Metadata
Key | Value |
---|---|
engine | transformers |
prompt | default |
temp | 0.2 |
top_p | 0.95 |
max_new_tokens | 1024 |
n_completions | 10 |
Solutions
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true [/INST] ```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) <= threshold {
return true
}
}
}
return false
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += char
} else if char == ")" {
openParens -= 1
currentGroup += char
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += char
} else if char == ")" {
openParens -= 1
currentGroup += char
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
}
return groups
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += char
} else if char == ")" {
openParens -= 1
currentGroup += char
if openParens == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += char
} else if char == ")" {
openParens -= 1
currentGroup += char
if openParens == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
currentGroup += char // cannot convert value of type 'Character' to expected argument type 'String'
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
if openParens == 0 {
result.append(currentGroup)
currentGroup = ""
} else {
currentGroup += ")"
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
if openParens == 0 {
result.append(currentGroup)
currentGroup = ""
} else {
currentGroup += ")"
}
}
}
return result
}
```
// XCTAssertTrue failed
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"] [/INST] ```swift
func separateParenGroups(parenString: String) -> [String] {
var groups: [String] = []
var currentGroup: String = ""
var openParens: Int = 0
for char in parenString {
if char == "(" {
openParens += 1
currentGroup += "("
} else if char == ")" {
openParens -= 1
currentGroup += ")"
} else if char == " " {
continue
} else {
return []
}
if openParens == 0 {
groups.append(currentGroup)
currentGroup = ""
}
}
return groups
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5 [/INST] ```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true [/INST] ```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDifferences = numbers.map { abs($0 - mean) }
return absoluteDifferences.reduce(0, +) / Double(absoluteDifferences.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let absoluteDeviations = numbers.map { abs($0 - mean) }
return absoluteDeviations.reduce(0, +) / Double(absoluteDeviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0 [/INST] ```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3] [/INST] ```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for i in 0..<numbers.count {
result.append(numbers[i])
if i < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(currentLevel)
currentLevel = 0
}
}
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(currentLevel)
currentLevel = 0
}
}
return maxLevels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
var currentLevel = 0
var maxLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
if currentLevel > maxLevel {
maxLevel = currentLevel
}
} else if char == ")" {
currentLevel -= 1
}
}
result.append(maxLevel)
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
var currentLevel = 0
var maxLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
if currentLevel > maxLevel {
maxLevel = currentLevel
}
} else if char == ")" {
currentLevel -= 1
}
}
result.append(maxLevel)
return result
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
if currentLevel > maxLevels[currentGroup] {
maxLevels[currentGroup] = currentLevel
}
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(0)
}
}
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
if currentLevel > maxLevels[currentGroup] {
maxLevels[currentGroup] = currentLevel
}
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(0)
}
}
return maxLevels
}
```
// Fatal error: Index out of range
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels = [Int]()
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(currentLevel)
currentLevel = 0
}
}
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels = [Int]()
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(currentLevel)
currentLevel = 0
}
}
return maxLevels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(currentLevel)
currentLevel = 0
}
}
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(currentLevel)
currentLevel = 0
}
}
return maxLevels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels = [Int]()
var currentLevel = 0
var openParens = 0
for char in parenString {
if char == "(" {
openParens += 1
currentLevel = max(currentLevel, openParens)
} else if char == ")" {
openParens -= 1
}
}
maxLevels.append(currentLevel)
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels = [Int]()
var currentLevel = 0
var openParens = 0
for char in parenString {
if char == "(" {
openParens += 1
currentLevel = max(currentLevel, openParens)
} else if char == ")" {
openParens -= 1
}
}
maxLevels.append(currentLevel)
return maxLevels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var openParens = 0
for char in parenString {
if char == "(" {
openParens += 1
currentLevel += 1
} else if char == ")" {
openParens -= 1
if openParens == 0 {
maxLevels.append(currentLevel)
currentLevel = 0
}
}
}
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var openParens = 0
for char in parenString {
if char == "(" {
openParens += 1
currentLevel += 1
} else if char == ")" {
openParens -= 1
if openParens == 0 {
maxLevels.append(currentLevel)
currentLevel = 0
}
}
}
return maxLevels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
maxLevels.append(currentLevel)
currentLevel = 0
currentGroup += 1
}
}
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels: [Int] = []
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
maxLevels.append(currentLevel)
currentLevel = 0
currentGroup += 1
}
}
return maxLevels
}
```
// XCTAssertTrue failed
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels = [Int]()
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
if currentLevel > maxLevels[currentGroup] {
maxLevels[currentGroup] = currentLevel
}
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(0)
}
}
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels = [Int]()
var currentLevel = 0
var currentGroup = 0
for char in parenString {
if char == "(" {
currentLevel += 1
if currentLevel > maxLevels[currentGroup] {
maxLevels[currentGroup] = currentLevel
}
} else if char == ")" {
currentLevel -= 1
} else if char == " " {
currentGroup += 1
maxLevels.append(0)
}
}
return maxLevels
}
```
// Fatal error: Index out of range
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
}
if char == " " {
maxLevels.append(currentLevel)
currentLevel = 0
}
}
return maxLevels
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3] [/INST] ```swift
func parseNestedParens(parenString: String) -> [Int] {
var maxLevels = [Int]()
var currentLevel = 0
for char in parenString {
if char == "(" {
currentLevel += 1
} else if char == ")" {
currentLevel -= 1
}
if char == " " {
maxLevels.append(currentLevel)
currentLevel = 0
}
}
return maxLevels
}
```
// XCTAssertTrue failed
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"] [/INST] ```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24) [/INST] ```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxValue = Int.min
for number in numbers {
if number > maxValue {
maxValue = number
}
result.append(maxValue)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxValue = Int.min
for number in numbers {
if number > maxValue {
maxValue = number
}
result.append(maxValue)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var currentMax = 0
for number in numbers {
if number > currentMax {
currentMax = number
}
result.append(currentMax)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var currentMax = 0
for number in numbers {
if number > currentMax {
currentMax = number
}
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var max = numbers[0]
var rollingMax = [max]
for i in 1..<numbers.count {
if numbers[i] > max {
max = numbers[i]
}
rollingMax.append(max)
}
return rollingMax
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = numbers[0]
var rollingMax = [max]
for i in 1..<numbers.count {
if numbers[i] > max {
max = numbers[i]
}
rollingMax.append(max)
}
return rollingMax
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
if number > currentMax {
currentMax = number
}
result.append(currentMax)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
if number > currentMax {
currentMax = number
}
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = 0
for number in numbers {
if number > currentMax {
currentMax = number
}
result.append(currentMax)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4] [/INST] ```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = 0
for number in numbers {
if number > currentMax {
currentMax = number
}
result.append(currentMax)
}
return result
}
```
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome.
