lastConsonantIndex < closestVowelIndex {
        return ""
    }
    
    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = "aeiouAEIOU"
    let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
    
    guard word.count > 2 else { return "" }
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for i in (1..<word.count - 1).reversed() {
        let char = word[word.index(word.startIndex, offsetBy: i)]
        if consonants.contains(char) {
            lastConsonant = char
            break
        }
    }
    
    for i in (1..<word.count - 1) {
        let char = word[word.index(word.startIndex, offsetBy: i)]
        if vowels.contains(char) {
            closestVowel = char
            break
        }
    }
    
    if closestVowel.isEmpty {
        return ""
    }
    
    if lastConsonant.isEmpty {
        return closestVowel
    }
    
    let lastConsonantIndex = word.lastIndex(of: lastConsonant)!
    let closestVowelIndex = word.firstIndex(of: closestVowel)!
    
    if lastConsonantIndex < closestVowelIndex {
        return ""
    }
    
    return closestVowel
}
```
lastConsonant = char // cannot assign value of type 'Character' to type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
let lastConsonantIndex = word.lastIndex(of: lastConsonant)! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
let closestVowelIndex = word.firstIndex(of: closestVowel)! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for i in (0..<word.count).reversed() {
        let char = word[i]
        if consonants.contains(char) {
            lastConsonant = char
        } else if vowels.contains(char) {
            if lastConsonant != "" {
                closestVowel = char
                break
            }
        }
    }
    
    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for i in (0..<word.count).reversed() {
        let char = word[i]
        if consonants.contains(char) {
            lastConsonant = char
        } else if vowels.contains(char) {
            if lastConsonant != "" {
                closestVowel = char
                break
            }
        }
    }
    
    return closestVowel
}
```
let char = word[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
lastConsonant = char // cannot assign value of type 'Character' to type 'String'
} else if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""
    var previousConsonant = ""
    var currentConsonant = ""
    var nextConsonant = ""
    
    for (index, character) in word.enumerated() {
        if index == 0 {
            previousConsonant = ""
        } else {
            previousConsonant = word[index - 1]
        }
        currentConsonant = character
        if index == word.count - 1 {
            nextConsonant = ""
        } else {
            nextConsonant = word[index + 1]
        }
        
        if vowels.contains(currentConsonant) && previousConsonant.isConsonant && nextConsonant.isConsonant {
            closestVowel = currentConsonant
            break
        }
    }
    
    return closestVowel
}

extension Character {
    var isConsonant: Bool {
        return !isVowel
    }
    
    var isVowel: Bool {
        return ["a", "e", "i", "o", "u"].contains(self)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""
    var previousConsonant = ""
    var currentConsonant = ""
    var nextConsonant = ""
    
    for (index, character) in word.enumerated() {
        if index == 0 {
            previousConsonant = ""
        } else {
            previousConsonant = word[index - 1]
        }
        currentConsonant = character
        if index == word.count - 1 {
            nextConsonant = ""
        } else {
            nextConsonant = word[index + 1]
        }
        
        if vowels.contains(currentConsonant) && previousConsonant.isConsonant && nextConsonant.isConsonant {
            closestVowel = currentConsonant
            break
        }
    }
    
    return closestVowel
}

extension Character {
    var isConsonant: Bool {
        return !isVowel
    }
    
    var isVowel: Bool {
        return ["a", "e", "i", "o", "u"].contains(self)
    }
}
```
previousConsonant = word[index - 1] // cannot assign value of type 'Character' to type 'String'
currentConsonant = character // cannot assign value of type 'String.Element' (aka 'Character') to type 'String'
nextConsonant = word[index + 1] // cannot assign value of type 'Character' to type 'String'
if vowels.contains(currentConsonant) && previousConsonant.isConsonant && nextConsonant.isConsonant { // value of type 'String' has no member 'isConsonant'
if vowels.contains(currentConsonant) && previousConsonant.isConsonant && nextConsonant.isConsonant { // value of type 'String' has no member 'isConsonant'

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for i in 0..<word.count {
        let char = word[word.index(word.startIndex, offsetBy: i)]
        if consonants.contains(char) {
            lastConsonant = char
        } else if vowels.contains(char) {
            if lastConsonant != "" {
                closestVowel = char
                break
            }
        }
    }
    
    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for i in 0..<word.count {
        let char = word[word.index(word.startIndex, offsetBy: i)]
        if consonants.contains(char) {
            lastConsonant = char
        } else if vowels.contains(char) {
            if lastConsonant != "" {
                closestVowel = char
                break
            }
        }
    }
    
    return closestVowel
}
```
if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
lastConsonant = char // cannot assign value of type 'Character' to type 'String'
} else if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""

    for i in (1...word.count - 1).reversed() {
        let char = word[word.index(word.endIndex, offsetBy: -i)]
        if vowels.contains(char) {
            closestVowel = char
            break
        }
    }

    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""

    for i in (1...word.count - 1).reversed() {
        let char = word[word.index(word.endIndex, offsetBy: -i)]
        if vowels.contains(char) {
            closestVowel = char
            break
        }
    }

    return closestVowel
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""

    for i in 1..<word.count {
        let char = word[word.index(word.endIndex, offsetBy: -i)]
        if vowels.contains(char) {
            closestVowel = char
            break
        }
    }

    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""

    for i in 1..<word.count {
        let char = word[word.index(word.endIndex, offsetBy: -i)]
        if vowels.contains(char) {
            closestVowel = char
            break
        }
    }

    return closestVowel
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""
    for i in (1...word.count-1).reversed() {
        if vowels.contains(word[i]) {
            closestVowel = word[i]
            break
        }
    }
    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""
    for i in (1...word.count-1).reversed() {
        if vowels.contains(word[i]) {
            closestVowel = word[i]
            break
        }
    }
    return closestVowel
}
```
if vowels.contains(word[i]) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = word[i] // cannot assign value of type 'Character' to type 'String'

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""
    for i in 1..<word.count {
        let char = word[word.index(word.startIndex, offsetBy: i)]
        if vowels.contains(char) {
            closestVowel = char
            break
        }
    }
    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    var closestVowel = ""
    for i in 1..<word.count {
        let char = word[word.index(word.startIndex, offsetBy: i)]
        if vowels.contains(char) {
            closestVowel = char
            break
        }
    }
    return closestVowel
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'

func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for i in (0..<word.count) {
        let char = word[i]
        if consonants.contains(char) {
            lastConsonant = char
        } else if vowels.contains(char) {
            if lastConsonant != "" {
                closestVowel = char
                break
            }
        }
    }
    
    return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between 
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition. 
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
    let vowels = ["a", "e", "i", "o", "u"]
    let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z"]
    
    var closestVowel = ""
    var lastConsonant = ""
    
    for i in (0..<word.count) {
        let char = word[i]
        if consonants.contains(char) {
            lastConsonant = char
        } else if vowels.contains(char) {
            if lastConsonant != "" {
                closestVowel = char
                break
            }
        }
    }
    
    return closestVowel
}
```
let char = word[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if consonants.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
lastConsonant = char // cannot assign value of type 'Character' to type 'String'
} else if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'

func matchParens(lst: [String]) -> String {
    let openParens = "("
    let closeParens = ")"
    var stack = [Character]()
    for char in lst[0] {
        if char == openParens {
            stack.append(char)
        } else if char == closeParens {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    let openParens = "("
    let closeParens = ")"
    var stack = [Character]()
    for char in lst[0] {
        if char == openParens {
            stack.append(char)
        } else if char == closeParens {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
```
if char == openParens { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'
} else if char == closeParens { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'

func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
```
 // XCTAssertTrue failed

func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
```
 // XCTAssertTrue failed

func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
```
 // XCTAssertTrue failed

func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
```
 // XCTAssertTrue failed

func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
```
 // XCTAssertTrue failed

func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
```
 // XCTAssertTrue failed

func matchParens(lst: [String]) -> String {
    var result = "Yes"
    for i in 0..<lst.count {
        if lst[i].count % 2 != 0 {
            result = "No"
            break
        }
        if lst[i].count > 0 && lst[i].last! == ")" {
            result = "No"
            break
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var result = "Yes"
    for i in 0..<lst.count {
        if lst[i].count % 2 != 0 {
            result = "No"
            break
        }
        if lst[i].count > 0 && lst[i].last! == ")" {
            result = "No"
            break
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func matchParens(lst: [String]) -> String {
    var result = "Yes"
    for i in 0..<lst.count {
        if lst[i].count % 2 == 1 {
            result = "No"
            break
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var result = "Yes"
    for i in 0..<lst.count {
        if lst[i].count % 2 == 1 {
            result = "No"
            break
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
    var stack = [Character]()
    for char in lst[0] {
        if char == "(" {
            stack.append(char)
        } else if char == ")" {
            if stack.isEmpty {
                return "No"
            }
            stack.removeLast()
        }
    }
    if stack.isEmpty {
        return "Yes"
    }
    return "No"
}
```
 // XCTAssertTrue failed

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted().prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted().prefix(k)
}
```
return arr.sorted().prefix(k) // no 'prefix' candidates produce the expected contextual result type '[Int]'

func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array 
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
    guard k > 0, k <= arr.count else { return [] }
    return arr.sorted(by: >).prefix(k)
}
```
return arr.sorted(by: >).prefix(k) // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (i, element) in lst.enumerated() {
        if element % 2 == 1 && i % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (i, element) in lst.enumerated() {
        if element % 2 == 1 && i % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (i, element) in lst.enumerated() {
        if element % 2 == 1 && i % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (i, element) in lst.enumerated() {
        if element % 2 == 1 && i % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
    var sum = 0
    for (index, element) in lst.enumerated() {
        if element % 2 == 1 && index % 2 == 0 {
            sum += element
        }
    }
    return sum
}
```

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element % 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element / 10
        } else {
            sum += element / 100
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
    var sum = 0
    for i in 0..<k {
        let element = arr[i]
        if element < 100 {
            sum += element
        } else if element < 1000 {
            sum += element / 10
        } else {
            sum += element / 100
        }
    }
    return sum
}
```
 // XCTAssertTrue failed

func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 0 {
            current /= 2
        } else {
            current = 3 * current + 1
        }
        sequence.append(current)
    }
    return sequence.filter { $0 % 2 != 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 0 {
            current /= 2
        } else {
            current = 3 * current + 1
        }
        sequence.append(current)
    }
    return sequence.filter { $0 % 2 != 0 }
}
```
 // XCTAssertTrue failed

func getOddCollatz(n: Int) -> [Int] {
    var oddNumbers = [Int]()
    var currentNumber = n
    while currentNumber != 1 {
        if currentNumber % 2 == 1 {
            oddNumbers.append(currentNumber)
        }
        if currentNumber % 2 == 0 {
            currentNumber = currentNumber / 2
        } else {
            currentNumber = 3 * currentNumber + 1
        }
    }
    return oddNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var oddNumbers = [Int]()
    var currentNumber = n
    while currentNumber != 1 {
        if currentNumber % 2 == 1 {
            oddNumbers.append(currentNumber)
        }
        if currentNumber % 2 == 0 {
            currentNumber = currentNumber / 2
        } else {
            currentNumber = 3 * currentNumber + 1
        }
    }
    return oddNumbers
}
```
 // XCTAssertTrue failed

func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 1 {
            sequence.append(current)
        }
        if current % 2 == 0 {
            current = current / 2
        } else {
            current = 3 * current + 1
        }
    }
    sequence.append(1)
    return sequence.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 1 {
            sequence.append(current)
        }
        if current % 2 == 0 {
            current = current / 2
        } else {
            current = 3 * current + 1
        }
    }
    sequence.append(1)
    return sequence.sorted()
}
```

func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 0 {
            current /= 2
        } else {
            current = 3 * current + 1
        }
        sequence.append(current)
    }
    return sequence.filter { $0 % 2 != 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 0 {
            current /= 2
        } else {
            current = 3 * current + 1
        }
        sequence.append(current)
    }
    return sequence.filter { $0 % 2 != 0 }
}
```
 // XCTAssertTrue failed

func getOddCollatz(n: Int) -> [Int] {
    var oddNumbers = [Int]()
    var currentNumber = n
    while currentNumber != 1 {
        if currentNumber % 2 == 1 {
            oddNumbers.append(currentNumber)
        }
        if currentNumber % 2 == 0 {
            currentNumber = currentNumber / 2
        } else {
            currentNumber = 3 * currentNumber + 1
        }
    }
    return oddNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var oddNumbers = [Int]()
    var currentNumber = n
    while currentNumber != 1 {
        if currentNumber % 2 == 1 {
            oddNumbers.append(currentNumber)
        }
        if currentNumber % 2 == 0 {
            currentNumber = currentNumber / 2
        } else {
            currentNumber = 3 * currentNumber + 1
        }
    }
    return oddNumbers
}
```
 // XCTAssertTrue failed

func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 1 {
            sequence.append(current)
        }
        if current % 2 == 0 {
            current = current / 2
        } else {
            current = 3 * current + 1
        }
    }
    sequence.append(1)
    return sequence.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 1 {
            sequence.append(current)
        }
        if current % 2 == 0 {
            current = current / 2
        } else {
            current = 3 * current + 1
        }
    }
    sequence.append(1)
    return sequence.sorted()
}
```

func getOddCollatz(n: Int) -> [Int] {
    var result = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 1 {
            result.append(current)
        }
        if current % 2 == 0 {
            current = current / 2
        } else {
            current = 3 * current + 1
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var result = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 1 {
            result.append(current)
        }
        if current % 2 == 0 {
            current = current / 2
        } else {
            current = 3 * current + 1
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func getOddCollatz(n: Int) -> [Int] {
    var oddNumbers = [Int]()
    var currentNumber = n
    while currentNumber > 1 {
        if currentNumber % 2 == 1 {
            oddNumbers.append(currentNumber)
        }
        if currentNumber % 2 == 0 {
            currentNumber = currentNumber / 2
        } else {
            currentNumber = 3 * currentNumber + 1
        }
    }
    return oddNumbers.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var oddNumbers = [Int]()
    var currentNumber = n
    while currentNumber > 1 {
        if currentNumber % 2 == 1 {
            oddNumbers.append(currentNumber)
        }
        if currentNumber % 2 == 0 {
            currentNumber = currentNumber / 2
        } else {
            currentNumber = 3 * currentNumber + 1
        }
    }
    return oddNumbers.sorted()
}
```
 // XCTAssertTrue failed

func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 0 {
            current /= 2
        } else {
            current = 3 * current + 1
        }
        sequence.append(current)
    }
    return sequence.filter { $0 % 2 != 0 }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current != 1 {
        if current % 2 == 0 {
            current /= 2
        } else {
            current = 3 * current + 1
        }
        sequence.append(current)
    }
    return sequence.filter { $0 % 2 != 0 }.sorted()
}
```
 // XCTAssertTrue failed

func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current > 1 {
        if current % 2 == 1 {
            sequence.append(current)
        }
        if current % 2 == 0 {
            current = current / 2
        } else {
            current = 3 * current + 1
        }
    }
    return sequence.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the 
previous term as follows: if the previous term is even, the next term is one half of 
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note: 
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
    var sequence = [Int]()
    var current = n
    while current > 1 {
        if current % 2 == 1 {
            sequence.append(current)
        }
        if current % 2 == 0 {
            current = current / 2
        } else {
            current = 3 * current + 1
        }
    }
    return sequence.sorted()
}
```
 // XCTAssertTrue failed

func validDate(date: String) -> Bool {
    // Check if the date string is not empty
    guard !date.isEmpty else { return false }

    // Check if the date is in the format mm-dd-yyyy
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }

    // Check if the month is valid
    let month = Int(dateComponents[0])
    guard month != nil && month! >= 1 && month! <= 12 else { return false }

    // Check if the day is valid
    let day = Int(dateComponents[1])
    guard day != nil && day! >= 1 && day! <= 31 else { return false }

    // Check if the year is valid
    let year = Int(dateComponents[2])
    guard year != nil && year! >= 1 && year! <= 9999 else { return false }

    // Check if the date is valid
    let date = Date(month: month!, day: day!, year: year!)
    guard date != nil else { return false }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    // Check if the date string is not empty
    guard !date.isEmpty else { return false }

    // Check if the date is in the format mm-dd-yyyy
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }

    // Check if the month is valid
    let month = Int(dateComponents[0])
    guard month != nil && month! >= 1 && month! <= 12 else { return false }

    // Check if the day is valid
    let day = Int(dateComponents[1])
    guard day != nil && day! >= 1 && day! <= 31 else { return false }

    // Check if the year is valid
    let year = Int(dateComponents[2])
    guard year != nil && year! >= 1 && year! <= 9999 else { return false }

    // Check if the date is valid
    let date = Date(month: month!, day: day!, year: year!)
    guard date != nil else { return false }

    return true
}
```
let date = Date(month: month!, day: day!, year: year!) // missing argument for parameter 'strategy' in call
let date = Date(month: month!, day: day!, year: year!) // extra arguments at positions #2, #3 in call

func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1900, year! <= 2100 else { return false }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1900, year! <= 2100 else { return false }
    return true
}
```

func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1900, year! <= 2099 else { return false }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1900, year! <= 2099 else { return false }
    return true
}
```

func validDate(date: String) -> Bool {
    // Check if the date string is not empty
    guard !date.isEmpty else { return false }