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix
return string + palindrome.reversed()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
// Find the longest postfix of supplied string that is a palindrome
let palindrome = string.reversed().prefix(while: { $0 == $1 })
// Append to the end of the string reverse of a string prefix that comes before the palindromic suffix
return string + palindrome.reversed()
}
```
let palindrome = string.reversed().prefix(while: { $0 == $1 }) // contextual closure type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool') expects 1 argument, but 2 were used in closure body
func makePalindrome(string: String) -> String {
let suffix = findPalindromeSuffix(string: string)
let prefix = string.prefix(suffix.count)
return string + String(prefix.reversed())
}
func findPalindromeSuffix(string: String) -> String {
var suffix = ""
for i in string.indices.reversed() {
if string[i] == string[string.count - 1 - i] {
suffix = string[i...string.count - 1]
}
}
return suffix
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac" [/INST] ```swift
func makePalindrome(string: String) -> String {
let suffix = findPalindromeSuffix(string: string)
let prefix = string.prefix(suffix.count)
return string + String(prefix.reversed())
}
func findPalindromeSuffix(string: String) -> String {
var suffix = ""
for i in string.indices.reversed() {
if string[i] == string[string.count - 1 - i] {
suffix = string[i...string.count - 1]
}
}
return suffix
}
```
if string[i] == string[string.count - 1 - i] { // cannot convert value of type 'DefaultIndices<String>.Element' (aka 'String.Index') to expected argument type 'Int'
suffix = string[i...string.count - 1] // cannot convert value of type 'DefaultIndices<String>.Element' (aka 'String.Index') to expected argument type 'Int'
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
if char == "1" {
result += b[i] == "1" ? "0" : "1"
} else {
result += b[i] == "0" ? "0" : "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
if char == "1" {
result += b[i] == "1" ? "0" : "1"
} else {
result += b[i] == "0" ? "0" : "1"
}
}
return result
}
```
result += b[i] == "1" ? "0" : "1" // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
result += b[i] == "0" ? "0" : "1" // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
let aBinary = a.binaryValue
let bBinary = b.binaryValue
let result = aBinary ^ bBinary
return result.binaryString
}
extension String {
var binaryValue: Int {
return Int(self, radix: 2)!
}
var binaryString: String {
return String(self, radix: 2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
let aBinary = a.binaryValue
let bBinary = b.binaryValue
let result = aBinary ^ bBinary
return result.binaryString
}
extension String {
var binaryValue: Int {
return Int(self, radix: 2)!
}
var binaryString: String {
return String(self, radix: 2)
}
}
```
return result.binaryString // value of type 'Int' has no member 'binaryString'
return String(self, radix: 2) // initializer 'init(_:radix:uppercase:)' requires that 'String' conform to 'BinaryInteger'
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
let bChar = b[i]
if char == "1" && bChar == "1" {
result += "1"
} else if char == "0" && bChar == "0" {
result += "0"
} else {
result += "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
let bChar = b[i]
if char == "1" && bChar == "1" {
result += "1"
} else if char == "0" && bChar == "0" {
result += "0"
} else {
result += "1"
}
}
return result
}
```
let bChar = b[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
let a = a.map { $0 == "1" ? 1 : 0 }
let b = b.map { $0 == "1" ? 1 : 0 }
let result = zip(a, b).map { $0 ^ $1 }
return result.map { $0 == 1 ? "1" : "0" }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
let a = a.map { $0 == "1" ? 1 : 0 }
let b = b.map { $0 == "1" ? 1 : 0 }
let result = zip(a, b).map { $0 ^ $1 }
return result.map { $0 == 1 ? "1" : "0" }.joined()
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
if char == "1" {
result += b[i] == "1" ? "0" : "1"
} else {
result += b[i] == "0" ? "0" : "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
if char == "1" {
result += b[i] == "1" ? "0" : "1"
} else {
result += b[i] == "0" ? "0" : "1"
}
}
return result
}
```
result += b[i] == "1" ? "0" : "1" // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
result += b[i] == "0" ? "0" : "1" // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, c) in a.enumerated() {
let d = b[i]
if c == "1" && d == "0" {
result.append("1")
} else if c == "0" && d == "1" {
result.append("1")
} else {
result.append("0")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, c) in a.enumerated() {
let d = b[i]
if c == "1" && d == "0" {
result.append("1")
} else if c == "0" && d == "1" {
result.append("1")
} else {
result.append("0")
}
}
return result
}
```
let d = b[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, c) in a.enumerated() {
let d = b[i]
if c == "1" && d == "1" {
result.append("0")
} else if c == "0" && d == "0" {
result.append("1")
} else {
result.append("0")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, c) in a.enumerated() {
let d = b[i]
if c == "1" && d == "1" {
result.append("0")
} else if c == "0" && d == "0" {
result.append("1")
} else {
result.append("0")
}
}
return result
}
```
let d = b[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
let aBinary = a.binaryValue
let bBinary = b.binaryValue
let result = aBinary ^ bBinary
return result.binaryString
}
extension String {
var binaryValue: Int {
return Int(self, radix: 2) ?? 0
}
}
extension Int {
var binaryString: String {
return String(self, radix: 2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
let aBinary = a.binaryValue
let bBinary = b.binaryValue
let result = aBinary ^ bBinary
return result.binaryString
}
extension String {
var binaryValue: Int {
return Int(self, radix: 2) ?? 0
}
}
extension Int {
var binaryString: String {
return String(self, radix: 2)
}
}
```
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
if char == "1" {
result += b[i] == "1" ? "0" : "1"
} else {
result += b[i] == "0" ? "0" : "1"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (i, char) in a.enumerated() {
if char == "1" {
result += b[i] == "1" ? "0" : "1"
} else {
result += b[i] == "0" ? "0" : "1"
}
}
return result
}
```
result += b[i] == "1" ? "0" : "1" // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
result += b[i] == "0" ? "0" : "1" // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func stringXor(a: String, b: String) -> String {
let aChars = Array(a)
let bChars = Array(b)
var result = ""
for i in 0..<aChars.count {
if aChars[i] == "1" && bChars[i] == "1" {
result += "1"
} else {
result += "0"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100" [/INST] ```swift
func stringXor(a: String, b: String) -> String {
let aChars = Array(a)
let bChars = Array(b)
var result = ""
for i in 0..<aChars.count {
if aChars[i] == "1" && bChars[i] == "1" {
result += "1"
} else {
result += "0"
}
}
return result
}
```
// XCTAssertTrue failed
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else {
return nil
}
var longestString = firstString
var longestLength = firstString.count
for string in strings {
if string.count > longestLength {
longestString = string
longestLength = string.count
}
}
return longestString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else {
return nil
}
var longestString = firstString
var longestLength = firstString.count
for string in strings {
if string.count > longestLength {
longestString = string
longestLength = string.count
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else {
return nil
}
var longestString = firstString
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else {
return nil
}
var longestString = firstString
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else { return nil }
var longestString = firstString
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else { return nil }
var longestString = firstString
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else {
return nil
}
var longestString = firstString
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else {
return nil
}
var longestString = firstString
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else {
return nil
}
var longestString = firstString
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard let firstString = strings.first else {
return nil
}
var longestString = firstString
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc" [/INST] ```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.sorted { $0.count > $1.count }.first
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5 [/INST] ```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var x = a
var y = b
while y != 0 {
let temp = y
y = x % y
x = temp
}
return x
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"] [/INST] ```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(string[0..<i])
}
return prefixes
}
```
prefixes.append(string[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5" [/INST] ```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters
var distinctCharacters: Set<Character> = []
for character in characters {
if !distinctCharacters.contains(character) {
distinctCharacters.insert(character)
}
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters
var distinctCharacters: Set<Character> = []
for character in characters {
if !distinctCharacters.contains(character) {
distinctCharacters.insert(character)
}
}
return distinctCharacters.count
}
```
let characters = string.lowercased().characters // 'characters' is unavailable: Please use String directly
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters
var distinctCharacters: Set<Character> = []
for character in characters {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters
var distinctCharacters: Set<Character> = []
for character in characters {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
let characters = string.lowercased().characters // 'characters' is unavailable: Please use String directly