    // Check if the date string is in the format: mm-dd-yyyy
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }

    // Check if the month is valid
    let month = Int(dateComponents[0])
    guard month != nil && month! >= 1 && month! <= 12 else { return false }

    // Check if the day is valid
    let day = Int(dateComponents[1])
    guard day != nil && day! >= 1 && day! <= 31 else { return false }

    // Check if the year is valid
    let year = Int(dateComponents[2])
    guard year != nil && year! >= 1 && year! <= 9999 else { return false }

    // Check if the date is valid
    let date = Date(year: year!, month: month!, day: day!)
    guard date != nil else { return false }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    // Check if the date string is not empty
    guard !date.isEmpty else { return false }

    // Check if the date string is in the format: mm-dd-yyyy
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }

    // Check if the month is valid
    let month = Int(dateComponents[0])
    guard month != nil && month! >= 1 && month! <= 12 else { return false }

    // Check if the day is valid
    let day = Int(dateComponents[1])
    guard day != nil && day! >= 1 && day! <= 31 else { return false }

    // Check if the year is valid
    let year = Int(dateComponents[2])
    guard year != nil && year! >= 1 && year! <= 9999 else { return false }

    // Check if the date is valid
    let date = Date(year: year!, month: month!, day: day!)
    guard date != nil else { return false }

    return true
}
```
let date = Date(year: year!, month: month!, day: day!) // extra arguments at positions #2, #3 in call
let date = Date(year: year!, month: month!, day: day!) // missing argument for parameter 'strategy' in call

func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1 && month! <= 12 else { return false }
    guard day! >= 1 && day! <= 31 else { return false }
    guard year! >= 1900 && year! <= 2100 else { return false }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1 && month! <= 12 else { return false }
    guard day! >= 1 && day! <= 31 else { return false }
    guard year! >= 1900 && year! <= 2100 else { return false }
    return true
}
```

func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1900, year! <= 2100 else { return false }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1900, year! <= 2100 else { return false }
    return true
}
```

func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1, year! <= 9999 else { return false }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1, year! <= 9999 else { return false }
    return true
}
```
 // XCTAssertTrue failed

func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1900, year! <= 2100 else { return false }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1, month! <= 12 else { return false }
    guard day! >= 1, day! <= 31 else { return false }
    guard year! >= 1900, year! <= 2100 else { return false }
    return true
}
```

func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1 && month! <= 12 else { return false }
    guard day! >= 1 && day! <= 31 else { return false }
    guard year! >= 1900 && year! <= 2099 else { return false }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }
    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])
    guard month != nil, day != nil, year != nil else { return false }
    guard month! >= 1 && month! <= 12 else { return false }
    guard day! >= 1 && day! <= 31 else { return false }
    guard year! >= 1900 && year! <= 2099 else { return false }
    return true
}
```

func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }

    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])

    guard month != nil, day != nil, year != nil else { return false }

    if month! < 1 || month! > 12 { return false }
    if day! < 1 || day! > 31 { return false }
    if month! == 2 && day! > 29 { return false }
    if month! == 4 || month! == 6 || month! == 9 || month! == 11 {
        if day! > 30 { return false }
    }
    if month! == 1 || month! == 3 || month! == 5 || month! == 7 || month! == 8 || month! == 10 || month! == 12 {
        if day! > 31 { return false }
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
    let dateComponents = date.split(separator: "-")
    guard dateComponents.count == 3 else { return false }

    let month = Int(dateComponents[0])
    let day = Int(dateComponents[1])
    let year = Int(dateComponents[2])

    guard month != nil, day != nil, year != nil else { return false }

    if month! < 1 || month! > 12 { return false }
    if day! < 1 || day! > 31 { return false }
    if month! == 2 && day! > 29 { return false }
    if month! == 4 || month! == 6 || month! == 9 || month! == 11 {
        if day! > 30 { return false }
    }
    if month! == 1 || month! == 3 || month! == 5 || month! == 7 || month! == 8 || month! == 10 || month! == 12 {
        if day! > 31 { return false }
    }

    return true
}
```

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let words = txt.split(separator: " ") {
        return .success(words)
    } else if let words = txt.split(separator: ",") {
        return .success(words)
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.unicodeScalars.first!.value % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let words = txt.split(separator: " ") {
        return .success(words)
    } else if let words = txt.split(separator: ",") {
        return .success(words)
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.unicodeScalars.first!.value % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
} else if let words = txt.split(separator: ",") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let whitespaceIndex = txt.firstIndex(of: " ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if let commaIndex = txt.firstIndex(of: ",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.unicodeScalars.first!.value % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let whitespaceIndex = txt.firstIndex(of: " ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if let commaIndex = txt.firstIndex(of: ",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.unicodeScalars.first!.value % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let whitespaceIndex = txt.firstIndex(of: " ") { // value 'whitespaceIndex' was defined but never used; consider replacing with boolean test
} else if let commaIndex = txt.firstIndex(of: ",") { // value 'commaIndex' was defined but never used; consider replacing with boolean test

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let words = txt.split(separator: " ").map(String.init) {
        return .success(words)
    } else if let words = txt.split(separator: ",").map(String.init) {
        return .success(words)
    } else {
        let count = txt.filter { $0.isLowercase && $0.unicodeScalars.first!.value % 2 == 1 }.count
        return .failure(count)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let words = txt.split(separator: " ").map(String.init) {
        return .success(words)
    } else if let words = txt.split(separator: ",").map(String.init) {
        return .success(words)
    } else {
        let count = txt.filter { $0.isLowercase && $0.unicodeScalars.first!.value % 2 == 1 }.count
        return .failure(count)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'
} else if let words = txt.split(separator: ",").map(String.init) { // initializer for conditional binding must have Optional type, not '[String]'

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.asciiValue! % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.asciiValue! % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        return .failure(txt.filter { $0.isLowercase && $0.isLetter }.count % 2 == 1 ? txt.count : 0)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        return .failure(txt.filter { $0.isLowercase && $0.isLetter }.count % 2 == 1 ? txt.count : 0)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.asciiValue! % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.asciiValue! % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let words = txt.split(separator: " ") {
        return .success(words)
    } else if let words = txt.split(separator: ",") {
        return .success(words)
    } else {
        let count = txt.filter { $0.isLowercase && $0.isLetter }.count
        return .failure(count)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let words = txt.split(separator: " ") {
        return .success(words)
    } else if let words = txt.split(separator: ",") {
        return .success(words)
    } else {
        let count = txt.filter { $0.isLowercase && $0.isLetter }.count
        return .failure(count)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
} else if let words = txt.split(separator: ",") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        return .failure(txt.filter { $0.isLowercase && $0.isLetter }.count % 2)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        return .failure(txt.filter { $0.isLowercase && $0.isLetter }.count % 2)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let words = txt.split(separator: " ") {
        return .success(words)
    } else if let words = txt.split(separator: ",") {
        return .success(words)
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.asciiValue! % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if let words = txt.split(separator: " ") {
        return .success(words)
    } else if let words = txt.split(separator: ",") {
        return .success(words)
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.asciiValue! % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let words = txt.split(separator: " ") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
} else if let words = txt.split(separator: ",") { // initializer for conditional binding must have Optional type, not '[String.SubSequence]' (aka 'Array<Substring>')
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'

extension Int: Error {

}

extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.asciiValue! % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}

func splitWords(txt: String) -> Result<[String], Int> {
    if txt.contains(" ") {
        return .success(txt.split(separator: " ").map(String.init))
    } else if txt.contains(",") {
        return .success(txt.split(separator: ",").map(String.init))
    } else {
        let lowercaseLetters = txt.filter { $0.isLowercase }
        let oddLetters = lowercaseLetters.filter { $0.asciiValue! % 2 == 1 }
        return .failure(oddLetters.count)
    }
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'

func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    if lst.count < 2 {
        return true
    }

    var previous = lst[0]
    for i in 1..<lst.count {
        let current = lst[i]
        if current < previous {
            return false
        }
        previous = current
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    if lst.count < 2 {
        return true
    }

    var previous = lst[0]
    for i in 1..<lst.count {
        let current = lst[i]
        if current < previous {
            return false
        }
        previous = current
    }

    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    if lst.count < 2 {
        return true
    }

    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    if lst.count < 2 {
        return true
    }

    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }

    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    if lst.count < 2 {
        return true
    }

    var previous = lst[0]
    for i in 1..<lst.count {
        let current = lst[i]
        if current < previous {
            return false
        }
        previous = current
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    if lst.count < 2 {
        return true
    }

    var previous = lst[0]
    for i in 1..<lst.count {
        let current = lst[i]
        if current < previous {
            return false
        }
        previous = current
    }

    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    guard lst.count > 1 else { return true }
    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }
    return true
}
```
 // XCTAssertTrue failed

func isSorted(lst: [Int]) -> Bool {
    if lst.count <= 1 {
        return true
    }

    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
    if lst.count <= 1 {
        return true
    }

    for i in 1..<lst.count {
        if lst[i] < lst[i-1] {
            return false
        }
    }

    return true
}
```
 // XCTAssertTrue failed

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval1.0 > interval2.1 {
        return "NO"
    }

    // Calculate the length of the intersection
    let length = min(interval1.1, interval2.1) - max(interval1.0, interval2.0) + 1

    // Check if the length is a prime number
    if isPrime(length) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(n: Int) -> Bool {
    // Check if n is a prime number
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval1.0 > interval2.1 {
        return "NO"
    }

    // Calculate the length of the intersection
    let length = min(interval1.1, interval2.1) - max(interval1.0, interval2.0) + 1

    // Check if the length is a prime number
    if isPrime(length) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(n: Int) -> Bool {
    // Check if n is a prime number
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
if isPrime(length) { // missing argument label 'n:' in call

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
```
 // XCTAssertTrue failed

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval2.1 < interval1.0 {
        return "NO"
    }

    // Find the intersection of the intervals
    let start = max(interval1.0, interval2.0)
    let end = min(interval1.1, interval2.1)

    // Check if the length of the intersection is a prime number
    let length = end - start + 1
    if length == 1 {
        return "NO"
    } else if length == 2 {
        return "YES"
    } else {
        for i in 2..<length {
            if length % i == 0 {
                return "NO"
            }
        }
        return "YES"
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval2.1 < interval1.0 {
        return "NO"
    }

    // Find the intersection of the intervals
    let start = max(interval1.0, interval2.0)
    let end = min(interval1.1, interval2.1)

    // Check if the length of the intersection is a prime number
    let length = end - start + 1
    if length == 1 {
        return "NO"
    } else if length == 2 {
        return "YES"
    } else {
        for i in 2..<length {
            if length % i == 0 {
                return "NO"
            }
        }
        return "YES"
    }
}
```
 // XCTAssertTrue failed

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval2.1 < interval1.0 {
        return "NO"
    }

    // Find the intersection of the intervals
    let start = max(interval1.0, interval2.0)
    let end = min(interval1.1, interval2.1)

    // Check if the length of the intersection is a prime number
    let length = end - start + 1
    if isPrime(length) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    // Check if n is a prime number
    if n <= 1 {
        return false
    }

    // Check if n is divisible by any number between 2 and sqrt(n)
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval2.1 < interval1.0 {
        return "NO"
    }

    // Find the intersection of the intervals
    let start = max(interval1.0, interval2.0)
    let end = min(interval1.1, interval2.1)

    // Check if the length of the intersection is a prime number
    let length = end - start + 1
    if isPrime(length) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    // Check if n is a prime number
    if n <= 1 {
        return false
    }

    // Check if n is divisible by any number between 2 and sqrt(n)
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }

    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
```
 // XCTAssertTrue failed

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
```
 // XCTAssertTrue failed

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval2.1 < interval1.0 {
        return "NO"
    }

    // Find the intersection of the intervals
    let start = max(interval1.0, interval2.0)
    let end = min(interval1.1, interval2.1)

    // Check if the length of the intersection is a prime number
    let length = end - start + 1
    if isPrime(length) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    // Check if n is a prime number
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else if n % 2 == 0 {
        return false
    }

    // Check if n is divisible by any number in the range [3, sqrt(n)]
    for i in 3...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }

    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval2.1 < interval1.0 {
        return "NO"
    }

    // Find the intersection of the intervals
    let start = max(interval1.0, interval2.0)
    let end = min(interval1.1, interval2.1)

    // Check if the length of the intersection is a prime number
    let length = end - start + 1
    if isPrime(length) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    // Check if n is a prime number
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else if n % 2 == 0 {
        return false
    }

    // Check if n is divisible by any number in the range [3, sqrt(n)]
    for i in 3...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }

    return true
}
```
 // XCTAssertTrue failed

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval2.1 < interval1.0 {
        return "NO"
    }

    // Find the intersection of the intervals
    let start = max(interval1.0, interval2.0)
    let end = min(interval1.1, interval2.1)

    // Check if the length of the intersection is a prime number
    let length = end - start + 1
    if isPrime(length) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    // Check if n is a prime number
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2...Int(sqrt(Double(n))) {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    // Check if the intervals intersect
    if interval1.1 < interval2.0 || interval2.1 < interval1.0 {
        return "NO"
    }

    // Find the intersection of the intervals
    let start = max(interval1.0, interval2.0)
    let end = min(interval1.1, interval2.1)

    // Check if the length of the intersection is a prime number
    let length = end - start + 1
    if isPrime(length) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    // Check if n is a prime number
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2...Int(sqrt(Double(n))) {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
 // XCTAssertTrue failed

func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two 
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
    let start1 = interval1.0
    let end1 = interval1.1
    let start2 = interval2.0
    let end2 = interval2.1
    
    if start1 > end1 || start2 > end2 {
        return "NO"
    }
    
    let intersectionStart = max(start1, start2)
    let intersectionEnd = min(end1, end2)
    
    if intersectionStart > intersectionEnd {
        return "NO"
    }
    
    let intersectionLength = intersectionEnd - intersectionStart + 1
    
    if isPrime(intersectionLength) {
        return "YES"
    } else {
        return "NO"
    }
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    
    return true
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        signs.append(sign(num))
        product *= num
    }
    return signs.reduce(0, +) * product
}

func sign(num: Int) -> Int {
    if num > 0 { return 1 }
    if num < 0 { return -1 }
    return 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        signs.append(sign(num))
        product *= num
    }
    return signs.reduce(0, +) * product
}

func sign(num: Int) -> Int {
    if num > 0 { return 1 }
    if num < 0 { return -1 }
    return 0
}
```
signs.append(sign(num)) // missing argument label 'num:' in call

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        let sign = num > 0 ? 1 : (num < 0 ? -1 : 0)
        signs.append(sign)
        product *= sign
    }
    return signs.map { $0 * product }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        let sign = num > 0 ? 1 : (num < 0 ? -1 : 0)
        signs.append(sign)
        product *= sign
    }
    return signs.map { $0 * product }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        if num == 0 {
            signs.append(0)
        } else if num > 0 {
            signs.append(1)
        } else {
            signs.append(-1)
        }
        product *= num
    }
    return signs.map { $0 * product }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        if num == 0 {
            signs.append(0)
        } else if num > 0 {
            signs.append(1)
        } else {
            signs.append(-1)
        }
        product *= num
    }
    return signs.map { $0 * product }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        if num == 0 {
            signs.append(0)
        } else if num > 0 {
            signs.append(1)
        } else {
            signs.append(-1)
        }
        product *= num
    }
    return signs.reduce(0, +) * product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        if num == 0 {
            signs.append(0)
        } else if num > 0 {
            signs.append(1)
        } else {
            signs.append(-1)
        }
        product *= num
    }
    return signs.reduce(0, +) * product
}
```
 // XCTAssertTrue failed

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        if num > 0 {
            signs.append(1)
        } else if num < 0 {
            signs.append(-1)
        } else {
            signs.append(0)
        }
        product *= num
    }
    return signs.reduce(0, +) * product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        if num > 0 {
            signs.append(1)
        } else if num < 0 {
            signs.append(-1)
        } else {
            signs.append(0)
        }
        product *= num
    }
    return signs.reduce(0, +) * product
}
```
 // XCTAssertTrue failed

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var product = 1
    for num in arr {
        product *= num.signum()
    }
    return product
}

extension Int {
    func signum() -> Int {
        if self > 0 { return 1 }
        if self < 0 { return -1 }
        return 0
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var product = 1
    for num in arr {
        product *= num.signum()
    }
    return product
}

extension Int {
    func signum() -> Int {
        if self > 0 { return 1 }
        if self < 0 { return -1 }
        return 0
    }
}
```
 // XCTAssertTrue failed

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var product = 1
    var sum = 0
    for num in arr {
        if num > 0 {
            product *= 1
            sum += num
        } else if num < 0 {
            product *= -1
            sum -= num
        } else {
            product *= 0
        }
    }
    return product * sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var product = 1
    var sum = 0
    for num in arr {
        if num > 0 {
            product *= 1
            sum += num
        } else if num < 0 {
            product *= -1
            sum -= num
        } else {
            product *= 0
        }
    }
    return product * sum
}
```

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        let sign = num > 0 ? 1 : (num < 0 ? -1 : 0)
        signs.append(sign)
        product *= sign
    }
    return signs.map { $0 * product }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        let sign = num > 0 ? 1 : (num < 0 ? -1 : 0)
        signs.append(sign)
        product *= sign
    }
    return signs.map { $0 * product }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var product = 1
    var sum = 0
    for num in arr {
        let sign = num > 0 ? 1 : (num < 0 ? -1 : 0)
        product *= sign
        sum += abs(num)
    }
    return product * sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var product = 1
    var sum = 0
    for num in arr {
        let sign = num > 0 ? 1 : (num < 0 ? -1 : 0)
        product *= sign
        sum += abs(num)
    }
    return product * sum
}
```

func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        if num == 0 {
            signs.append(0)
        } else if num > 0 {
            signs.append(1)
        } else {
            signs.append(-1)
        }
        product *= num
    }
    return signs.reduce(0, +) * product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
    guard !arr.isEmpty else { return nil }
    var signs = [Int]()
    var product = 1
    for num in arr {
        if num == 0 {
            signs.append(0)
        } else if num > 0 {
            signs.append(1)
        } else {
            signs.append(-1)
        }
        product *= num
    }
    return signs.reduce(0, +) * product
}
```
 // XCTAssertTrue failed

func minPath(grid: [[Int]], k: Int) -> [Int] {
    // Initialize the minimum path with the first cell
    var minPath = [grid[0][0]]
    
    // Initialize the visited cells with the first cell
    var visited = Set([(0, 0)])
    
    // Initialize the queue with the first cell
    var queue = [(x: 0, y: 0)]
    
    // Loop until the queue is empty
    while !queue.isEmpty {
        // Dequeue a cell from the queue
        let (x, y) = queue.removeFirst()
        
        // Check if the cell is the last cell
        if x == grid.count - 1 && y == grid[0].count - 1 {
            // Add the last cell to the minimum path
            minPath.append(grid[x][y])
            break
        }
        
        // Get the neighbors of the current cell
        let neighbors = getNeighbors(grid: grid, x: x, y: y)
        
        // Loop through the neighbors
        for neighbor in neighbors {
            // Check if the neighbor has not been visited
            if !visited.contains(neighbor) {
                // Add the neighbor to the queue
                queue.append(neighbor)
                
                // Add the neighbor to the visited cells
                visited.insert(neighbor)
            }
        }
    }
    
    return minPath
}

func getNeighbors(grid: [[Int]], x: Int, y: Int) -> [(Int, Int)] {
    // Initialize the neighbors array
    var neighbors = [(Int, Int)]()
    
    // Check if the current cell is not on the edge
    if x > 0 && y > 0 && x < grid.count - 1 && y < grid[0].count - 1 {
        // Add the top, bottom, left, and right neighbors to the array
        neighbors.append((x - 1, y))
        neighbors.append((x + 1, y))
        neighbors.append((x, y - 1))
        neighbors.append((x, y + 1))
    } else {
        // Check if the current cell is on the top edge
        if x > 0 && y > 0 {
            // Add the top and left neighbors to the array
            neighbors.append((x - 1, y))
            neighbors.append((x, y - 1))
        }
        
        // Check if the current cell is on the bottom edge
        if x < grid.count - 1 && y < grid[0].count - 1 {
            // Add the bottom and right neighbors to the array
            neighbors.append((x + 1, y))
            neighbors.append((x, y + 1))
        }
        
        // Check if the current cell is on the left edge
        if x > 0 && y > 0 {
            // Add the left and top neighbors to the array
            neighbors.append((x - 1, y))
            neighbors.append((x, y - 1))
        }
        
        // Check if the current cell is on the right edge
        if x < grid.count - 1 && y < grid[0].count - 1 {
            // Add the right and bottom neighbors to the array
            neighbors.append((x + 1, y))
            neighbors.append((x, y + 1))
        }
    }
    
    return neighbors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    // Initialize the minimum path with the first cell
    var minPath = [grid[0][0]]
    
    // Initialize the visited cells with the first cell
    var visited = Set([(0, 0)])
    
    // Initialize the queue with the first cell
    var queue = [(x: 0, y: 0)]
    
    // Loop until the queue is empty
    while !queue.isEmpty {
        // Dequeue a cell from the queue
        let (x, y) = queue.removeFirst()
        
        // Check if the cell is the last cell
        if x == grid.count - 1 && y == grid[0].count - 1 {
            // Add the last cell to the minimum path
            minPath.append(grid[x][y])
            break
        }
        
        // Get the neighbors of the current cell
        let neighbors = getNeighbors(grid: grid, x: x, y: y)
        
        // Loop through the neighbors
        for neighbor in neighbors {
            // Check if the neighbor has not been visited
            if !visited.contains(neighbor) {
                // Add the neighbor to the queue
                queue.append(neighbor)
                
                // Add the neighbor to the visited cells
                visited.insert(neighbor)
            }
        }
    }
    
    return minPath
}

func getNeighbors(grid: [[Int]], x: Int, y: Int) -> [(Int, Int)] {
    // Initialize the neighbors array
    var neighbors = [(Int, Int)]()
    
    // Check if the current cell is not on the edge
    if x > 0 && y > 0 && x < grid.count - 1 && y < grid[0].count - 1 {
        // Add the top, bottom, left, and right neighbors to the array
        neighbors.append((x - 1, y))
        neighbors.append((x + 1, y))
        neighbors.append((x, y - 1))
        neighbors.append((x, y + 1))
    } else {
        // Check if the current cell is on the top edge
        if x > 0 && y > 0 {
            // Add the top and left neighbors to the array
            neighbors.append((x - 1, y))
            neighbors.append((x, y - 1))
        }
        
        // Check if the current cell is on the bottom edge
        if x < grid.count - 1 && y < grid[0].count - 1 {
            // Add the bottom and right neighbors to the array
            neighbors.append((x + 1, y))
            neighbors.append((x, y + 1))
        }
        
        // Check if the current cell is on the left edge
        if x > 0 && y > 0 {
            // Add the left and top neighbors to the array
            neighbors.append((x - 1, y))
            neighbors.append((x, y - 1))
        }
        
        // Check if the current cell is on the right edge
        if x < grid.count - 1 && y < grid[0].count - 1 {
            // Add the right and bottom neighbors to the array
            neighbors.append((x + 1, y))
            neighbors.append((x, y + 1))
        }
    }
    
    return neighbors
}
```
var visited = Set([(0, 0)]) // type '(Int, Int)' cannot conform to 'Hashable'

func minPath(grid: [[Int]], k: Int) -> [Int] {
    // Initialize the minimum path with the first cell
    var minPath = [grid[0][0]]
    
    // Initialize the visited cells with the first cell
    var visited = Set([(0, 0)])
    
    // Loop until the minimum path has length k
    while minPath.count < k {
        // Find the next cell to visit
        let nextCell = findNextCell(grid: grid, visited: visited)
        
        // Add the value of the next cell to the minimum path
        minPath.append(grid[nextCell.0][nextCell.1])
        
        // Add the next cell to the visited cells
        visited.insert(nextCell)
    }
    
    return minPath
}

func findNextCell(grid: [[Int]], visited: Set<(Int, Int)>) -> (Int, Int) {
    // Find the cell with the minimum value that is not visited
    var minValue = Int.max
    var minCell: (Int, Int) = (-1, -1)
    for row in 0..<grid.count {
        for col in 0..<grid[row].count {
            if !visited.contains((row, col)) && grid[row][col] < minValue {
                minValue = grid[row][col]
                minCell = (row, col)
            }
        }
    }
    
    return minCell
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    // Initialize the minimum path with the first cell
    var minPath = [grid[0][0]]
    
    // Initialize the visited cells with the first cell
    var visited = Set([(0, 0)])
    
    // Loop until the minimum path has length k
    while minPath.count < k {
        // Find the next cell to visit
        let nextCell = findNextCell(grid: grid, visited: visited)
        
        // Add the value of the next cell to the minimum path
        minPath.append(grid[nextCell.0][nextCell.1])
        
        // Add the next cell to the visited cells
        visited.insert(nextCell)
    }
    
    return minPath
}

func findNextCell(grid: [[Int]], visited: Set<(Int, Int)>) -> (Int, Int) {
    // Find the cell with the minimum value that is not visited
    var minValue = Int.max
    var minCell: (Int, Int) = (-1, -1)
    for row in 0..<grid.count {
        for col in 0..<grid[row].count {
            if !visited.contains((row, col)) && grid[row][col] < minValue {
                minValue = grid[row][col]
                minCell = (row, col)
            }
        }
    }
    
    return minCell
}
```
var visited = Set([(0, 0)]) // type '(Int, Int)' cannot conform to 'Hashable'
func findNextCell(grid: [[Int]], visited: Set<(Int, Int)>) -> (Int, Int) { // type '(Int, Int)' does not conform to protocol 'Hashable'

func minPath(grid: [[Int]], k: Int) -> [Int] {
    // Initialize the minimum path as an empty array
    var minPath = [Int]()
    
    // Initialize the current cell as the top-left cell
    var currentCell = (row: 0, col: 0)
    
    // Initialize the visited cells as an empty set
    var visitedCells = Set<(row: Int, col: Int)>()
    
    // Loop until the minimum path has length k
    while minPath.count < k {
        // Get the neighbors of the current cell
        let neighbors = getNeighbors(grid: grid, currentCell: currentCell)
        
        // Find the neighbor with the minimum value
        let minNeighbor = neighbors.min(by: { $0.value < $1.value })
        
        // Add the minimum neighbor to the minimum path
        minPath.append(minNeighbor.value)
        
        // Update the current cell to the neighbor with the minimum value
        currentCell = minNeighbor.cell
        
        // Add the current cell to the visited cells set
        visitedCells.insert(currentCell)
    }
    
    // Return the minimum path
    return minPath
}

func getNeighbors(grid: [[Int]], currentCell: (row: Int, col: Int)) -> [(cell: (row: Int, col: Int), value: Int)] {
    // Initialize the neighbors as an empty array
    var neighbors = [(cell: (row: Int, col: Int), value: Int)]()
    
    // Loop through the rows and columns of the grid
    for row in 0..<grid.count {
        for col in 0..<grid[row].count {
            // If the current cell is not the same as the current cell
            if (row, col) != currentCell {
                // Add the neighbor to the neighbors array
                neighbors.append((cell: (row: row, col: col), value: grid[row][col]))
            }
        }
    }
    
    // Return the neighbors
    return neighbors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    // Initialize the minimum path as an empty array
    var minPath = [Int]()
    
    // Initialize the current cell as the top-left cell
    var currentCell = (row: 0, col: 0)
    
    // Initialize the visited cells as an empty set
    var visitedCells = Set<(row: Int, col: Int)>()
    
    // Loop until the minimum path has length k
    while minPath.count < k {
        // Get the neighbors of the current cell
        let neighbors = getNeighbors(grid: grid, currentCell: currentCell)
        
        // Find the neighbor with the minimum value
        let minNeighbor = neighbors.min(by: { $0.value < $1.value })
        
        // Add the minimum neighbor to the minimum path
        minPath.append(minNeighbor.value)
        
        // Update the current cell to the neighbor with the minimum value
        currentCell = minNeighbor.cell
        
        // Add the current cell to the visited cells set
        visitedCells.insert(currentCell)
    }
    
    // Return the minimum path
    return minPath
}

// Get the neighbors of a cell
func getNeighbors(grid: [[Int]], currentCell: (row: Int, col: Int)) -> [(cell: (row: Int, col: Int), value: Int)] {
    // Initialize the neighbors as an empty array
    var neighbors = [(cell: (row: Int, col: Int), value: Int)]()
    
    // Loop through the rows and columns of the grid
    for row in 0..<grid.count {
        for col in 0..<grid[row].count {
            // If the current cell is not the same as the current cell
            if (row, col) != currentCell {
                // Add the neighbor to the neighbors array
                neighbors.append((cell: (row: row, col: col), value: grid[row][col]))
            }
        }
    }
    
    // Return the neighbors
    return neighbors
}
```
var visitedCells = Set<(row: Int, col: Int)>() // type '(row: Int, col: Int)' does not conform to protocol 'Hashable'
minPath.append(minNeighbor.value) // value of optional type '(cell: (row: Int, col: Int), value: Int)?' must be unwrapped to refer to member 'value' of wrapped base type '(cell: (row: Int, col: Int), value: Int)'
currentCell = minNeighbor.cell // value of optional type '(cell: (row: Int, col: Int), value: Int)?' must be unwrapped to refer to member 'cell' of wrapped base type '(cell: (row: Int, col: Int), value: Int)'

func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
    for i in 0..<n {
        for j in 0..<n {
            dp[i][j] = grid[i][j]
        }
    }

    for i in 0..<n {
        for j in 0..<n {
            if i > 0 && j > 0 {
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
            } else if i > 0 {
                dp[i][j] = dp[i - 1][j] + grid[i][j]
            } else if j > 0 {
                dp[i][j] = dp[i][j - 1] + grid[i][j]
            }
        }
    }