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters.map { $0 }
return Set(characters).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters.map { $0 }
return Set(characters).count
}
```
let characters = string.lowercased().characters.map { $0 } // 'characters' is unavailable: Please use String directly
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters.map { $0 }
return Set(characters).count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters.map { $0 }
return Set(characters).count
}
```
let characters = string.lowercased().characters.map { $0 } // 'characters' is unavailable: Please use String directly
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters
var distinctCharacters: Set<Character> = []
for character in characters {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let characters = string.lowercased().characters
var distinctCharacters: Set<Character> = []
for character in characters {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
let characters = string.lowercased().characters // 'characters' is unavailable: Please use String directly
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4 [/INST] ```swift
func countDistinctCharacters(string: String) -> Int {
let lowercaseString = string.lowercased()
var distinctCharacters: Set<Character> = []
for character in lowercaseString {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func parseMusic(musicString: String) -> [Int] {
var notes = [Int]()
for character in musicString.characters {
switch character {
case "o":
notes.append(4)
case "o|":
notes.append(2)
case ".|":
notes.append(1)
default:
break
}
}
return notes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
var notes = [Int]()
for character in musicString.characters {
switch character {
case "o":
notes.append(4)
case "o|":
notes.append(2)
case ".|":
notes.append(1)
default:
break
}
}
return notes
}
```
for character in musicString.characters { // 'characters' is unavailable: Please use String directly
case "o|": // expression pattern of type 'String' cannot match values of type 'Character'
case ".|": // expression pattern of type 'String' cannot match values of type 'Character'
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats = [Int]()
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats = [Int]()
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats = [Int]()
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats = [Int]()
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] [/INST] ```swift
func parseMusic(musicString: String) -> [Int] {
let notes = musicString.components(separatedBy: " ")
var beats: [Int] = []
for note in notes {
switch note {
case "o":
beats.append(4)
case "o|":
beats.append(2)
case ".|":
beats.append(1)
default:
break
}
}
return beats
}
```
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index...].hasPrefix(substring) {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index...].hasPrefix(substring) {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index...].hasPrefix(substring) {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index...].hasPrefix(substring) {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index...].hasPrefix(substring) {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index...].hasPrefix(substring) {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, options: .literal, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, options: .literal, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, options: .caseInsensitive, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex {
if let range = string.range(of: substring, options: .caseInsensitive, range: startIndex..<string.endIndex) {
count += 1
startIndex = range.upperBound
} else {
break
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3 [/INST] ```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var i = string.startIndex
while i < string.endIndex {
if string[i...].hasPrefix(substring) {
count += 1
i = string.index(i, offsetBy: substring.count)
} else {
i = string.index(after: i)
}
}
return count
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue }
return sortedArray.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue }
return sortedArray.joined(separator: " ")
}
```
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue } // cannot infer type of closure parameter '$1' without a type annotation
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue }
return sortedArray.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue }
return sortedArray.joined(separator: " ")
}
```
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedArray = numberArray.sorted { $0.intValue < $1.intValue } // cannot infer type of closure parameter '$1' without a type annotation
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberArray = numbers.components(separatedBy: " ")
let sortedArray = numberArray.sorted { $0 < $1 }
return sortedArray.joined(separator: " ")
}
```
// XCTAssertTrue failed
func sortNumbers(numbers: String) -> String {
let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { (num1, num2) in
return numberals.index(of: num1) ?? 0 < numberals.index(of: num2) ?? 0
}
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { (num1, num2) in
return numberals.index(of: num1) ?? 0 < numberals.index(of: num2) ?? 0
}
return sortedNumbers.joined(separator: " ")
}
```
return numberals.index(of: num1) ?? 0 < numberals.index(of: num2) ?? 0 // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
return numberals.index(of: num1) ?? 0 < numberals.index(of: num2) ?? 0 // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
func sortNumbers(numbers: String) -> String {
let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { (num1, num2) -> Bool in
return numberals.index(of: num1) ?? 0 < numberals.index(of: num2) ?? 0
}
return sortedNumbers.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
let sortedNumbers = numbers.components(separatedBy: " ").sorted { (num1, num2) -> Bool in
return numberals.index(of: num1) ?? 0 < numberals.index(of: num2) ?? 0
}
return sortedNumbers.joined(separator: " ")
}
```
return numberals.index(of: num1) ?? 0 < numberals.index(of: num2) ?? 0 // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
return numberals.index(of: num1) ?? 0 < numberals.index(of: num2) ?? 0 // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
func sortNumbers(numbers: String) -> String {
let numberals = numbers.components(separatedBy: " ")
let sortedNumberals = numberals.sorted { (num1, num2) -> Bool in
return num1 < num2
}
return sortedNumberals.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five" [/INST] ```swift
func sortNumbers(numbers: String) -> String {
let numberals = numbers.components(separatedBy: " ")
let sortedNumberals = numberals.sorted { (num1, num2) -> Bool in
return num1 < num2
}
return sortedNumberals.joined(separator: " ")
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements: (Double, Double) = (0.0, 0.0)
var minDistance = Double.infinity
for i in 0..<numbers.count - 1 {
let distance = abs(numbers[i] - numbers[i + 1])
if distance < minDistance {
minDistance = distance
closestElements = (numbers[i], numbers[i + 1])
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements: (Double, Double) = (0.0, 0.0)
var minDistance = Double.infinity
for i in 0..<numbers.count - 1 {
let distance = abs(numbers[i] - numbers[i + 1])
if distance < minDistance {
minDistance = distance
closestElements = (numbers[i], numbers[i + 1])
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("The array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let distance = abs(numbers[i] - numbers[i + 1])
if distance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = distance
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("The array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let distance = abs(numbers[i] - numbers[i + 1])
if distance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = distance
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements: (Double, Double) = (0.0, 0.0)
var minDistance = Double.infinity
for i in 0..<numbers.count - 1 {
let distance = abs(numbers[i] - numbers[i + 1])
if distance < minDistance {
minDistance = distance
closestElements = (numbers[i], numbers[i + 1])
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements: (Double, Double) = (0.0, 0.0)
var minDistance = Double.infinity
for i in 0..<numbers.count - 1 {
let distance = abs(numbers[i] - numbers[i + 1])
if distance < minDistance {
minDistance = distance
closestElements = (numbers[i], numbers[i + 1])
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else {
fatalError("Array must have at least two elements")
}
var closestElements: (Double, Double) = (numbers[0], numbers[1])
var closestDistance = abs(closestElements.0 - closestElements.1)
for i in 1..<numbers.count - 1 {
let currentDistance = abs(numbers[i] - numbers[i + 1])
if currentDistance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = currentDistance
}
}
return closestElements
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements: (Double, Double) = (0.0, 0.0)
var closestDistance: Double = Double.infinity
for i in 0..<numbers.count - 1 {
let distance = abs(numbers[i] - numbers[i + 1])
if distance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = distance
}
}
return closestElements
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) [/INST] ```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestElements: (Double, Double) = (0.0, 0.0)
var closestDistance: Double = Double.infinity
for i in 0..<numbers.count - 1 {
let distance = abs(numbers[i] - numbers[i + 1])
if distance < closestDistance {
closestElements = (numbers[i], numbers[i + 1])
closestDistance = distance
}
}
return closestElements
}
```
// XCTAssertTrue failed
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] [/INST] ```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3] [/INST] ```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3 [/INST] ```swift
func strlen(string: String) -> Int {