    var path = [Int]()
    var i = n - 1
    var j = n - 1
    while k > 0 {
        path.append(grid[i][j])
        if i > 0 && j > 0 {
            if dp[i - 1][j] < dp[i][j - 1] {
                i -= 1
            } else {
                j -= 1
            }
        } else if i > 0 {
            i -= 1
        } else if j > 0 {
            j -= 1
        }
        k -= 1
    }
    return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
    for i in 0..<n {
        for j in 0..<n {
            dp[i][j] = grid[i][j]
        }
    }

    for i in 0..<n {
        for j in 0..<n {
            if i > 0 && j > 0 {
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
            } else if i > 0 {
                dp[i][j] = dp[i - 1][j] + grid[i][j]
            } else if j > 0 {
                dp[i][j] = dp[i][j - 1] + grid[i][j]
            }
        }
    }

    var path = [Int]()
    var i = n - 1
    var j = n - 1
    while k > 0 {
        path.append(grid[i][j])
        if i > 0 && j > 0 {
            if dp[i - 1][j] < dp[i][j - 1] {
                i -= 1
            } else {
                j -= 1
            }
        } else if i > 0 {
            i -= 1
        } else if j > 0 {
            j -= 1
        }
        k -= 1
    }
    return path
}
```
k -= 1 // left side of mutating operator isn't mutable: 'k' is a 'let' constant

func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    let m = grid[0].count
    var visited = Array(repeating: Array(repeating: false, count: m), count: n)
    var queue = [(x: Int, y: Int, dist: Int)]()
    var minPath = [Int]()

    // Initialize the queue with the starting cell
    queue.append((x: 0, y: 0, dist: 0))
    visited[0][0] = true

    // Loop until the queue is empty
    while !queue.isEmpty {
        // Dequeue the current cell
        let (x, y, dist) = queue.removeFirst()

        // If the current cell is the destination cell, add it to the minPath and break
        if x == n - 1 && y == m - 1 {
            minPath.append(grid[x][y])
            break
        }

        // If the current cell is not the destination cell and the distance is less than k, add its neighbors to the queue
        if dist < k {
            // Add the left neighbor to the queue
            if x > 0 && !visited[x - 1][y] {
                queue.append((x: x - 1, y: y, dist: dist + 1))
                visited[x - 1][y] = true
            }

            // Add the right neighbor to the queue
            if x < n - 1 && !visited[x + 1][y] {
                queue.append((x: x + 1, y: y, dist: dist + 1))
                visited[x + 1][y] = true
            }

            // Add the top neighbor to the queue
            if y > 0 && !visited[x][y - 1] {
                queue.append((x: x, y: y - 1, dist: dist + 1))
                visited[x][y - 1] = true
            }

            // Add the bottom neighbor to the queue
            if y < m - 1 && !visited[x][y + 1] {
                queue.append((x: x, y: y + 1, dist: dist + 1))
                visited[x][y + 1] = true
            }
        }
    }

    return minPath
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    let m = grid[0].count
    var visited = Array(repeating: Array(repeating: false, count: m), count: n)
    var queue = [(x: Int, y: Int, dist: Int)]()
    var minPath = [Int]()

    // Initialize the queue with the starting cell
    queue.append((x: 0, y: 0, dist: 0))
    visited[0][0] = true

    // Loop until the queue is empty
    while !queue.isEmpty {
        // Dequeue the current cell
        let (x, y, dist) = queue.removeFirst()

        // If the current cell is the destination cell, add it to the minPath and break
        if x == n - 1 && y == m - 1 {
            minPath.append(grid[x][y])
            break
        }

        // If the current cell is not the destination cell and the distance is less than k, add its neighbors to the queue
        if dist < k {
            // Add the left neighbor to the queue
            if x > 0 && !visited[x - 1][y] {
                queue.append((x: x - 1, y: y, dist: dist + 1))
                visited[x - 1][y] = true
            }

            // Add the right neighbor to the queue
            if x < n - 1 && !visited[x + 1][y] {
                queue.append((x: x + 1, y: y, dist: dist + 1))
                visited[x + 1][y] = true
            }

            // Add the top neighbor to the queue
            if y > 0 && !visited[x][y - 1] {
                queue.append((x: x, y: y - 1, dist: dist + 1))
                visited[x][y - 1] = true
            }

            // Add the bottom neighbor to the queue
            if y < m - 1 && !visited[x][y + 1] {
                queue.append((x: x, y: y + 1, dist: dist + 1))
                visited[x][y + 1] = true
            }
        }
    }

    return minPath
}
```
 // XCTAssertTrue failed

func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
    var visited = [[Bool]](repeating: [Bool](repeating: false, count: n), count: n)
    var path = [Int]()

    for i in 0..<n {
        for j in 0..<n {
            dp[i][j] = grid[i][j]
            visited[i][j] = false
        }
    }

    for i in 0..<n {
        for j in 0..<n {
            if !visited[i][j] {
                visited[i][j] = true
                path.append(dp[i][j])
                if path.count == k {
                    return path
                }
                for neighbor in getNeighbors(i, j, n) {
                    if !visited[neighbor.0][neighbor.1] {
                        visited[neighbor.0][neighbor.1] = true
                        dp[neighbor.0][neighbor.1] = min(dp[neighbor.0][neighbor.1], dp[i][j] + grid[neighbor.0][neighbor.1])
                    }
                }
            }
        }
    }

    return path
}

func getNeighbors(_ i: Int, _ j: Int, _ n: Int) -> [(Int, Int)] {
    var neighbors = [(Int, Int)]()
    if i > 0 {
        neighbors.append((i - 1, j))
    }
    if i < n - 1 {
        neighbors.append((i + 1, j))
    }
    if j > 0 {
        neighbors.append((i, j - 1))
    }
    if j < n - 1 {
        neighbors.append((i, j + 1))
    }
    return neighbors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    var dp = [[Int]](repeating: [Int](repeating: 0, count: n), count: n)
    var visited = [[Bool]](repeating: [Bool](repeating: false, count: n), count: n)
    var path = [Int]()

    for i in 0..<n {
        for j in 0..<n {
            dp[i][j] = grid[i][j]
            visited[i][j] = false
        }
    }

    for i in 0..<n {
        for j in 0..<n {
            if !visited[i][j] {
                visited[i][j] = true
                path.append(dp[i][j])
                if path.count == k {
                    return path
                }
                for neighbor in getNeighbors(i, j, n) {
                    if !visited[neighbor.0][neighbor.1] {
                        visited[neighbor.0][neighbor.1] = true
                        dp[neighbor.0][neighbor.1] = min(dp[neighbor.0][neighbor.1], dp[i][j] + grid[neighbor.0][neighbor.1])
                    }
                }
            }
        }
    }

    return path
}

func getNeighbors(_ i: Int, _ j: Int, _ n: Int) -> [(Int, Int)] {
    var neighbors = [(Int, Int)]()
    if i > 0 {
        neighbors.append((i - 1, j))
    }
    if i < n - 1 {
        neighbors.append((i + 1, j))
    }
    if j > 0 {
        neighbors.append((i, j - 1))
    }
    if j < n - 1 {
        neighbors.append((i, j + 1))
    }
    return neighbors
}
```
 // XCTAssertTrue failed

func minPath(grid: [[Int]], k: Int) -> [Int] {
    // Initialize the minimum path with the first cell
    var minPath = [grid[0][0]]
    
    // Loop through the remaining cells
    for i in 1..<grid.count {
        for j in 1..<grid[0].count {
            // Check if the current cell is part of the minimum path
            if minPath.count < k {
                // Add the current cell to the minimum path
                minPath.append(grid[i][j])
            } else {
                // Check if the current cell is lexicographically less than the last cell in the minimum path
                if grid[i][j] < minPath.last! {
                    // Replace the last cell in the minimum path with the current cell
                    minPath[minPath.count - 1] = grid[i][j]
                }
            }
        }
    }
    
    return minPath
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    // Initialize the minimum path with the first cell
    var minPath = [grid[0][0]]
    
    // Loop through the remaining cells
    for i in 1..<grid.count {
        for j in 1..<grid[0].count {
            // Check if the current cell is part of the minimum path
            if minPath.count < k {
                // Add the current cell to the minimum path
                minPath.append(grid[i][j])
            } else {
                // Check if the current cell is lexicographically less than the last cell in the minimum path
                if grid[i][j] < minPath.last! {
                    // Replace the last cell in the minimum path with the current cell
                    minPath[minPath.count - 1] = grid[i][j]
                }
            }
        }
    }
    
    return minPath
}
```
 // XCTAssertTrue failed

func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    let m = grid[0].count
    var visited = [[Bool]](repeating: [Bool](repeating: false, count: m), count: n)
    var queue = [(Int, Int, Int)]()
    var path = [Int]()

    visited[0][0] = true
    queue.append((0, 0, 0))

    while !queue.isEmpty {
        let (i, j, dist) = queue.removeFirst()

        if dist == k {
            path.append(grid[i][j])
            break
        }

        for (x, y) in [(i-1, j), (i, j-1), (i+1, j), (i, j+1)] {
            if x >= 0 && x < n && y >= 0 && y < m && !visited[x][y] {
                visited[x][y] = true
                queue.append((x, y, dist+1))
            }
        }
    }

    return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    let m = grid[0].count
    var visited = [[Bool]](repeating: [Bool](repeating: false, count: m), count: n)
    var queue = [(Int, Int, Int)]()
    var path = [Int]()

    visited[0][0] = true
    queue.append((0, 0, 0))

    while !queue.isEmpty {
        let (i, j, dist) = queue.removeFirst()

        if dist == k {
            path.append(grid[i][j])
            break
        }

        for (x, y) in [(i-1, j), (i, j-1), (i+1, j), (i, j+1)] {
            if x >= 0 && x < n && y >= 0 && y < m && !visited[x][y] {
                visited[x][y] = true
                queue.append((x, y, dist+1))
            }
        }
    }

    return path
}
```
 // XCTAssertTrue failed

func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    let m = grid[0].count
    var visited = Array(repeating: Array(repeating: false, count: m), count: n)
    var queue = [(x: Int, y: Int, dist: Int)]()
    var minPath = [Int]()

    // Initialize the queue with the starting cell
    queue.append((x: 0, y: 0, dist: 0))
    visited[0][0] = true

    // Loop until the queue is empty
    while !queue.isEmpty {
        // Get the next cell from the queue
        let (x, y, dist) = queue.removeFirst()

        // If we have reached the end of the path, add the current cell to the minPath and break
        if dist == k {
            minPath.append(grid[x][y])
            break
        }

        // Add the neighbors of the current cell to the queue if they have not been visited
        for neighbor in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)] {
            let (nx, ny) = neighbor
            if nx >= 0 && nx < n && ny >= 0 && ny < m && !visited[nx][ny] {
                queue.append((nx, ny, dist + 1))
                visited[nx][ny] = true
            }
        }
    }

    return minPath
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    let m = grid[0].count
    var visited = Array(repeating: Array(repeating: false, count: m), count: n)
    var queue = [(x: Int, y: Int, dist: Int)]()
    var minPath = [Int]()

    // Initialize the queue with the starting cell
    queue.append((x: 0, y: 0, dist: 0))
    visited[0][0] = true

    // Loop until the queue is empty
    while !queue.isEmpty {
        // Get the next cell from the queue
        let (x, y, dist) = queue.removeFirst()

        // If we have reached the end of the path, add the current cell to the minPath and break
        if dist == k {
            minPath.append(grid[x][y])
            break
        }

        // Add the neighbors of the current cell to the queue if they have not been visited
        for neighbor in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)] {
            let (nx, ny) = neighbor
            if nx >= 0 && nx < n && ny >= 0 && ny < m && !visited[nx][ny] {
                queue.append((nx, ny, dist + 1))
                visited[nx][ny] = true
            }
        }
    }

    return minPath
}
```
 // XCTAssertTrue failed

func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    let m = grid[0].count
    var visited = Array(repeating: Array(repeating: false, count: m), count: n)
    var queue = [(Int, Int, Int)]()
    var path = [Int]()

    // Initialize the queue with the starting cell
    queue.append((0, 0, 0))
    visited[0][0] = true

    // Loop until the queue is empty
    while !queue.isEmpty {
        // Dequeue the current cell
        let (row, col, distance) = queue.removeFirst()

        // If the current cell is the destination cell, add it to the path and return
        if row == n - 1 && col == m - 1 {
            path.append(grid[row][col])
            return path
        }

        // Add the neighbors of the current cell to the queue
        for (r, c) in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)] {
            if r >= 0 && r < n && c >= 0 && c < m && !visited[r][c] {
                queue.append((r, c, distance + 1))
                visited[r][c] = true
            }
        }
    }

    return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k, 
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:    
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
    let n = grid.count
    let m = grid[0].count
    var visited = Array(repeating: Array(repeating: false, count: m), count: n)
    var queue = [(Int, Int, Int)]()
    var path = [Int]()

    // Initialize the queue with the starting cell
    queue.append((0, 0, 0))
    visited[0][0] = true

    // Loop until the queue is empty
    while !queue.isEmpty {
        // Dequeue the current cell
        let (row, col, distance) = queue.removeFirst()

        // If the current cell is the destination cell, add it to the path and return
        if row == n - 1 && col == m - 1 {
            path.append(grid[row][col])
            return path
        }

        // Add the neighbors of the current cell to the queue
        for (r, c) in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)] {
            if r >= 0 && r < n && c >= 0 && c < m && !visited[r][c] {
                queue.append((r, c, distance + 1))
                visited[r][c] = true
            }
        }
    }

    return path
}
```
 // XCTAssertTrue failed

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
```
 // Fatal error: Index out of range

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n {
        if i % 2 == 0 {
            sequence.append(sequence[i - 1] + sequence[i - 2])
        } else {
            sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n {
        if i % 2 == 0 {
            sequence.append(sequence[i - 1] + sequence[i - 2])
        } else {
            sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
        }
    }
    return sequence
}
```
 // XCTAssertTrue failed

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
```
 // Fatal error: Index out of range

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
```
 // Fatal error: Index out of range

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
```
 // Fatal error: Index out of range

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
```
 // Fatal error: Index out of range

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n {
        if i % 2 == 0 {
            sequence.append(sequence[i - 1] + sequence[i - 2])
        } else {
            sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n {
        if i % 2 == 0 {
            sequence.append(sequence[i - 1] + sequence[i - 2])
        } else {
            sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
        }
    }
    return sequence
}
```
 // XCTAssertTrue failed

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n {
        if i % 2 == 0 {
            sequence.append(sequence[i - 1] + sequence[i - 2])
        } else {
            sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n {
        if i % 2 == 0 {
            sequence.append(sequence[i - 1] + sequence[i - 2])
        } else {
            sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
        }
    }
    return sequence
}
```
 // XCTAssertTrue failed

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n {
        if i % 2 == 0 {
            sequence.append(sequence[i - 1] + sequence[i - 2])
        } else {
            sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n {
        if i % 2 == 0 {
            sequence.append(sequence[i - 1] + sequence[i - 2])
        } else {
            sequence.append(sequence[i - 1] + sequence[i - 2] + sequence[i + 1])
        }
    }
    return sequence
}
```
 // XCTAssertTrue failed

func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in 
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) =  tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8 
You are given a non-negative integer number n, you have to a return an array of the 
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
    var sequence = [1, 3, 2]
    for i in 3..<n+1 {
        if i % 2 == 0 {
            sequence.append(sequence[i-1] + sequence[i-2])
        } else {
            sequence.append(sequence[i-1] + sequence[i-2] + sequence[i+1])
        }
    }
    return sequence
}
```
 // Fatal error: Index out of range

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= Int(digit)
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= Int(digit)
        }
    }
    return product
}
```
if digit.isOdd { // value of type 'Character' has no member 'isOdd'
product *= Int(digit) // no exact matches in call to initializer