return string.count
}
```
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n/2 {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n/2 {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
for i in stride(from: n, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
// XCTAssertTrue failed
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n/2 {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n/2 {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5 [/INST] ```swift
func largestDivisor(n: Int) -> Int {
var divisor = 1
for i in 2...n {
if n % i == 0 {
divisor = i
}
}
return divisor
}
```
// XCTAssertTrue failed
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= n {
if n % currentFactor == 0 {
factors.append(currentFactor)
n /= currentFactor
} else {
currentFactor += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= currentFactor // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7] [/INST] ```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
n /= i // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = [Int]()
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = [Int]()
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = [Int]()
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = [Int]()
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = [Int]()
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers = [Int]()
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4] [/INST] ```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func flipCase(string: String) -> String {
return string.map {
if $0.isLowercase {
return $0.uppercased()
} else {
return $0.lowercased()
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
return string.map {
if $0.isLowercase {
return $0.uppercased()
} else {
return $0.lowercased()
}
}
}
```
return string.map { // cannot convert return expression of type '[String]' to return type 'String'
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result += char.uppercased()
} else {
result += char.lowercased()
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result += char.uppercased()
} else {
result += char.lowercased()
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result.append(char.uppercased())
} else {
result.append(char.lowercased())
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result += char.uppercased()
} else {
result += char.lowercased()
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result += char.uppercased()
} else {
result += char.lowercased()
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result += char.uppercased()
} else {
result += char.lowercased()
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result += char.uppercased()
} else {
result += char.lowercased()
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result += char.uppercased()
} else {
result += char.lowercased()
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO" [/INST] ```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isLowercase {
result += char.uppercased()
} else {
result += char.lowercased()
}
}
return result
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc" [/INST] ```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"] [/INST] ```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1] [/INST] ```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false [/INST] ```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func sortThird(l: [Int]) -> [Int] {
var l = l
var l' = l
for i in 0..<l.count where i % 3 == 0 {
l'[i] = l[i]
}
return l'
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
var l' = l
for i in 0..<l.count where i % 3 == 0 {
l'[i] = l[i]
}
return l'
}
```
var l' = l // type annotation missing in pattern
var l' = l // unterminated string literal
l'[i] = l[i] // unterminated string literal
return l' // unterminated string literal
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted()
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted()
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 3 == 0 {
l[i] = l[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 3 == 0 {
l[i] = l[i]
}
return l
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in 0..<l.count where i % 3 == 0 {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in 0..<l.count where i % 3 == 0 {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted { $0 < $1 }
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted { $0 < $1 }
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted { $0 < $1 }
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted { $0 < $1 }
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in 0..<l.count where i % 3 == 0 {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in 0..<l.count where i % 3 == 0 {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted { $0 < $1 }
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted { $0 < $1 }
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted { $0 < $1 }
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let sortedThirdIndices = thirdIndices.sorted { $0 < $1 }
for i in sortedThirdIndices {
l[i] = l[i]
}
return l
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in 0..<l.count where i % 3 == 0 {
lPrime[i] = l[i]
}
return lPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5] [/INST] ```swift
func sortThird(l: [Int]) -> [Int] {
var lPrime = l
for i in 0..<l.count where i % 3 == 0 {
lPrime[i] = l[i]
}
return lPrime
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return l.sorted().removingDuplicates()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return l.sorted().removingDuplicates()
}
```
return l.sorted().removingDuplicates() // value of type '[Int]' has no member 'removingDuplicates'
func unique(l: [Int]) -> [Int] {
var result = [Int]()
for element in l {
if !result.contains(element) {
result.append(element)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
var result = [Int]()
for element in l {
if !result.contains(element) {
result.append(element)
}
}
return result.sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements: [Int] = []
for element in l {
if !uniqueElements.contains(element) {
uniqueElements.append(element)
}
}
return uniqueElements.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements: [Int] = []
for element in l {
if !uniqueElements.contains(element) {
uniqueElements.append(element)
}
}
return uniqueElements.sorted()
}
```
func unique(l: [Int]) -> [Int] {
var uniqueElements: [Int] = []
for element in l {
if !uniqueElements.contains(element) {
uniqueElements.append(element)
}
}
return uniqueElements.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements: [Int] = []
for element in l {
if !uniqueElements.contains(element) {
uniqueElements.append(element)
}
}
return uniqueElements.sorted()
}
```
func unique(l: [Int]) -> [Int] {
return l.sorted().filter { $0 != l[$0] }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return l.sorted().filter { $0 != l[$0] }
}
```
// Fatal error: Index out of range
func unique(l: [Int]) -> [Int] {
var uniqueElements: [Int] = []
for element in l {
if !uniqueElements.contains(element) {
uniqueElements.append(element)
}
}
return uniqueElements.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements: [Int] = []
for element in l {
if !uniqueElements.contains(element) {
uniqueElements.append(element)
}
}
return uniqueElements.sorted()
}
```
func unique(l: [Int]) -> [Int] {
var result = [Int]()
for element in l {
if !result.contains(element) {
result.append(element)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
var result = [Int]()
for element in l {
if !result.contains(element) {
result.append(element)
}
}
return result.sorted()
}
```
func unique(l: [Int]) -> [Int] {
return l.sorted().filter { !$0.isEmpty }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
return l.sorted().filter { !$0.isEmpty }
}
```
return l.sorted().filter { !$0.isEmpty } // trailing closure passed to parameter of type 'Predicate<Int>' that does not accept a closure
func unique(l: [Int]) -> [Int] {
var uniqueElements = [Int]()
for element in l {
if !uniqueElements.contains(element) {
uniqueElements.append(element)
}
}
return uniqueElements.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
var uniqueElements = [Int]()
for element in l {
if !uniqueElements.contains(element) {
uniqueElements.append(element)
}
}
return uniqueElements.sorted()
}
```
func unique(l: [Int]) -> [Int] {
var result: [Int] = []
for element in l {
if !result.contains(element) {
result.append(element)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123] [/INST] ```swift
func unique(l: [Int]) -> [Int] {
var result: [Int] = []
for element in l {
if !result.contains(element) {
result.append(element)
}
}
return result.sorted()
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123 [/INST] ```swift
func maxElement(l: [Int]) -> Int {
var max = l[0]
for i in 1..<l.count {
if l[i] > max {
max = l[i]
}
}
return max
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
count += str.filter { $0 == "7" }.count
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
count += str.filter { $0 == "7" }.count
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
if str.contains("7") {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
if str.contains("7") {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
if String(i).contains("7") {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
if String(i).contains("7") {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
if String(i).contains("7") {
count += 1
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
if String(i).contains("7") {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
count += str.filter { $0 == "7" }.count
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3 [/INST] ```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
count += str.filter { $0 == "7" }.count
}
}
return count
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
```
// Fatal error: Index out of range
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
```
// Fatal error: Index out of range