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isMultiple(of: 2) {
            product *= Int(digit)
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isMultiple(of: 2) {
            product *= Int(digit)
        }
    }
    return product
}
```
if digit.isMultiple(of: 2) { // value of type 'Character' has no member 'isMultiple'
product *= Int(digit) // no exact matches in call to initializer

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= Int(digit)
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= Int(digit)
        }
    }
    return product
}
```
if digit.isOdd { // value of type 'Character' has no member 'isOdd'
product *= Int(digit) // no exact matches in call to initializer

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= digit
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= digit
        }
    }
    return product
}
```
if digit.isOdd { // value of type 'Character' has no member 'isOdd'
product *= digit // cannot convert value of type 'Character' to expected argument type 'Int'

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isMultiple(of: 2) {
            product *= Int(digit)
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isMultiple(of: 2) {
            product *= Int(digit)
        }
    }
    return product
}
```
if digit.isMultiple(of: 2) { // value of type 'Character' has no member 'isMultiple'
product *= Int(digit) // no exact matches in call to initializer

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= Int(digit)
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= Int(digit)
        }
    }
    return product
}
```
if digit.isOdd { // value of type 'Character' has no member 'isOdd'
product *= Int(digit) // no exact matches in call to initializer

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= Int(digit)
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isOdd {
            product *= Int(digit)
        }
    }
    return product
}
```
if digit.isOdd { // value of type 'Character' has no member 'isOdd'
product *= Int(digit) // no exact matches in call to initializer

func digits(n: Int) -> Int {
    var product = 1
    var remainder = n
    while remainder > 0 {
        let digit = remainder % 10
        if digit % 2 == 1 {
            product *= digit
        }
        remainder /= 10
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    var remainder = n
    while remainder > 0 {
        let digit = remainder % 10
        if digit % 2 == 1 {
            product *= digit
        }
        remainder /= 10
    }
    return product
}
```
 // XCTAssertTrue failed

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isMultiple(of: 2) {
            product *= Int(digit)
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isMultiple(of: 2) {
            product *= Int(digit)
        }
    }
    return product
}
```
if digit.isMultiple(of: 2) { // value of type 'Character' has no member 'isMultiple'
product *= Int(digit) // no exact matches in call to initializer

func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isMultiple(of: 2) {
            product *= Int(digit)
        }
    }
    return product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
    var product = 1
    for digit in String(n) {
        if digit.isMultiple(of: 2) {
            product *= Int(digit)
        }
    }
    return product
}
```
if digit.isMultiple(of: 2) { // value of type 'Character' has no member 'isMultiple'
product *= Int(digit) // no exact matches in call to initializer

func isNested(string: String) -> Bool {
    var stack: [Character] = []
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack: [Character] = []
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack: [Character] = []
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack: [Character] = []
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack: [Character] = []
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack: [Character] = []
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets 
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
    var stack = [Character]()
    for char in string {
        if char == "[" {
            stack.append(char)
        } else if char == "]" {
            if stack.isEmpty {
                return false
            }
            stack.removeLast()
        }
    }
    return stack.isEmpty
}
```
 // XCTAssertTrue failed

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.reduce(0, +)
}
```
 // XCTAssertTrue failed

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```

func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
    return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```

func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'

func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'

func checkIfLastCharIsALetter(txt: String) -> Bool {
    if txt.isEmpty {
        return false
    }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    if txt.isEmpty {
        return false
    }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'

func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfAWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfAWord
}
```
return lastChar.isLetter && !lastChar.isPartOfAWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfAWord'

func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'

func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isWhitespace
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isWhitespace
}
```
 // XCTAssertTrue failed

func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'

func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isPartOfWord
}
```
return lastChar.isLetter && !lastChar.isPartOfWord // value of type 'String.Element' (aka 'Character') has no member 'isPartOfWord'

func checkIfLastCharIsALetter(txt: String) -> Bool {
    if txt.isEmpty {
        return false
    }
    let lastChar = txt.last!
    if lastChar.isLetter {
        let wordEndIndex = txt.lastIndex(of: " ") ?? txt.endIndex
        if wordEndIndex == txt.endIndex {
            return true
        } else {
            return false
        }
    } else {
        return false
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    if txt.isEmpty {
        return false
    }
    let lastChar = txt.last!
    if lastChar.isLetter {
        let wordEndIndex = txt.lastIndex(of: " ") ?? txt.endIndex
        if wordEndIndex == txt.endIndex {
            return true
        } else {
            return false
        }
    } else {
        return false
    }
}
```
 // XCTAssertTrue failed

func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isWhitespace
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
    guard !txt.isEmpty else { return false }
    let lastChar = txt.last!
    return lastChar.isLetter && !lastChar.isWhitespace
}
```
 // XCTAssertTrue failed

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            largestIndex = i - 1
        }
    }

    return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            largestIndex = i - 1
        }
    }

    return largestIndex
}
```
 // XCTAssertTrue failed

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }
    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i-1] {
            largestIndex = i - 1
        }
    }
    return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }
    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i-1] {
            largestIndex = i - 1
        }
    }
    return largestIndex
}
```
 // XCTAssertTrue failed

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            maxIndex = i - 1
        }
    }

    return maxIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            maxIndex = i - 1
        }
    }

    return maxIndex
}
```
 // XCTAssertTrue failed

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] <= arr[i-1] {
            maxIndex = i
        }
    }

    return maxIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] <= arr[i-1] {
            maxIndex = i
        }
    }

    return maxIndex
}
```

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] <= arr[i-1] {
            maxIndex = i
        }
    }

    return maxIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] <= arr[i-1] {
            maxIndex = i
        }
    }

    return maxIndex
}
```

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }
    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] <= arr[i-1] {
            maxIndex = i
        }
    }
    return maxIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }
    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] <= arr[i-1] {
            maxIndex = i
        }
    }
    return maxIndex
}
```

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            maxIndex = i - 1
        }
    }

    return maxIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var maxIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            maxIndex = i - 1
        }
    }

    return maxIndex
}
```
 // XCTAssertTrue failed

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            largestIndex = i - 1
        }
    }

    return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            largestIndex = i - 1
        }
    }

    return largestIndex
}
```
 // XCTAssertTrue failed

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] <= arr[i - 1] {
            largestIndex = i
        }
    }

    return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }

    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] <= arr[i - 1] {
            largestIndex = i
        }
    }

    return largestIndex
}
```

func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }
    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            largestIndex = i - 1
        }
    }
    return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
    guard arr.count > 1 else { return -1 }
    var largestIndex = -1
    for i in 1..<arr.count {
        if arr[i] < arr[i - 1] {
            largestIndex = i - 1
        }
    }
    return largestIndex
}
```
 // XCTAssertTrue failed

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for num in lst {
        if num < 0 {
            if largestNegative == nil || num > largestNegative! {
                largestNegative = num
            }
        } else if num > 0 {
            if smallestPositive == nil || num < smallestPositive! {
                smallestPositive = num
            }
        }
    }

    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for num in lst {
        if num < 0 {
            if largestNegative == nil || num > largestNegative! {
                largestNegative = num
            }
        } else if num > 0 {
            if smallestPositive == nil || num < smallestPositive! {
                smallestPositive = num
            }
        }
    }

    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil
    
    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }
    
    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil
    
    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }
    
    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for num in lst {
        if num < 0 {
            if largestNegative == nil || num > largestNegative! {
                largestNegative = num
            }
        } else if num > 0 {
            if smallestPositive == nil || num < smallestPositive! {
                smallestPositive = num
            }
        }
    }

    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for num in lst {
        if num < 0 {
            if largestNegative == nil || num > largestNegative! {
                largestNegative = num
            }
        } else if num > 0 {
            if smallestPositive == nil || num < smallestPositive! {
                smallestPositive = num
            }
        }
    }

    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil
    
    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }
    
    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil
    
    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }
    
    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil
    
    for num in lst {
        if num < 0 {
            if largestNegative == nil || num > largestNegative! {
                largestNegative = num
            }
        } else if num > 0 {
            if smallestPositive == nil || num < smallestPositive! {
                smallestPositive = num
            }
        }
    }
    
    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil
    
    for num in lst {
        if num < 0 {
            if largestNegative == nil || num > largestNegative! {
                largestNegative = num
            }
        } else if num > 0 {
            if smallestPositive == nil || num < smallestPositive! {
                smallestPositive = num
            }
        }
    }
    
    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
```

func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
    var largestNegative: Int? = nil
    var smallestPositive: Int? = nil

    for element in lst {
        if element < 0 {
            if largestNegative == nil || element > largestNegative! {
                largestNegative = element
            }
        } else if element > 0 {
            if smallestPositive == nil || element < smallestPositive! {
                smallestPositive = element
            }
        }
    }

    return (largestNegative, smallestPositive)
}
```

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case let (.intValue(a), .intValue(b)):
        return a > b ? a : b
    case let (.doubleValue(a), .doubleValue(b)):
        return a > b ? a : b
    case let (.stringValue(a), .stringValue(b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case let (.intValue(a), .intValue(b)):
        return a > b ? a : b
    case let (.doubleValue(a), .doubleValue(b)):
        return a > b ? a : b
    case let (.stringValue(a), .stringValue(b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    default:
        return nil
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.intValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.intValue(let a), .stringValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .stringValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
    case intValue(Int)
    case doubleValue(Double)
    case stringValue(String)
}

func compareOne(a: Value, b: Value) -> Value? {
    switch (a, b) {
    case (.intValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.intValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.intValue(let a), .stringValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.doubleValue(let a), .stringValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .intValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .doubleValue(let b)):
        return a > b ? a : b
    case (.stringValue(let a), .stringValue(let b)):
        return a > b ? a : b
    }
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert value of type 'Double' to expected argument type 'Int'
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert value of type 'String' to expected argument type 'Int'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert value of type 'Double' to expected argument type 'Int'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // binary operator '>' cannot be applied to operands of type 'Double' and 'String'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert value of type 'String' to expected argument type 'Int'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
return a > b ? a : b // binary operator '>' cannot be applied to operands of type 'String' and 'Double'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
    var sum = 0
    for i in 1...n {
        if i % 2 == 0 {
            sum += i
        }
    }
    return sum == n
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    guard n > 0 else { return 1 }
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    guard n > 0 else { return 1 }
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func specialFactorial(n: Int) -> Int {
    guard n > 0 else { return 1 }
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
    guard n > 0 else { return 1 }
    var result = 1
    for i in 1...n {
        result *= i
    }
    return result
}
```
 // XCTAssertTrue failed

func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'

func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'

func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'

func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'

func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
```
 // XCTAssertTrue failed

func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    var result = ""
    for char in text {
        if char == " " {
            result += "_"
        } else {
            result += char
        }
    }
    return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'

func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
```
 // XCTAssertTrue failed

func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
```
 // XCTAssertTrue failed

func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
```
 // XCTAssertTrue failed

func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores, 
and if a string has more than 2 consecutive spaces, 
then replace all consecutive spaces with - 
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
    return text.replacingOccurrences(of: " ", with: "_")
        .replacingOccurrences(of: "  ", with: "-")
}
```
 // XCTAssertTrue failed

func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    if prefix.count > 3 { return "No" }
    if !prefix.hasPrefix(where: { $0.isLetter }) { return "No" }
    if !["txt", "exe", "dll"].contains(suffix) { return "No" }
    
    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    if prefix.count > 3 { return "No" }
    if !prefix.hasPrefix(where: { $0.isLetter }) { return "No" }
    if !["txt", "exe", "dll"].contains(suffix) { return "No" }
    
    return "Yes"
}
```
if !prefix.hasPrefix(where: { $0.isLetter }) { return "No" } // extraneous argument label 'where:' in call
if !prefix.hasPrefix(where: { $0.isLetter }) { return "No" } // type '(_) -> _' cannot conform to 'StringProtocol'

func fileNameCheck(fileName: String) -> String {
    // Check if the file name contains more than three digits
    if fileName.count > 3 {
        return "No"
    }

    // Check if the file name contains exactly one dot
    if fileName.components(separatedBy: ".").count != 2 {
        return "No"
    }

    // Check if the substring before the dot is not empty and starts with a letter
    let substringBeforeDot = fileName.components(separatedBy: ".")[0]
    if substringBeforeDot.isEmpty || !substringBeforeDot.hasPrefix(Character("a")...Character("z")) {
        return "No"
    }

    // Check if the substring after the dot is one of the allowed extensions
    let substringAfterDot = fileName.components(separatedBy: ".")[1]
    if substringAfterDot != "txt" && substringAfterDot != "exe" && substringAfterDot != "dll" {
        return "No"
    }

    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    // Check if the file name contains more than three digits
    if fileName.count > 3 {
        return "No"
    }

    // Check if the file name contains exactly one dot
    if fileName.components(separatedBy: ".").count != 2 {
        return "No"
    }

    // Check if the substring before the dot is not empty and starts with a letter
    let substringBeforeDot = fileName.components(separatedBy: ".")[0]
    if substringBeforeDot.isEmpty || !substringBeforeDot.hasPrefix(Character("a")...Character("z")) {
        return "No"
    }

    // Check if the substring after the dot is one of the allowed extensions
    let substringAfterDot = fileName.components(separatedBy: ".")[1]
    if substringAfterDot != "txt" && substringAfterDot != "exe" && substringAfterDot != "dll" {
        return "No"
    }

    return "Yes"
}
```
if substringBeforeDot.isEmpty || !substringBeforeDot.hasPrefix(Character("a")...Character("z")) { // cannot convert value of type 'ClosedRange<Character>' to expected argument type 'String'

func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3, prefix.allSatisfy({ $0.isNumber }) else { return "No" }
    guard suffix.count == 3, suffix.allSatisfy({ $0.isLowercaseLetter || $0.isUppercaseLetter }) else { return "No" }
    
    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3, prefix.allSatisfy({ $0.isNumber }) else { return "No" }
    guard suffix.count == 3, suffix.allSatisfy({ $0.isLowercaseLetter || $0.isUppercaseLetter }) else { return "No" }
    
    return "Yes"
}
```
guard suffix.count == 3, suffix.allSatisfy({ $0.isLowercaseLetter || $0.isUppercaseLetter }) else { return "No" } // value of type 'String.Element' (aka 'Character') has no member 'isLowercaseLetter'
guard suffix.count == 3, suffix.allSatisfy({ $0.isLowercaseLetter || $0.isUppercaseLetter }) else { return "No" } // value of type 'String.Element' (aka 'Character') has no member 'isUppercaseLetter'

func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    let prefix = components[0]
    let suffix = components[1]
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter == true else { return "No" }
    guard suffix == "txt" || suffix == "exe" || suffix == "dll" else { return "No" }
    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    let prefix = components[0]
    let suffix = components[1]
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter == true else { return "No" }
    guard suffix == "txt" || suffix == "exe" || suffix == "dll" else { return "No" }
    return "Yes"
}
```
 // XCTAssertTrue failed

func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter ?? false else { return "No" }
    guard suffix.count == 3 else { return "No" }
    guard suffix.first?.isLetter ?? false else { return "No" }
    
    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter ?? false else { return "No" }
    guard suffix.count == 3 else { return "No" }
    guard suffix.first?.isLetter ?? false else { return "No" }
    
    return "Yes"
}
```
 // XCTAssertTrue failed

func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter ?? false else { return "No" }
    guard suffix == "txt" || suffix == "exe" || suffix == "dll" else { return "No" }
    
    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter ?? false else { return "No" }
    guard suffix == "txt" || suffix == "exe" || suffix == "dll" else { return "No" }
    
    return "Yes"
}
```
 // XCTAssertTrue failed

func fileNameCheck(fileName: String) -> String {
    // Check if the file name contains more than three digits
    if fileName.count > 3 {
        return "No"
    }