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
let temp = l[i]
l[i] = l[i + 1]
l[i + 1] = temp
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
let temp = l[i]
l[i] = l[i + 1]
l[i + 1] = temp
}
return l
}
```
// Fatal error: Index out of range
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
let temp = l[i]
l[i] = l[i + 1]
l[i + 1] = temp
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
let temp = l[i]
l[i] = l[i + 1]
l[i + 1] = temp
}
return l
}
```
// Fatal error: Index out of range
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
```
// Fatal error: Index out of range
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
```
// Fatal error: Index out of range
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
```
// Fatal error: Index out of range
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
let temp = l[i]
l[i] = l[i + 1]
l[i + 1] = temp
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
let temp = l[i]
l[i] = l[i + 1]
l[i + 1] = temp
}
return l
}
```
// Fatal error: Index out of range
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in stride(from: 0, to: l.count, by: 2) {
l[i] = l[i]
}
return l
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4] [/INST] ```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
for i in 0..<l.count where i % 2 == 0 {
l[i] = l[i..<l.count].sorted()[i]
}
return l
}
```
// Fatal error: Index out of range
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
if isPrime(fib3) {
count += 1
}
}
return fib3
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
if isPrime(fib3) {
count += 1
}
}
return fib3
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(fib3) { // missing argument label 'n:' in call
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var prime = 0
var count = 0
while count < n {
let temp = fib2
fib2 = fib1 + fib2
fib1 = temp
if isPrime(fib2) {
prime = fib2
count += 1
}
}
return prime
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var prime = 0
var count = 0
while count < n {
let temp = fib2
fib2 = fib1 + fib2
fib1 = temp
if isPrime(fib2) {
prime = fib2
count += 1
}
}
return prime
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(fib2) { // missing argument label 'n:' in call
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
if isPrime(fib3) {
count += 1
}
}
return fib3
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
if isPrime(fib3) {
count += 1
}
}
return fib3
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(fib3) { // missing argument label 'n:' in call
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var primeFib = 0
for i in 1...n {
let temp = fib2
fib2 = fib1 + fib2
fib1 = temp
if isPrime(fib2) {
primeFib = fib2
break
}
}
return primeFib
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var primeFib = 0
for i in 1...n {
let temp = fib2
fib2 = fib1 + fib2
fib1 = temp
if isPrime(fib2) {
primeFib = fib2
break
}
}
return primeFib
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(fib2) { // missing argument label 'n:' in call
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
if isPrime(fib3) {
count += 1
}
}
return fib3
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
if isPrime(fib3) {
count += 1
}
}
return fib3
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(fib3) { // missing argument label 'n:' in call
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
if isPrime(fib3) {
count += 1
}
}
return fib3
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
if isPrime(fib3) {
count += 1
}
}
return fib3
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(fib3) { // missing argument label 'n:' in call
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
count += 1
}
return fib3
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
count += 1
}
return fib3
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
count += 1
}
return fib3
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
count += 1
}
return fib3
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
count += 1
}
return fib3
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = 1
var count = 1
while count < n {
fib3 = fib1 + fib2
fib1 = fib2
fib2 = fib3
count += 1
}
return fib3
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var primeCount = 0
while primeCount < n {
let nextFib = fib1 + fib2
fib1 = fib2
fib2 = nextFib
if isPrime(nextFib) {
primeCount += 1
}
}
return fib2
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89 [/INST] ```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var primeCount = 0
while primeCount < n {
let nextFib = fib1 + fib2
fib1 = fib2
fib2 = nextFib
if isPrime(nextFib) {
primeCount += 1
}
}
return fib2
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false [/INST] ```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func carRaceCollision(n: Int) -> Int {
var collisions = 0
var leftToRightCars = [Car]()
var rightToLeftCars = [Car]()
for i in 0..<n {
let leftToRightCar = Car(speed: 10)
leftToRightCars.append(leftToRightCar)
let rightToLeftCar = Car(speed: 10)
rightToLeftCars.append(rightToLeftCar)
}
for i in 0..<n {
let leftToRightCar = leftToRightCars[i]
let rightToLeftCar = rightToLeftCars[i]
if leftToRightCar.position == rightToLeftCar.position {
collisions += 1
}
}
return collisions
}
struct Car {
let speed: Int
var position: Int
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var collisions = 0
var leftToRightCars = [Car]()
var rightToLeftCars = [Car]()
for i in 0..<n {
let leftToRightCar = Car(speed: 10)
leftToRightCars.append(leftToRightCar)
let rightToLeftCar = Car(speed: 10)
rightToLeftCars.append(rightToLeftCar)
}
for i in 0..<n {
let leftToRightCar = leftToRightCars[i]
let rightToLeftCar = rightToLeftCars[i]
if leftToRightCar.position == rightToLeftCar.position {
collisions += 1
}
}
return collisions
}
struct Car {
let speed: Int
var position: Int
}
```
let leftToRightCar = Car(speed: 10) // missing argument for parameter 'position' in call
let rightToLeftCar = Car(speed: 10) // missing argument for parameter 'position' in call
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Car]()
var rightToLeftCars = [Car]()
for i in 0..<n {
leftToRightCars.append(Car(speed: 10, direction: .leftToRight))
rightToLeftCars.append(Car(speed: 10, direction: .rightToLeft))
}
var collisions = 0
for i in 0..<n {
let leftToRightCar = leftToRightCars[i]
let rightToLeftCar = rightToLeftCars[i]
if leftToRightCar.position == rightToLeftCar.position {
collisions += 1
}
}
return collisions
}
struct Car {
let speed: Int
let direction: Direction
enum Direction {
case leftToRight
case rightToLeft
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Car]()
var rightToLeftCars = [Car]()
for i in 0..<n {
leftToRightCars.append(Car(speed: 10, direction: .leftToRight))
rightToLeftCars.append(Car(speed: 10, direction: .rightToLeft))
}
var collisions = 0
for i in 0..<n {
let leftToRightCar = leftToRightCars[i]
let rightToLeftCar = rightToLeftCars[i]
if leftToRightCar.position == rightToLeftCar.position {
collisions += 1
}
}
return collisions
}
struct Car {
let speed: Int
let direction: Direction
enum Direction {
case leftToRight
case rightToLeft
}
}
```
if leftToRightCar.position == rightToLeftCar.position { // value of type 'Car' has no member 'position'
if leftToRightCar.position == rightToLeftCar.position { // value of type 'Car' has no member 'position'
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Car]()
var rightToLeftCars = [Car]()
for i in 0..<n {
leftToRightCars.append(Car(direction: .leftToRight, speed: 1))
rightToLeftCars.append(Car(direction: .rightToLeft, speed: 1))
}
var collisions = 0
for i in 0..<n {
let leftToRightCar = leftToRightCars[i]
let rightToLeftCar = rightToLeftCars[i]
if leftToRightCar.position == rightToLeftCar.position {
collisions += 1
}
}
return collisions
}
struct Car {
let direction: Direction
let speed: Int
enum Direction {
case leftToRight
case rightToLeft
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var leftToRightCars = [Car]()
var rightToLeftCars = [Car]()
for i in 0..<n {
leftToRightCars.append(Car(direction: .leftToRight, speed: 1))
rightToLeftCars.append(Car(direction: .rightToLeft, speed: 1))
}
var collisions = 0
for i in 0..<n {
let leftToRightCar = leftToRightCars[i]
let rightToLeftCar = rightToLeftCars[i]
if leftToRightCar.position == rightToLeftCar.position {
collisions += 1
}
}
return collisions
}
struct Car {
let direction: Direction
let speed: Int
enum Direction {
case leftToRight
case rightToLeft
}
}
```
if leftToRightCar.position == rightToLeftCar.position { // value of type 'Car' has no member 'position'
if leftToRightCar.position == rightToLeftCar.position { // value of type 'Car' has no member 'position'
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j && i + j == n - 1 {
collisions += 1
}
}
}
return collisions
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j {
let car1 = (i, j)
let car2 = (j, i)
if car1.0 == car2.1 && car1.1 == car2.0 {
collisions += 1
}
}
}
}
return collisions
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. [/INST] ```swift
func carRaceCollision(n: Int) -> Int {
var collisions = 0
for i in 0..<n {
for j in 0..<n {
if i != j {
let car1 = (i, j)
let car2 = (j, i)
if car1.0 == car2.1 && car1.1 == car2.0 {
collisions += 1
}
}
}
}
return collisions
}
```
// XCTAssertTrue failed
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124] [/INST] ```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false [/INST] ```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111" [/INST] ```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var remainder = x
while remainder > 0 {
result = String(remainder % base) + result
remainder /= base
}
return result
}
```
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2.0
}
```
return (a * h) / 2.0 // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
```
return (a * h) / 2 // cannot convert return expression of type 'Int' to return type 'Double'
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
```
return (a * h) / 2 // cannot convert return expression of type 'Int' to return type 'Double'