    // Check if the file name contains exactly one dot
    if fileName.filter { $0 == "." }.count != 1 {
        return "No"
    }

    // Check if the substring before the dot is not empty and starts with a letter
    let substringBeforeDot = fileName.components(separatedBy: ".").first!
    if substringBeforeDot.isEmpty || !substringBeforeDot.first!.isLetter {
        return "No"
    }

    // Check if the substring after the dot is one of the allowed extensions
    let substringAfterDot = fileName.components(separatedBy: ".").last!
    if !["txt", "exe", "dll"].contains(substringAfterDot) {
        return "No"
    }

    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    // Check if the file name contains more than three digits
    if fileName.count > 3 {
        return "No"
    }

    // Check if the file name contains exactly one dot
    if fileName.filter { $0 == "." }.count != 1 {
        return "No"
    }

    // Check if the substring before the dot is not empty and starts with a letter
    let substringBeforeDot = fileName.components(separatedBy: ".").first!
    if substringBeforeDot.isEmpty || !substringBeforeDot.first!.isLetter {
        return "No"
    }

    // Check if the substring after the dot is one of the allowed extensions
    let substringAfterDot = fileName.components(separatedBy: ".").last!
    if !["txt", "exe", "dll"].contains(substringAfterDot) {
        return "No"
    }

    return "Yes"
}
```
if fileName.filter { $0 == "." }.count != 1 { // trailing closure in this context is confusable with the body of the statement; pass as a parenthesized argument to silence this warning
 // XCTAssertTrue failed

func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter ?? false else { return "No" }
    guard suffix.count == 3 else { return "No" }
    guard suffix.first?.isLetter ?? false else { return "No" }
    
    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter ?? false else { return "No" }
    guard suffix.count == 3 else { return "No" }
    guard suffix.first?.isLetter ?? false else { return "No" }
    
    return "Yes"
}
```
 // XCTAssertTrue failed

func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    let prefix = components[0]
    let suffix = components[1]
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter == true else { return "No" }
    guard suffix == "txt" || suffix == "exe" || suffix == "dll" else { return "No" }
    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    let prefix = components[0]
    let suffix = components[1]
    guard prefix.count <= 3 else { return "No" }
    guard prefix.first?.isLetter == true else { return "No" }
    guard suffix == "txt" || suffix == "exe" || suffix == "dll" else { return "No" }
    return "Yes"
}
```
 // XCTAssertTrue failed

func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3, prefix.first?.isLetter == true else { return "No" }
    guard suffix == "txt" || suffix == "exe" || suffix == "dll" else { return "No" }
    
    return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions 
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from 
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
    let components = fileName.components(separatedBy: ".")
    guard components.count == 2 else { return "No" }
    
    let prefix = components[0]
    let suffix = components[1]
    
    guard prefix.count <= 3, prefix.first?.isLetter == true else { return "No" }
    guard suffix == "txt" || suffix == "exe" || suffix == "dll" else { return "No" }
    
    return "Yes"
}
```
 // XCTAssertTrue failed

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2...Int(sqrt(Double(n))) {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2...Int(sqrt(Double(n))) {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2...Int(sqrt(Double(n))) {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
    let words = sentence.split(separator: " ")
    var primeWords = [String]()
    for word in words {
        if isPrime(word.count) {
            primeWords.append(word)
        }
    }
    return primeWords.joined(separator: " ")
}

func isPrime(_ n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
primeWords.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!

    let product = xNumerator * nDenominator
    let gcd = product.gcd(nNumerator * xDenominator)

    return gcd == 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!

    let product = xNumerator * nDenominator
    let gcd = product.gcd(nNumerator * xDenominator)

    return gcd == 1
}
```
let gcd = product.gcd(nNumerator * xDenominator) // value of type 'Int' has no member 'gcd'

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!

    let product = xNumerator * nDenominator
    let quotient = xDenominator * nNumerator

    return product == quotient
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!

    let product = xNumerator * nDenominator
    let quotient = xDenominator * nNumerator

    return product == quotient
}
```
 // XCTAssertTrue failed

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!

    let product = xNumerator * nNumerator
    let gcd = gcd(xDenominator, nDenominator)

    return product % gcd == 0
}

func gcd(_ a: Int, _ b: Int) -> Int {
    if b == 0 {
        return a
    } else {
        return gcd(b, a % b)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!

    let product = xNumerator * nNumerator
    let gcd = gcd(xDenominator, nDenominator)

    return product % gcd == 0
}

func gcd(_ a: Int, _ b: Int) -> Int {
    if b == 0 {
        return a
    } else {
        return gcd(b, a % b)
    }
}
```
 // XCTAssertTrue failed

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nDenominator
    return product % xDenominator == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nDenominator
    return product % xDenominator == 0
}
```
let nNumerator = Int(n.components(separatedBy: "/")[0])! // initialization of immutable value 'nNumerator' was never used; consider replacing with assignment to '_' or removing it
 // XCTAssertTrue failed

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!

    let product = xNumerator * nDenominator * nNumerator * xDenominator

    return product % 1 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!

    let product = xNumerator * nDenominator * nNumerator * xDenominator

    return product % 1 == 0
}
```
 // XCTAssertTrue failed

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nDenominator
    return product % xDenominator == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nDenominator
    return product % xDenominator == 0
}
```
let nNumerator = Int(n.components(separatedBy: "/")[0])! // initialization of immutable value 'nNumerator' was never used; consider replacing with assignment to '_' or removing it
 // XCTAssertTrue failed

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nDenominator
    return product % xDenominator == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nDenominator
    return product % xDenominator == 0
}
```
let nNumerator = Int(n.components(separatedBy: "/")[0])! // initialization of immutable value 'nNumerator' was never used; consider replacing with assignment to '_' or removing it
 // XCTAssertTrue failed

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nNumerator
    let gcd = gcd(xDenominator, nDenominator)
    return product % gcd == 0
}

func gcd(_ a: Int, _ b: Int) -> Int {
    if b == 0 {
        return a
    } else {
        return gcd(b, a % b)
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nNumerator
    let gcd = gcd(xDenominator, nDenominator)
    return product % gcd == 0
}

func gcd(_ a: Int, _ b: Int) -> Int {
    if b == 0 {
        return a
    } else {
        return gcd(b, a % b)
    }
}
```
 // XCTAssertTrue failed

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    return (xNumerator * nDenominator) % (xDenominator * nNumerator) == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    return (xNumerator * nDenominator) % (xDenominator * nNumerator) == 0
}
```
 // XCTAssertTrue failed

func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nDenominator * nNumerator
    return product % (xDenominator * nDenominator) == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
    let xNumerator = Int(x.components(separatedBy: "/")[0])!
    let xDenominator = Int(x.components(separatedBy: "/")[1])!
    let nNumerator = Int(n.components(separatedBy: "/")[0])!
    let nDenominator = Int(n.components(separatedBy: "/")[1])!
    let product = xNumerator * nDenominator * nNumerator
    return product % (xDenominator * nDenominator) == 0
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted(by: { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    })
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted(by: { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    })
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
    return nums.sorted { (a, b) -> Bool in
        let sumA = sumOfDigits(a)
        let sumB = sumOfDigits(b)
        if sumA == sumB {
            return a < b
        } else {
            return sumA < sumB
        }
    }
}

func sumOfDigits(_ num: Int) -> Int {
    var sum = 0
    var num = num
    while num > 0 {
        sum += num % 10
        num /= 10
    }
    return sum
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && $0.firstDigit.isOdd && $0.lastDigit.isOdd }.count
}

extension Int {
    var firstDigit: Int {
        return self / 10
    }

    var lastDigit: Int {
        return self % 10
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && $0.firstDigit.isOdd && $0.lastDigit.isOdd }.count
}

extension Int {
    var firstDigit: Int {
        return self / 10
    }

    var lastDigit: Int {
        return self % 10
    }
}
```
return nums.filter { $0 > 10 && $0.firstDigit.isOdd && $0.lastDigit.isOdd }.count // trailing closure passed to parameter of type 'Predicate<Int>' that does not accept a closure

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns 
the number of elements in the array that are greater than 10 and both 
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
    return nums.filter { $0 > 10 && ($0 % 10 == 1 || $0 % 10 == 3 || $0 % 10 == 5 || $0 % 10 == 7 || $0 % 10 == 9) }.count
}
```
 // XCTAssertTrue failed

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
    var a = [Int](repeating: 0, count: n)
    for i in 1...n {
        a[i - 1] = i * i - i + 1
    }
    var count = 0
    for i in 1...n - 2 {
        for j in i + 1...n - 1 {
            for k in j + 1...n {
                if a[i] + a[j] + a[k] % 3 == 0 {
                    count += 1
                }
            }
        }
    }
    return count
}
```
 // Fatal error: Index out of range

func sortedListSum(lst: [String]) -> [String] {
    // Filter out strings with odd lengths
    let filtered = lst.filter { $0.count % 2 == 0 }
    
    // Sort the array by length, then alphabetically
    let sorted = filtered.sorted { $0.count < $1.count }
    
    return sorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    // Filter out strings with odd lengths
    let filtered = lst.filter { $0.count % 2 == 0 }
    
    // Sort the array by length, then alphabetically
    let sorted = filtered.sorted { $0.count < $1.count }
    
    return sorted
}
```
 // XCTAssertTrue failed

func sortedListSum(lst: [String]) -> [String] {
    return lst.filter { $0.count % 2 == 0 }
              .sorted { $0.count < $1.count }
              .sorted { $0 < $1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    return lst.filter { $0.count % 2 == 0 }
              .sorted { $0.count < $1.count }
              .sorted { $0 < $1 }
}
```
 // XCTAssertTrue failed

func sortedListSum(lst: [String]) -> [String] {
    var result = [String]()
    for word in lst {
        if word.count % 2 == 0 {
            result.append(word)
        }
    }
    result.sort { $0.count < $1.count }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    var result = [String]()
    for word in lst {
        if word.count % 2 == 0 {
            result.append(word)
        }
    }
    result.sort { $0.count < $1.count }
    return result
}
```
 // XCTAssertTrue failed

func sortedListSum(lst: [String]) -> [String] {
    // Filter out strings with odd lengths
    let filtered = lst.filter { $0.count % 2 == 0 }

    // Sort the array by length, then alphabetically
    let sorted = filtered.sorted { $0.count < $1.count || $0.count == $1.count && $0 < $1 }

    return sorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    // Filter out strings with odd lengths
    let filtered = lst.filter { $0.count % 2 == 0 }

    // Sort the array by length, then alphabetically
    let sorted = filtered.sorted { $0.count < $1.count || $0.count == $1.count && $0 < $1 }

    return sorted
}
```

func sortedListSum(lst: [String]) -> [String] {
    let oddLengths = lst.filter { $0.count % 2 == 1 }
    let sorted = oddLengths.sorted { $0.count < $1.count }
    return sorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    let oddLengths = lst.filter { $0.count % 2 == 1 }
    let sorted = oddLengths.sorted { $0.count < $1.count }
    return sorted
}
```
 // XCTAssertTrue failed

func sortedListSum(lst: [String]) -> [String] {
    var result = [String]()
    for word in lst {
        if word.count % 2 == 0 {
            result.append(word)
        }
    }
    return result.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    var result = [String]()
    for word in lst {
        if word.count % 2 == 0 {
            result.append(word)
        }
    }
    return result.sorted { $0.count < $1.count }
}
```
 // XCTAssertTrue failed

func sortedListSum(lst: [String]) -> [String] {
    return lst.filter { $0.count % 2 == 0 }
        .sorted { $0.count < $1.count }
        .sorted { $0 < $1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    return lst.filter { $0.count % 2 == 0 }
        .sorted { $0.count < $1.count }
        .sorted { $0 < $1 }
}
```
 // XCTAssertTrue failed

func sortedListSum(lst: [String]) -> [String] {
    // Filter out strings with odd lengths
    let filtered = lst.filter { $0.count % 2 == 0 }
    
    // Sort the array by length, then alphabetically
    let sorted = filtered.sorted { $0.count < $1.count }
    
    return sorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    // Filter out strings with odd lengths
    let filtered = lst.filter { $0.count % 2 == 0 }
    
    // Sort the array by length, then alphabetically
    let sorted = filtered.sorted { $0.count < $1.count }
    
    return sorted
}
```
 // XCTAssertTrue failed

func sortedListSum(lst: [String]) -> [String] {
    return lst.filter { $0.count % 2 == 0 }
        .sorted { $0.count < $1.count }
        .sorted { $0 < $1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    return lst.filter { $0.count % 2 == 0 }
        .sorted { $0.count < $1.count }
        .sorted { $0 < $1 }
}
```
 // XCTAssertTrue failed

func sortedListSum(lst: [String]) -> [String] {
    return lst.filter { $0.count % 2 == 0 }
              .sorted { $0.count < $1.count }
              .sorted { $0 < $1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
    return lst.filter { $0.count % 2 == 0 }
              .sorted { $0.count < $1.count }
              .sorted { $0 < $1 }
}
```
 // XCTAssertTrue failed

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
if isPrime(n) { // missing argument label 'n:' in call

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
if isPrime(n) { // missing argument label 'n:' in call

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
if isPrime(n) { // missing argument label 'n:' in call

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
if isPrime(n) { // missing argument label 'n:' in call

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2...Int(sqrt(Double(n))) {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2...Int(sqrt(Double(n))) {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
if isPrime(n) { // missing argument label 'n:' in call

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
if isPrime(n) { // missing argument label 'n:' in call

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(n) { // missing argument label 'n:' in call