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
```
return (a * h) / 2 // cannot convert return expression of type 'Int' to return type 'Double'
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
```
return (a * h) / 2 // cannot convert return expression of type 'Int' to return type 'Double'
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2
}
```
return (a * h) / 2 // cannot convert return expression of type 'Int' to return type 'Double'
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2.0
}
```
return (a * h) / 2.0 // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2.0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return (a * h) / 2.0
}
```
return (a * h) / 2.0 // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5 [/INST] ```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var e = 0
var f = 0
var g = 0
var h = 0
var i = 0
var j = 0
var k = 0
var l = 0
var m = 0
var n = 0
var o = 0
var p = 0
var q = 0
var r = 0
var s = 0
var t = 0
var u = 0
var v = 0
var w = 0
var x = 0
var y = 0
var z = 0
var aa = 0
var ab = 0
var ac = 0
var ad = 0
var ae = 0
var af = 0
var ag = 0
var ah = 0
var ai = 0
var aj = 0
var ak = 0
var al = 0
var am = 0
var an = 0
var ao = 0
var ap = 0
var aq = 0
var ar = 0
var as = 0
var at = 0
var au = 0
var av = 0
var aw = 0
var ax = 0
var ay = 0
var az = 0
var ba = 0
var bb = 0
var bc = 0
var bd = 0
var be = 0
var bf = 0
var bg = 0
var bh = 0
var bi = 0
var bj = 0
var bk = 0
var bl = 0
var bm = 0
var bn = 0
var bo = 0
var bp = 0
var bq = 0
var br = 0
var bs = 0
var bt = 0
var bu = 0
var bv = 0
var bw = 0
var bx = 0
var by = 0
var bz = 0
var ca = 0
var cb = 0
var cc = 0
var cd = 0
var ce = 0
var cf = 0
var cg = 0
var ch = 0
var ci = 0
var cj = 0
var ck = 0
var cl = 0
var cm = 0
var cn = 0
var co = 0
var cp = 0
var cq = 0
var cr = 0
var cs = 0
var ct = 0
var cu = 0
var cv = 0
var cw = 0
var cx = 0
var cy = 0
var cz = 0
var da = 0
var db = 0
var dc = 0
var dd = 0
var de = 0
var df = 0
var dg = 0
var dh = 0
var di = 0
var dj = 0
var dk = 0
var dl = 0
var dm = 0
var dn = 0
var do = 0
var dp = 0
var dq = 0
var dr = 0
var ds = 0
var dt = 0
var du = 0
var dv = 0
var dw = 0
var dx = 0
var dy = 0
var dz = 0
var ea = 0
var eb = 0
var ec = 0
var ed = 0
var ee = 0
var ef = 0
var eg = 0
var eh = 0
var ei = 0
var ej = 0
var
XCTAssertTrue(fib4(n: 5) == 4) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 8) == 28) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 10) == 104) // cannot find 'fib4' in scope
XCTAssertTrue(fib4(n: 12) == 386) // cannot find 'fib4' in scope
func fib4(n: Int) -> Int {
if n <= 3 {
return 0
} else if n == 4 {
return 2
} else {
var a = 0
var b = 0
var c = 2
for _ in 5..<n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
if n <= 3 {
return 0
} else if n == 4 {
return 2
} else {
var a = 0
var b = 0
var c = 2
for _ in 5..<n {
let temp = a + b + c
a = b
b = c
c = temp
}
return c
}
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
if n <= 3 {
return 0
}
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 4...n {
let temp = a + b + c + d
a = b
b = c
c = d
d = temp
}
return d
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
if n <= 3 {
return 0
}
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 4...n {
let temp = a + b + c + d
a = b
b = c
c = d
d = temp
}
return d
}
```
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14 [/INST] ```swift
func fib4(n: Int) -> Int {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 0..<n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
```
// XCTAssertTrue failed
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2.0
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2.0
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2.0
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2.0
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2.0
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2.0
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let middle = l.count / 2
if l.count % 2 == 0 {
return Double(sorted[middle - 1] + sorted[middle]) / 2
} else {
return Double(sorted[middle])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = sorted.count / 2
if sorted.count % 2 == 0 {
return Double(sorted[mid - 1] + sorted[mid]) / 2.0
} else {
return Double(sorted[mid])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let mid = sorted.count / 2
if sorted.count % 2 == 0 {
return Double(sorted[mid - 1] + sorted[mid]) / 2.0
} else {
return Double(sorted[mid])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let n = l.count
if n % 2 == 0 {
return (Double(sorted[n / 2]) + Double(sorted[n / 2 - 1])) / 2
} else {
return Double(sorted[n / 2])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0 [/INST] ```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let n = l.count
if n % 2 == 0 {
return (Double(sorted[n / 2]) + Double(sorted[n / 2 - 1])) / 2
} else {
return Double(sorted[n / 2])
}
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
return text.lowercased() == String(text.reversed().lowercased())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
return text.lowercased() == String(text.reversed().lowercased())
}
```
return text.lowercased() == String(text.reversed().lowercased()) // reference to member 'lowercased' cannot be resolved without a contextual type
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
return text.elementsEqual(text.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
return text.elementsEqual(text.reversed())
}
```
func isPalindrome(text: String) -> Bool {
return text == String(text.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
return text == String(text.reversed())
}
```
func isPalindrome(text: String) -> Bool {
return text.lowercased() == String(text.lowercased().reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
return text.lowercased() == String(text.lowercased().reversed())
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false [/INST] ```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func modp(n: Int, p: Int) -> Int {
return n.power(p) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return n.power(p) % p
}
```
return n.power(p) % p // value of type 'Int' has no member 'power'
func modp(n: Int, p: Int) -> Int {
return n.power(p) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return n.power(p) % p
}
```
return n.power(p) % p // value of type 'Int' has no member 'power'
func modp(n: Int, p: Int) -> Int {
return n.power(of: p) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return n.power(of: p) % p
}
```
return n.power(of: p) % p // value of type 'Int' has no member 'power'
func modp(n: Int, p: Int) -> Int {
var result = 1
for _ in 0..<n {
result = (result * 2) % p
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
for _ in 0..<n {
result = (result * 2) % p
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
return Int(pow(2, n)) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(2, n)) % p
}
```
return Int(pow(2, n)) % p // initializer 'init(_:)' requires that 'Decimal' conform to 'BinaryInteger'
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = n
while base > 0 {
if base & 1 == 1 {
result = (result * n) % p
}
base >>= 1
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = n
while base > 0 {
if base & 1 == 1 {
result = (result * n) % p
}
base >>= 1
}
return result
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return (n % p + p) % p
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
return (n % p + p) % p
}
```
// XCTAssertTrue failed
func modp(n: Int, p: Int) -> Int {
var result = 1
for _ in 0..<n {
result = (result * 2) % p
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1 [/INST] ```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
for _ in 0..<n {
result = (result * 2) % p
}
return result
}
```
func removeVowels(text: String) -> String {
let vowels: [Character] = ["a", "e", "i", "o", "u"]
return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels: [Character] = ["a", "e", "i", "o", "u"]
return String(text.filter { !vowels.contains($0) })
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
```
return text.filter { !vowels.contains($0) } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
```
return text.filter { !vowels.contains($0) } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
```
return text.filter { !vowels.contains($0) } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return String(text.filter { !vowels.contains($0) })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels: Set<Character> = ["a", "e", "i", "o", "u"]
return String(text.filter { !vowels.contains($0) })
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels = "aeiou"
return text.filter { !vowels.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = "aeiou"
return text.filter { !vowels.contains($0) }
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels = "aeiou"
return text.filter { !vowels.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels = "aeiou"
return text.filter { !vowels.contains($0) }
}
```
// XCTAssertTrue failed
func removeVowels(text: String) -> String {
let vowels: [Character] = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd" [/INST] ```swift
func removeVowels(text: String) -> String {
let vowels: [Character] = ["a", "e", "i", "o", "u"]
return text.filter { !vowels.contains($0) }
}
```
// XCTAssertTrue failed
func belowThreshold(l: [Int], t: Int) -> Bool {
for n in l {
if n >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for n in l {
if n >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return l.allSatisfy { $0 < t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for n in l {
if n >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for n in l {
if n >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false [/INST] ```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12 [/INST] ```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.sorted() == s1Chars.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.sorted() == s1Chars.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
return chars0.sorted() == chars1.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
return chars0.sorted() == chars1.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
return chars0.count == chars1.count && chars0.sorted() == chars1.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
return chars0.count == chars1.count && chars0.sorted() == chars1.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
return chars0.sorted() == chars1.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
return chars0.sorted() == chars1.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
return s0.sorted() == s1.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
return s0.sorted() == s1.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
return chars0.sorted() == chars1.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let chars0 = Array(s0)
let chars1 = Array(s1)
return chars0.sorted() == chars1.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.sorted() == s1Chars.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.sorted() == s1Chars.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.count == s1Chars.count && s0Chars.allSatisfy { s1Chars.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.count == s1Chars.count && s0Chars.allSatisfy { s1Chars.contains($0) }
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.count == s1Chars.count && s0Chars.allSatisfy { s1Chars.contains($0) }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.count == s1Chars.count && s0Chars.allSatisfy { s1Chars.contains($0) }
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.sorted() == s1Chars.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false [/INST] ```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = Array(s0)
let s1Chars = Array(s1)
return s0Chars.sorted() == s1Chars.sorted()
}
```
// XCTAssertTrue failed
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
} else {
return fib(n: n-1) + fib(n: n-2)
}
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21 [/INST] ```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n-1) + fib(n: n-2)
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] - sorted[i-1] > 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] - sorted[i-1] > 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] - sorted[i-1] > 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] - sorted[i-1] > 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true [/INST] ```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let sorted = l.sorted()
for i in 1..<sorted.count {
if sorted[i] < sorted[i-1] {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let intersection = set1.intersection(set2)
return Array(intersection).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let intersection = set1.intersection(set2)
return Array(intersection).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3] [/INST] ```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
while factor * factor <= n {
if n % factor == 0 {
return factor
}
factor += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
while factor * factor <= n {
if n % factor == 0 {
return factor
}
factor += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var i = 2
while i * i <= n {
if n % i == 0 {
return i
}
i += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
while factor * factor <= n {
if n % factor == 0 {
return factor
}
factor += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
while factor * factor <= n {
if n % factor == 0 {
return factor
}
factor += 1
}
return 1
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
while factor * factor <= n {
if n % factor == 0 {
return factor
}
factor += 1
}
return 1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2 [/INST] ```swift
func largestPrimeFactor(n: Int) -> Int {
var factor = 2
while factor * factor <= n {
if n % factor == 0 {
return factor
}
factor += 1
}
return 1
}
```
// XCTAssertTrue failed
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1 [/INST] ```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false [/INST] ```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6] [/INST] ```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
} else if n == 3 {
return 1
} else {
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
} else if n == 3 {
return 1
} else {
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
} else if n == 3 {
return 1
} else {
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
} else if n == 3 {
return 1
} else {
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
} else if n == 3 {
return 1
} else {
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
} else if n == 3 {
return 1
} else {
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
} else if n == 3 {
return 1
} else {
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
} else if n == 3 {
return 1
} else {
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24 [/INST] ```swift
func fibfib(n: Int) -> Int {
if n <= 2 {
return 0
}
if n == 3 {
return 1
}
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3)
}
```
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
return fibfib(n-1) + fibfib(n-2) + fibfib(n-3) // missing argument label 'n:' in call
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for c in s {
if vowels.contains(c) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for c in s {
if vowels.contains(c) {
count += 1
}
}
return count
}
```
if vowels.contains(c) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3 [/INST] ```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
guard shift > 0 else { return self }
let shifted = self.dropFirst(shift) + self.prefix(shift)
return shifted
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
guard shift > 0 else { return self }
let shifted = self.dropFirst(shift) + self.prefix(shift)
return shifted
}
}
```
return shifted // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
if shift > count {
return reversed()
}
let shifted = dropFirst(shift) + dropLast(shift)
return shifted
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
if shift > count {
return reversed()
}
let shifted = dropFirst(shift) + dropLast(shift)
return shifted
}
}
```
return shifted // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
guard shift > 0 else { return self }
let shifted = self.dropFirst(shift) + self.prefix(shift)
return shifted
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
guard shift > 0 else { return self }
let shifted = self.dropFirst(shift) + self.prefix(shift)
return shifted
}
}
```
return shifted // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).characters.map { String($0) }
let shiftedDigits = digits.shift(shift)
return shiftedDigits.joinWithSeparator("")
}
extension Array where Element: Equatable {
func shift(n: Int) -> [Element] {
if n > self.count {
return self.reverse()
}
let shifted = self[n..<self.count] + self[0..<n]
return shifted
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).characters.map { String($0) }
let shiftedDigits = digits.shift(shift)
return shiftedDigits.joinWithSeparator("")
}
extension Array where Element: Equatable {
func shift(n: Int) -> [Element] {
if n > self.count {
return self.reverse()
}
let shifted = self[n..<self.count] + self[0..<n]
return shifted
}
}
```
let digits = String(x).characters.map { String($0) } // 'characters' is unavailable: Please use String directly
let shiftedDigits = digits.shift(shift) // missing argument label 'n:' in call
return self.reverse() // cannot use mutating member on immutable value: 'self' is immutable
return self.reverse() // cannot convert return expression of type '()' to return type '[Element]'
return shifted // cannot convert return expression of type 'ArraySlice<Element>' to return type '[Element]'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).characters.map { Int(String($0))! }
let shiftedDigits = digits.shift(shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shift(_ n: Int) -> [Int] {
if n > count {
return self.reversed()
}
let shifted = self[n..<count] + self[0..<n]
return shifted
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).characters.map { Int(String($0))! }
let shiftedDigits = digits.shift(shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shift(_ n: Int) -> [Int] {
if n > count {
return self.reversed()
}
let shifted = self[n..<count] + self[0..<n]
return shifted
}
}
```
let digits = String(x).characters.map { Int(String($0))! } // 'characters' is unavailable: Please use String directly
return shifted // cannot convert return expression of type 'ArraySlice<Int>' to return type '[Int]'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shift(shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shift(_ n: Int) -> [Int] {
guard n > 0 else { return self }
let shifted = self.dropFirst(n) + self.prefix(n)
return shifted
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shift(shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shift(_ n: Int) -> [Int] {
guard n > 0 else { return self }
let shifted = self.dropFirst(n) + self.prefix(n)
return shifted
}
}
```
return shifted // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
guard shift > 0 else { return self }
let shifted = self.dropFirst(shift) + self.prefix(shift)
return shifted
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
guard shift > 0 else { return self }
let shifted = self.dropFirst(shift) + self.prefix(shift)
return shifted
}
}
```
return shifted // cannot convert return expression of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to return type '[Int]'
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
let shift = shift % count
return Array(self[shift..<count] + self[0..<shift])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
let shift = shift % count
return Array(self[shift..<count] + self[0..<shift])
}
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shift(shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shift(_ n: Int) -> [Int] {
let shift = n % count