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    }
    for i in 2..<n {
        if n % i == 0 {
            return false
        }
    }
    return true
}
```
if isPrime(n) { // missing argument label 'n:' in call

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if n.isPrime {
        return x
    } else {
        return y
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if n.isPrime {
        return x
    } else {
        return y
    }
}
```
if n.isPrime { // value of type 'Int' has no member 'isPrime'

func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is 
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
    if isPrime(n) {
        return x
    } else {
        return y
    }
}

func isPrime(n: Int) -> Bool {
    if n <= 1 {
        return false
    } else if n == 2 {
        return true
    } else {
        for i in 2..<n {
            if n % i == 0 {
                return false
            }
        }
        return true
    }
}
```
if isPrime(n) { // missing argument label 'n:' in call

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst where num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
        sum += num * num
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst where num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
        sum += num * num
    }
    return sum
}
```
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.isInteger && num.isPositive && num.isOdd {
            sum += num * num
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.isInteger && num.isPositive && num.isOdd {
            sum += num * num
        }
    }
    return sum
}
```
if num.isInteger && num.isPositive && num.isOdd { // value of type 'Double' has no member 'isPositive'
if num.isInteger && num.isPositive && num.isOdd { // value of type 'Double' has no member 'isInteger'
if num.isInteger && num.isPositive && num.isOdd { // value of type 'Double' has no member 'isOdd'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst where num.truncatingRemainder(dividingBy: 2) == 1 {
        sum += num * num
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst where num.truncatingRemainder(dividingBy: 2) == 1 {
        sum += num * num
    }
    return sum
}
```
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst where num.truncatingRemainder(dividingBy: 2) == 1 {
        sum += num * num
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst where num.truncatingRemainder(dividingBy: 2) == 1 {
        sum += num * num
    }
    return sum
}
```
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.isInteger && num.isPositive && num.isOdd {
            sum += num * num
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.isInteger && num.isPositive && num.isOdd {
            sum += num * num
        }
    }
    return sum
}
```
if num.isInteger && num.isPositive && num.isOdd { // value of type 'Double' has no member 'isPositive'
if num.isInteger && num.isPositive && num.isOdd { // value of type 'Double' has no member 'isInteger'
if num.isInteger && num.isPositive && num.isOdd { // value of type 'Double' has no member 'isOdd'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.isInteger && num > 0 && num.isOdd {
            sum += num * num
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.isInteger && num > 0 && num.isOdd {
            sum += num * num
        }
    }
    return sum
}
```
if num.isInteger && num > 0 && num.isOdd { // value of type 'Double' has no member 'isOdd'
if num.isInteger && num > 0 && num.isOdd { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.truncatingRemainder(dividingBy: 2) == 1 && num >= 0 {
            sum += num * num
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.truncatingRemainder(dividingBy: 2) == 1 && num >= 0 {
            sum += num * num
        }
    }
    return sum
}
```
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst where num.isInteger && num > 0 {
        sum += num * num
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst where num.isInteger && num > 0 {
        sum += num * num
    }
    return sum
}
```
for num in lst where num.isInteger && num > 0 { // value of type 'Double' has no member 'isInteger'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.isInteger && num > 0 {
            sum += num * num
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num.isInteger && num > 0 {
            sum += num * num
        }
    }
    return sum
}
```
if num.isInteger && num > 0 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
            sum += num * num
        }
    }
    return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
    var sum = 0
    for num in lst {
        if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
            sum += num * num
        }
    }
    return sum
}
```
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'

func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for (index, score) in game.enumerated() {
        let guess = guess[index]
        if score == guess {
            result.append(0)
        } else {
            result.append(abs(score - guess))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for (index, score) in game.enumerated() {
        let guess = guess[index]
        if score == guess {
            result.append(0)
        } else {
            result.append(abs(score - guess))
        }
    }
    return result
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var differences = [Int]()
    for (index, score) in game.enumerated() {
        let guess = guess[index]
        let difference = abs(guess - score)
        differences.append(difference)
    }
    return differences
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var differences = [Int]()
    for (index, score) in game.enumerated() {
        let guess = guess[index]
        let difference = abs(guess - score)
        differences.append(difference)
    }
    return differences
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int](repeating: 0, count: game.count)
    for i in 0..<game.count {
        result[i] = abs(game[i] - guess[i])
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int](repeating: 0, count: game.count)
    for i in 0..<game.count {
        result[i] = abs(game[i] - guess[i])
    }
    return result
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for i in 0..<game.count {
        let diff = abs(game[i] - guess[i])
        result.append(diff)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for i in 0..<game.count {
        let diff = abs(game[i] - guess[i])
        result.append(diff)
    }
    return result
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var differences: [Int] = []
    for (index, score) in game.enumerated() {
        let guess = guess[index]
        let difference = abs(guess - score)
        differences.append(difference)
    }
    return differences
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var differences: [Int] = []
    for (index, score) in game.enumerated() {
        let guess = guess[index]
        let difference = abs(guess - score)
        differences.append(difference)
    }
    return differences
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for i in 0..<game.count {
        if game[i] == guess[i] {
            result.append(0)
        } else {
            result.append(abs(game[i] - guess[i]))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for i in 0..<game.count {
        if game[i] == guess[i] {
            result.append(0)
        } else {
            result.append(abs(game[i] - guess[i]))
        }
    }
    return result
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var differences: [Int] = []
    for (index, score) in game.enumerated() {
        let guess = guess[index]
        let difference = abs(guess - score)
        differences.append(difference)
    }
    return differences
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var differences: [Int] = []
    for (index, score) in game.enumerated() {
        let guess = guess[index]
        let difference = abs(guess - score)
        differences.append(difference)
    }
    return differences
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for i in 0..<game.count {
        let score = game[i]
        let guess = guess[i]
        if score == guess {
            result.append(0)
        } else {
            result.append(abs(score - guess))
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for i in 0..<game.count {
        let score = game[i]
        let guess = guess[i]
        if score == guess {
            result.append(0)
        } else {
            result.append(abs(score - guess))
        }
    }
    return result
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var differences: [Int] = []
    for i in 0..<game.count {
        let difference = abs(game[i] - guess[i])
        differences.append(difference)
    }
    return differences
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var differences: [Int] = []
    for i in 0..<game.count {
        let difference = abs(game[i] - guess[i])
        differences.append(difference)
    }
    return differences
}
```

func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for i in 0..<game.count {
        let diff = abs(game[i] - guess[i])
        result.append(diff)
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match. 
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
    var result = [Int]()
    for i in 0..<game.count {
        let diff = abs(game[i] - guess[i])
        result.append(diff)
    }
    return result
}
```

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String = ""
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters()
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension)"
}

extension String {
    func countUppercaseLetters() -> Int {
        return self.filter { $0.isUppercase }.count
    }

    func countLowercaseLetters() -> Int {
        return self.filter { $0.isLowercase }.count
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String = ""
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters()
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension)"
}

extension String {
    func countUppercaseLetters() -> Int {
        return self.filter { $0.isUppercase }.count
    }

    func countLowercaseLetters() -> Int {
        return self.filter { $0.isLowercase }.count
    }
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected type name in extension declaration
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected type name in extension declaration
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected initial value after '='
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected '{' in extension
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // declaration is only valid at file scope
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected '{' in extension
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = extensionStrength // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength: Double = -Double.infinity

    for extension in extensions {
        let strength = Double(extension.filter { $0.isUppercase }).count - Double(extension.filter { $0.isLowercase }).count
        if strength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = strength
        }
    }

    return className + "." + strongestExtension!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength: Double = -Double.infinity

    for extension in extensions {
        let strength = Double(extension.filter { $0.isUppercase }).count - Double(extension.filter { $0.isLowercase }).count
        if strength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = strength
        }
    }

    return className + "." + strongestExtension!
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let strength = Double(extension.filter { $0.isUppercase }).count - Double(extension.filter { $0.isLowercase }).count // consecutive statements on a line must be separated by ';'
let strength = Double(extension.filter { $0.isUppercase }).count - Double(extension.filter { $0.isLowercase }).count // expected type name in extension declaration
let strength = Double(extension.filter { $0.isUppercase }).count - Double(extension.filter { $0.isLowercase }).count // declaration is only valid at file scope
let strength = Double(extension.filter { $0.isUppercase }).count - Double(extension.filter { $0.isLowercase }).count // expected expression in list of expressions
let strength = Double(extension.filter { $0.isUppercase }).count - Double(extension.filter { $0.isLowercase }).count // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = strength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = strength // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength = -1

    for extension in extensions {
        let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase })
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension ?? "")"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength = -1

    for extension in extensions {
        let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase })
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension ?? "")"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected '{' in extension
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // declaration is only valid at file scope
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected type name in extension declaration
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected type name in extension declaration
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected initial value after '='
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // declaration is only valid at file scope
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = extensionStrength // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String = ""
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase })
        if strength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = strength
        }
    }

    return "\(className).\(strongestExtension)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String = ""
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase })
        if strength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = strength
        }
    }

    return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected type name in extension declaration
let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // consecutive statements on a line must be separated by ';'
let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // declaration is only valid at file scope
let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected type name in extension declaration
let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // declaration is only valid at file scope
let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected '{' in extension
let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected initial value after '='
let strength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = strength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = strength // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength: Int?

    for extension in extensions {
        let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase }
        if strongestExtensionStrength == nil || extensionStrength > strongestExtensionStrength! {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return className + "." + strongestExtension!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength: Int?

    for extension in extensions {
        let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase }
        if strongestExtensionStrength == nil || extensionStrength > strongestExtensionStrength! {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return className + "." + strongestExtension!
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected '{' in extension
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected type name in extension declaration
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // declaration is only valid at file scope
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected type name in extension declaration
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected '{' in extension
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected initial value after '='
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = extensionStrength // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase }
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension ?? "")"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase }
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension ?? "")"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected '{' in extension
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected type name in extension declaration
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // declaration is only valid at file scope
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected type name in extension declaration
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected '{' in extension
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // expected initial value after '='
let extensionStrength = extension.count { $0.isUppercase } - extension.count { $0.isLowercase } // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = extensionStrength // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String = ""
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters()
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension)"
}

extension String {
    func countUppercaseLetters() -> Int {
        return self.filter { $0.isUppercase }.count
    }

    func countLowercaseLetters() -> Int {
        return self.filter { $0.isLowercase }.count
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String = ""
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters()
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension)"
}

extension String {
    func countUppercaseLetters() -> Int {
        return self.filter { $0.isUppercase }.count
    }

    func countLowercaseLetters() -> Int {
        return self.filter { $0.isLowercase }.count
    }
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected type name in extension declaration
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected type name in extension declaration
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected initial value after '='
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected '{' in extension
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // declaration is only valid at file scope
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // expected '{' in extension
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.countUppercaseLetters() - extension.countLowercaseLetters() // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = extensionStrength // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength = -1

    for extension in extensions {
        let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase })
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension ?? "")"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String?
    var strongestExtensionStrength = -1

    for extension in extensions {
        let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase })
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        }
    }

    return "\(className).\(strongestExtension ?? "")"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected '{' in extension
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // declaration is only valid at file scope
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected type name in extension declaration
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected type name in extension declaration
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected initial value after '='
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // declaration is only valid at file scope
let extensionStrength = extension.count(where: { $0.isUppercase }) - extension.count(where: { $0.isLowercase }) // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = extensionStrength // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String = ""
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        } else if extensionStrength == strongestExtensionStrength {
            if extension < strongestExtension {
                strongestExtension = extension
            }
        }
    }

    return "\(className).\(strongestExtension)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    var strongestExtension: String = ""
    var strongestExtensionStrength: Int = 0

    for extension in extensions {
        let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count
        if extensionStrength > strongestExtensionStrength {
            strongestExtension = extension
            strongestExtensionStrength = extensionStrength
        } else if extensionStrength == strongestExtensionStrength {
            if extension < strongestExtension {
                strongestExtension = extension
            }
        }
    }

    return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count // expected initial value after '='
let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count // expected '{' in extension
let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count // expected '{' in extension
let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let extensionStrength = extension.filter { $0.isUppercase }.count - extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = extensionStrength // expected '{' in extension
if extension < strongestExtension { // declaration is only valid at file scope
if extension < strongestExtension { // expected type name in extension declaration
if extension < strongestExtension { // expected expression, var, or let in 'if' condition
if extension < strongestExtension { // expected '{' in extension

extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    let classAndExtension = className + "." + extensions.first { $0.count { $0.isUppercase } - $0.count { $0.isLowercase } == 0 }
    return classAndExtension
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters 
in the extension's name, the strength is given by the fraction CAP - SM. 
You should find the strongest extension and return a string in this 
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension 
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
    let classAndExtension = className + "." + extensions.first { $0.count { $0.isUppercase } - $0.count { $0.isLowercase } == 0 }
    return classAndExtension
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let classAndExtension = className + "." + extensions.first { $0.count { $0.isUppercase } - $0.count { $0.isLowercase } == 0 } // cannot call value of non-function type 'String?'

func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLen = bChars.count
    for i in 0..<aChars.count - bLen + 1 {
        let subArray = aChars[i..<i+bLen]
        if subArray == bChars {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLen = bChars.count
    for i in 0..<aChars.count - bLen + 1 {
        let subArray = aChars[i..<i+bLen]
        if subArray == bChars {
            return true
        }
    }
    return false
}
```
if subArray == bChars { // binary operator '==' cannot be applied to operands of type 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '[String.Element]' (aka 'Array<Character>')

func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLength = bChars.count
    for i in 0..<bLength {
        let bRotated = bChars.rotated(by: i)
        if aChars.contains(bRotated) {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLength = bChars.count
    for i in 0..<bLength {
        let bRotated = bChars.rotated(by: i)
        if aChars.contains(bRotated) {
            return true
        }
    }
    return false
}
```
let bRotated = bChars.rotated(by: i) // value of type '[String.Element]' (aka 'Array<Character>') has no member 'rotated'

func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLen = bChars.count
    for i in 0..<aChars.count - bLen + 1 {
        let sub = aChars[i..<i+bLen]
        if sub == bChars {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLen = bChars.count
    for i in 0..<aChars.count - bLen + 1 {
        let sub = aChars[i..<i+bLen]
        if sub == bChars {
            return true
        }
    }
    return false
}
```
if sub == bChars { // binary operator '==' cannot be applied to operands of type 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '[String.Element]' (aka 'Array<Character>')

func cycpatternCheck(a: String, b: String) -> Bool {
    let aLength = a.count
    let bLength = b.count
    if aLength < bLength {
        return false
    }
    for i in 0..<aLength - bLength + 1 {
        let substring = a[i..<i+bLength]
        if substring == b {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aLength = a.count
    let bLength = b.count
    if aLength < bLength {
        return false
    }
    for i in 0..<aLength - bLength + 1 {
        let substring = a[i..<i+bLength]
        if substring == b {
            return true
        }
    }
    return false
}
```
let substring = a[i..<i+bLength] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLength = bChars.count
    for i in 0..<aChars.count - bLength + 1 {
        let substring = aChars[i..<i+bLength]
        if substring == bChars {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLength = bChars.count
    for i in 0..<aChars.count - bLength + 1 {
        let substring = aChars[i..<i+bLength]
        if substring == bChars {
            return true
        }
    }
    return false
}
```
if substring == bChars { // binary operator '==' cannot be applied to operands of type 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '[String.Element]' (aka 'Array<Character>')

func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLength = bChars.count
    for i in 0..<bLength {
        let bRotated = bChars.dropFirst(i).appending(bChars.prefix(i))
        if a.contains(bRotated) {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLength = bChars.count
    for i in 0..<bLength {
        let bRotated = bChars.dropFirst(i).appending(bChars.prefix(i))
        if a.contains(bRotated) {
            return true
        }
    }
    return false
}
```
let bRotated = bChars.dropFirst(i).appending(bChars.prefix(i)) // reference to member 'appending' cannot be resolved without a contextual type

func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLen = bChars.count
    for i in 0..<aChars.count - bLen + 1 {
        var match = true
        for j in 0..<bLen {
            if aChars[i + j] != bChars[(j + 1) % bLen] {
                match = false
                break
            }
        }
        if match {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLen = bChars.count
    for i in 0..<aChars.count - bLen + 1 {
        var match = true
        for j in 0..<bLen {
            if aChars[i + j] != bChars[(j + 1) % bLen] {
                match = false
                break
            }
        }
        if match {
            return true
        }
    }
    return false
}
```
 // XCTAssertTrue failed

func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLen = bChars.count
    for i in 0..<aChars.count - bLen + 1 {
        let sub = aChars[i..<i+bLen]
        if sub == bChars {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aChars = Array(a)
    let bChars = Array(b)
    let bLen = bChars.count
    for i in 0..<aChars.count - bLen + 1 {
        let sub = aChars[i..<i+bLen]
        if sub == bChars {
            return true
        }
    }
    return false
}
```
if sub == bChars { // binary operator '==' cannot be applied to operands of type 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '[String.Element]' (aka 'Array<Character>')

func cycpatternCheck(a: String, b: String) -> Bool {
    let aLength = a.count
    let bLength = b.count
    if aLength < bLength {
        return false
    }
    for i in 0..<aLength - bLength + 1 {
        let substring = a[i..<i+bLength]
        if substring == b {
            return true
        }
    }
    return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let aLength = a.count
    let bLength = b.count
    if aLength < bLength {
        return false
    }
    for i in 0..<aLength - bLength + 1 {
        let substring = a[i..<i+bLength]
        if substring == b {
            return true
        }
    }
    return false
}
```
let substring = a[i..<i+bLength] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.

func cycpatternCheck(a: String, b: String) -> Bool {
    let bRotations = b.rotations()
    return a.contains(b) || bRotations.contains(where: { a.contains($0) })
}

extension String {
    func rotations() -> [String] {
        var rotations = [String]()
        for i in 0..<count {
            rotations.append(String(suffix(count - i)))
        }
        return rotations
    }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
    let bRotations = b.rotations()
    return a.contains(b) || bRotations.contains(where: { a.contains($0) })
}

extension String {
    func rotations() -> [String] {
        var rotations = [String]()
        for i in 0..<count {
            rotations.append(String(suffix(count - i)))
        }
        return rotations
    }
}
```
 // XCTAssertTrue failed

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for digit in String(num) {
        if digit.isEven {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }
    
    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for digit in String(num) {
        if digit.isEven {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }
    
    return (evenCount, oddCount)
}
```
if digit.isEven { // value of type 'Character' has no member 'isEven'

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for digit in String(num) {
        if digit.isEven {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }

    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for digit in String(num) {
        if digit.isEven {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }

    return (evenCount, oddCount)
}
```
if digit.isEven { // value of type 'Character' has no member 'isEven'

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    let absNum = abs(num)
    while absNum > 0 {
        let digit = absNum % 10
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
        absNum /= 10
    }
    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    let absNum = abs(num)
    while absNum > 0 {
        let digit = absNum % 10
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
        absNum /= 10
    }
    return (evenCount, oddCount)
}
```
absNum /= 10 // left side of mutating operator isn't mutable: 'absNum' is a 'let' constant

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for digit in String(num) {
        if digit.isMultiple(of: 2) {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }

    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0

    for digit in String(num) {
        if digit.isMultiple(of: 2) {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }

    return (evenCount, oddCount)
}
```
if digit.isMultiple(of: 2) { // value of type 'Character' has no member 'isMultiple'

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    let digits = String(num).map { Int(String($0))! }
    for digit in digits {
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }
    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    let digits = String(num).map { Int(String($0))! }
    for digit in digits {
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }
    return (evenCount, oddCount)
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    var absNum = abs(num)
    while absNum > 0 {
        if absNum % 10 % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
        absNum /= 10
    }
    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    var absNum = abs(num)
    while absNum > 0 {
        if absNum % 10 % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
        absNum /= 10
    }
    return (evenCount, oddCount)
}
```
 // XCTAssertTrue failed

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    var absNum = abs(num)
    while absNum > 0 {
        let digit = absNum % 10
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
        absNum /= 10
    }
    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    var absNum = abs(num)
    while absNum > 0 {
        let digit = absNum % 10
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
        absNum /= 10
    }
    return (evenCount, oddCount)
}
```
 // XCTAssertTrue failed

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    var absNum = abs(num)
    while absNum > 0 {
        let digit = absNum % 10
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
        absNum /= 10
    }
    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    var absNum = abs(num)
    while absNum > 0 {
        let digit = absNum % 10
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
        absNum /= 10
    }
    return (evenCount, oddCount)
}
```
 // XCTAssertTrue failed

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for digit in String(num).map({ Int(String($0))! }) {
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }
    
    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    
    for digit in String(num).map({ Int(String($0))! }) {
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }
    
    return (evenCount, oddCount)
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    let digits = String(num).map { Int(String($0))! }
    for digit in digits {
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }
    return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
    var evenCount = 0
    var oddCount = 0
    let digits = String(num).map { Int(String($0))! }
    for digit in digits {
        if digit % 2 == 0 {
            evenCount += 1
        } else {
            oddCount += 1
        }
    }
    return (evenCount, oddCount)
}
```
 // Fatal error: Unexpectedly found nil while unwrapping an Optional value

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit > 0 {
            romanNumeral += String(repeating: numeral, count: digit)
            number -= digit * value
        }
    }

    return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit > 0 {
            romanNumeral += String(repeating: numeral, count: digit)
            number -= digit * value
        }
    }

    return romanNumeral.lowercased()
}
```
number -= digit * value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumber = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumber += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumber.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumber = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumber += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumber.lowercased()
}
```
number %= value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        if digit == 4 || digit == 9 {
            romanNumeral += numeral
        } else if digit == 5 {
            romanNumeral += "V"
        } else if digit == 10 {
            romanNumeral += "X"
        } else {
            for _ in 1...digit {
                romanNumeral += numeral
            }
        }

        number %= value
    }

    return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        if digit == 4 || digit == 9 {
            romanNumeral += numeral
        } else if digit == 5 {
            romanNumeral += "V"
        } else if digit == 10 {
            romanNumeral += "X"
        } else {
            for _ in 1...digit {
                romanNumeral += numeral
            }
        }

        number %= value
    }

    return romanNumeral.lowercased()
}
```
number %= value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeralString = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumeralString += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumeralString.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeralString = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumeralString += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumeralString.lowercased()
}
```
number %= value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumeral += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumeral += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumeral.lowercased()
}
```
number %= value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumeral += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumeral += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumeral.lowercased()
}
```
number %= value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumeral += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumeral += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumeral.lowercased()
}
```
number %= value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumber = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumber += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumber.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumber = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        romanNumber += String(repeating: numeral, count: digit)
        number %= value
    }

    return romanNumber.lowercased()
}
```
number %= value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        if digit == 4 || digit == 9 {
            romanNumeral.append(numeral)
            romanNumeral.append(romanNumerals[index + 1])
        } else if digit == 5 {
            romanNumeral.append(numeral)
            romanNumeral.append(romanNumerals[index + 2])
        } else {
            for _ in 0..<digit {
                romanNumeral.append(numeral)
            }
        }

        number %= value
    }

    return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        if digit == 4 || digit == 9 {
            romanNumeral.append(numeral)
            romanNumeral.append(romanNumerals[index + 1])
        } else if digit == 5 {
            romanNumeral.append(numeral)
            romanNumeral.append(romanNumerals[index + 2])
        } else {
            for _ in 0..<digit {
                romanNumeral.append(numeral)
            }
        }

        number %= value
    }

    return romanNumeral.lowercased()
}
```
number %= value // left side of mutating operator isn't mutable: 'number' is a 'let' constant

func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        if digit == 4 || digit == 9 {
            romanNumeral += numeral
            continue
        }

        if digit == 5 {
            romanNumeral += numeral
            continue
        }

        if digit > 5 {
            romanNumeral += numeral + String(repeating: "V", count: digit - 5)
            continue
        }

        if digit < 5 {
            romanNumeral += String(repeating: "I", count: digit)
            continue
        }
    }

    return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
    let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
    var romanNumeral = ""

    for (index, numeral) in romanNumerals.enumerated() {
        let value = Int(pow(10, Double(index)))
        let digit = number / value

        if digit == 0 {
            continue
        }

        if digit == 4 || digit == 9 {
            romanNumeral += numeral
            continue
        }

        if digit == 5 {
            romanNumeral += numeral
            continue
        }

        if digit > 5 {
            romanNumeral += numeral + String(repeating: "V", count: digit - 5)
            continue
        }

        if digit < 5 {
            romanNumeral += String(repeating: "I", count: digit)
            continue
        }
    }

    return romanNumeral.lowercased()
}
```
 // XCTAssertTrue failed

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return a*a + b*b == c*c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return a*a + b*b == c*c
}
```
 // XCTAssertTrue failed

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
```

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
```

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a * a + b * b == c * c) || (b * b + c * c == a * a) || (c * c + a * a == b * b)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a * a + b * b == c * c) || (b * b + c * c == a * a) || (c * c + a * a == b * b)
}
```

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return a*a + b*b == c*c
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return a*a + b*b == c*c
}
```
 // XCTAssertTrue failed

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
```

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
```

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
```

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
```

func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or 
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
    return (a*a + b*b == c*c) || (b*b + c*c == a*a) || (c*c + a*a == b*b)
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word).count
        if uniqueChars > maxUniqueChars {
            maxWord = word
            maxUniqueChars = uniqueChars
        } else if uniqueChars == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word).count
        if uniqueChars > maxUniqueChars {
            maxWord = word
            maxUniqueChars = uniqueChars
        } else if uniqueChars == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxWord = word
            maxUniqueChars = uniqueChars.count
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxWord = word
            maxUniqueChars = uniqueChars.count
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word).count
        if uniqueChars > maxUniqueChars {
            maxWord = word
            maxUniqueChars = uniqueChars
        } else if uniqueChars == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word).count
        if uniqueChars > maxUniqueChars {
            maxWord = word
            maxUniqueChars = uniqueChars
        } else if uniqueChars == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var maxWord = ""
    var maxUniqueChars = 0
    for word in words {
        let uniqueChars = Set(word)
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        } else if uniqueChars.count == maxUniqueChars && word < maxWord {
            maxWord = word
        }
    }
    return maxWord
}
```

func findMax(words: [String]) -> String {
    var uniqueChars = [Character: Int]()
    var maxUniqueChars = 0
    var maxWord = ""
    
    for word in words {
        for char in word {
            if uniqueChars[char] == nil {
                uniqueChars[char] = 1
            } else {
                uniqueChars[char]! += 1
            }
        }
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        }
        uniqueChars.removeAll()
    }
    return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
    var uniqueChars = [Character: Int]()
    var maxUniqueChars = 0
    var maxWord = ""
    
    for word in words {
        for char in word {
            if uniqueChars[char] == nil {
                uniqueChars[char] = 1
            } else {
                uniqueChars[char]! += 1
            }
        }
        if uniqueChars.count > maxUniqueChars {
            maxUniqueChars = uniqueChars.count
            maxWord = word
        }
        uniqueChars.removeAll()
    }
    return maxWord
}
```
 // XCTAssertTrue failed

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remainingCarrots = remaining
    
    if need > total {
        total += remainingCarrots
        remainingCarrots = 0
    } else {
        remainingCarrots -= need - total
    }
    
    return [total, remainingCarrots]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remainingCarrots = remaining
    
    if need > total {
        total += remainingCarrots
        remainingCarrots = 0
    } else {
        remainingCarrots -= need - total
    }
    
    return [total, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    while total < need {
        if remaining > 0 {
            total += 1
            remaining -= 1
        } else {
            break
        }
    }
    return [total, remaining]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    while total < need {
        if remaining > 0 {
            total += 1
            remaining -= 1
        } else {
            break
        }
    }
    return [total, remaining]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    
    if need > total {
        total += remaining
        remaining = 0
    } else {
        total += need
        remaining -= need
    }
    
    return [total, remaining]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    
    if need > total {
        total += remaining
        remaining = 0
    } else {
        total += need
        remaining -= need
    }
    
    return [total, remaining]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    if need > total {
        total += remaining
        remaining = 0
    } else {
        total += need
        remaining -= need
    }
    return [total, remaining]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    if need > total {
        total += remaining
        remaining = 0
    } else {
        total += need
        remaining -= need
    }
    return [total, remaining]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var left = remaining
    if total < need {
        total += left
        left = 0
    } else {
        total += need
        left -= need
    }
    return [total, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var left = remaining
    if total < need {
        total += left
        left = 0
    } else {
        total += need
        left -= need
    }
    return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remainingCarrots = remaining
    
    if need > total {
        total += remainingCarrots
        remainingCarrots = 0
    } else {
        remainingCarrots -= need - total
    }
    
    return [total, remainingCarrots]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remainingCarrots = remaining
    
    if need > total {
        total += remainingCarrots
        remainingCarrots = 0
    } else {
        remainingCarrots -= need - total
    }
    
    return [total, remainingCarrots]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    while total < need {
        if remaining > 0 {
            total += 1
            remaining -= 1
        } else {
            break
        }
    }
    return [total, remaining]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    while total < need {
        if remaining > 0 {
            total += 1
            remaining -= 1
        } else {
            break
        }
    }
    return [total, remaining]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number + need
    var left = remaining - need
    if left < 0 {
        total += left
        left = 0
    }
    return [total, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number + need
    var left = remaining - need
    if left < 0 {
        total += left
        left = 0
    }
    return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    while total < need {
        if remaining > 0 {
            total += 1
            remaining -= 1
        } else {
            break
        }
    }
    return [total, remaining]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number
    var remaining = remaining
    while total < need {
        if remaining > 0 {
            total += 1
            remaining -= 1
        } else {
            break
        }
    }
    return [total, remaining]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number + need
    var left = remaining - need
    if left < 0 {
        total += left
        left = 0
    }
    return [total, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
    var total = number + need
    var left = remaining - need
    if left < 0 {
        total += left
        left = 0
    }
    return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result **= operands[i] // cannot find operator '**=' in scope

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result **= operands[i] // cannot find operator '**=' in scope

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operators.count {
        let operator = operators[i]
        let operand = operands[i]
        switch operator {
        case "+":
            result += operand
        case "-":
            result -= operand
        case "*":
            result *= operand
        case "//":
            result /= operand
        case "**":
            result **= operand
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operators.count {
        let operator = operators[i]
        let operand = operands[i]
        switch operator {
        case "+":
            result += operand
        case "-":
            result -= operand
        case "*":
            result *= operand
        case "//":
            result /= operand
        case "**":
            result **= operand
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
let operator = operators[i] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result / operands[i]
        case "**":
            result = result ** operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result / operands[i]
        case "**":
            result = result ** operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result **= operands[i] // cannot find operator '**=' in scope

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operators.count {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operators.count {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result **= operands[i] // cannot find operator '**=' in scope

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result / operands[i]
        case "**":
            result = result ** operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "//":
            result = result / operands[i]
        case "**":
            result = result ** operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result = result ** operands[i] // no operator '**' is defined; did you mean 'pow(_:_:)'?

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result **= operands[i] // cannot find operator '**=' in scope

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operands.count {
        switch operators[i - 1] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result **= operands[i] // cannot find operator '**=' in scope

func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operators.count {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and 
the second array is an array of integers. Use the two given arrays to build the algebric 
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + ) 
Subtraction ( - ) 
Multiplication ( * ) 
Floor division ( // ) 
Exponentiation ( ** ) 
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
    var result = operands[0]
    for i in 1..<operators.count {
        switch operators[i] {
        case "+":
            result += operands[i]
        case "-":
            result -= operands[i]
        case "*":
            result *= operands[i]
        case "/":
            result /= operands[i]
        case "**":
            result **= operands[i]
        default:
            fatalError("Invalid operator")
        }
    }
    return result
}
```
result **= operands[i] // cannot find operator '**=' in scope

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
```
result = s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
```
result = s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
```
result = s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isLowercase ? char.uppercased() : char.lowercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isLowercase ? char.uppercased() : char.lowercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
```
result = s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
```
result = s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
```
result = s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    if result.isEmpty {
        result = s.reversed()
    }
    return result
}
```
result = s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa, 
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
    var result = ""
    for char in s {
        if char.isLetter {
            result.append(char.isUppercase ? char.lowercased() : char.uppercased())
        } else {
            result.append(char)
        }
    }
    return result
}
```
 // XCTAssertTrue failed

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

import CommonCrypto

func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
    guard !text.isEmpty else { return nil }
    let data = text.data(using: .utf8)!
    let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
        var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
        CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
        return hash
    }
    return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).

func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var result: [Int] = []
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var result: [Int] = []
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var result = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var result = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var evenDigits = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            evenDigits.append(i)
        }
    }
    return evenDigits
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var result = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var result = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var result = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var result = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
```
 // Fatal error: Range requires lowerBound <= upperBound

func generateIntegers(a: Int, b: Int) -> [Int] {
    var result = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
    var result = [Int]()
    for i in a...b {
        if i % 2 == 0 {
            result.append(i)
        }
    }
    return result
}
```
 // Fatal error: Range requires lowerBound <= upperBound