return Array(self[shift..<count] + self[0..<shift])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shift(shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shift(_ n: Int) -> [Int] {
let shift = n % count
return Array(self[shift..<count] + self[0..<shift])
}
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
let shift = shift % count
return Array(self[shift..<count] + self[0..<shift])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12" [/INST] ```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { Int(String($0))! }
let shiftedDigits = digits.shifted(by: shift)
return shiftedDigits.map { String($0) }.joined()
}
extension Array where Element == Int {
func shifted(by shift: Int) -> [Int] {
let shift = shift % count
return Array(self[shift..<count] + self[0..<shift])
}
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let asciiValue = c.asciiValue, asciiValue >= 65 && asciiValue <= 90 {
sum += asciiValue - 64
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let asciiValue = c.asciiValue, asciiValue >= 65 && asciiValue <= 90 {
sum += asciiValue - 64
}
}
return sum
}
```
sum += asciiValue - 64 // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let asciiValue = c.asciiValue {
sum += Int(asciiValue)
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let asciiValue = c.asciiValue {
sum += Int(asciiValue)
}
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153 [/INST] ```swift
func digitSum(s: String) -> Int {
var sum = 0
for c in s.uppercased() {
if let digit = Int(String(c)) {
sum += digit
}
}
return sum
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.components(separatedBy: " ").map { Int($0) ?? 0 }
let appleCount = fruitCount[0]
let orangeCount = fruitCount[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.components(separatedBy: " ").map { Int($0) ?? 0 }
let appleCount = fruitCount[0]
let orangeCount = fruitCount[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.split(separator: " ").map { Int($0) ?? 0 }
let appleCount = fruitCount[0]
let orangeCount = fruitCount[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.split(separator: " ").map { Int($0) ?? 0 }
let appleCount = fruitCount[0]
let orangeCount = fruitCount[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ").first!)! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ").first!)! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ").first!)! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
return n - appleCount - orangeCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ").first!)! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
return n - appleCount - orangeCount
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.components(separatedBy: " ").map { Int($0) ?? 0 }
let appleCount = fruitCount[0]
let orangeCount = fruitCount[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.components(separatedBy: " ").map { Int($0) ?? 0 }
let appleCount = fruitCount[0]
let orangeCount = fruitCount[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.components(separatedBy: " ").filter { $0.hasPrefix("apple") || $0.hasPrefix("orange") }.count
return n - fruitCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.components(separatedBy: " ").filter { $0.hasPrefix("apple") || $0.hasPrefix("orange") }.count
return n - fruitCount
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ")[0])! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ")[0])! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
let mangoCount = n - appleCount - orangeCount
return mangoCount
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.components(separatedBy: " ").map { Int($0) ?? 0 }
let appleCount = fruitCount[0]
let orangeCount = fruitCount[1]
let mangoCount = n - (appleCount + orangeCount)
return mangoCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCount = s.components(separatedBy: " ").map { Int($0) ?? 0 }
let appleCount = fruitCount[0]
let orangeCount = fruitCount[1]
let mangoCount = n - (appleCount + orangeCount)
return mangoCount
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ").first!)! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
return n - appleCount - orangeCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ").first!)! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
return n - appleCount - orangeCount
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ").first!)! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
return n - appleCount - orangeCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19 [/INST] ```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruitCounts = s.components(separatedBy: " and ").map { Int($0.components(separatedBy: " ").first!)! }
let appleCount = fruitCounts[0]
let orangeCount = fruitCounts[1]
return n - appleCount - orangeCount
}
```
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
```
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else { // value of type 'Int' has no member 'isEven'
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else { return [] }
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else { return [] }
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
```
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else { return [] } // value of type 'Int' has no member 'isEven'
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
```
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isEven }) else { // value of type 'Int' has no member 'isEven'
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
return [arr[smallestEvenIndex], smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
return [arr[smallestEvenIndex], smallestEvenIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
let smallestEvenValue = arr[smallestEvenIndex]
return [smallestEvenValue, smallestEvenIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
return [arr[smallestEvenIndex], smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
return [arr[smallestEvenIndex], smallestEvenIndex]
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
return [arr[smallestEvenIndex], smallestEvenIndex]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1] [/INST] ```swift
func pluck(arr: [Int]) -> [Int] {
guard let smallestEvenIndex = arr.firstIndex(where: { $0.isMultiple(of: 2) }) else {
return []
}
return [arr[smallestEvenIndex], smallestEvenIndex]
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var count = [Int: Int]()
var maxCount = 0
var maxValue = -1
for num in lst {
if count[num] == nil {
count[num] = 1
} else {
count[num]! += 1
}
if count[num]! > maxCount {
maxCount = count[num]!
maxValue = num
}
}
if maxCount >= maxValue {
return maxValue
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var count = [Int: Int]()
var maxCount = 0
var maxValue = -1
for num in lst {
if count[num] == nil {
count[num] = 1
} else {
count[num]! += 1
}
if count[num]! > maxCount {
maxCount = count[num]!
maxValue = num
}
}
if maxCount >= maxValue {
return maxValue
} else {
return -1
}
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency: [Int: Int] = [:]
var maxFrequency = -1
var maxValue = -1
for value in lst {
if frequency[value] == nil {
frequency[value] = 1
} else {
frequency[value]! += 1
}
if frequency[value]! > maxFrequency {
maxFrequency = frequency[value]!
maxValue = value
}
}
if maxFrequency >= maxValue {
return maxValue
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var frequency: [Int: Int] = [:]
var maxFrequency = -1
var maxValue = -1
for value in lst {
if frequency[value] == nil {
frequency[value] = 1
} else {
frequency[value]! += 1
}
if frequency[value]! > maxFrequency {
maxFrequency = frequency[value]!
maxValue = value
}
}
if maxFrequency >= maxValue {
return maxValue
} else {
return -1
}
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 1
for j in i+1..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 1
for j in i+1..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency: [Int: Int] = [:]
var maxFrequency = -1
var maxValue = -1
for value in lst {
if frequency[value] == nil {
frequency[value] = 1
} else {
frequency[value]! += 1
}
if frequency[value]! > maxFrequency {
maxFrequency = frequency[value]!
maxValue = value
}
}
if maxFrequency >= maxValue {
return maxValue
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var frequency: [Int: Int] = [:]
var maxFrequency = -1
var maxValue = -1
for value in lst {
if frequency[value] == nil {
frequency[value] = 1
} else {
frequency[value]! += 1
}
if frequency[value]! > maxFrequency {
maxFrequency = frequency[value]!
maxValue = value
}
}
if maxFrequency >= maxValue {
return maxValue
} else {
return -1
}
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 0
for j in 0..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency > maxFrequency && frequency >= value {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 0
for j in 0..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency > maxFrequency && frequency >= value {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 1
for j in i+1..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 1
for j in i+1..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 1
for j in i+1..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 1
for j in i+1..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 0
for j in 0..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency > maxFrequency && value > 0 {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 0
for j in 0..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency > maxFrequency && value > 0 {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency: [Int: Int] = [:]
var maxFrequency = 0
var maxValue = 0
for value in lst {
if frequency[value] == nil {
frequency[value] = 1
} else {
frequency[value]! += 1
}
if frequency[value]! > maxFrequency {
maxFrequency = frequency[value]!
maxValue = value
}
}
if maxFrequency >= maxValue {
return maxValue
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var frequency: [Int: Int] = [:]
var maxFrequency = 0
var maxValue = 0
for value in lst {
if frequency[value] == nil {
frequency[value] = 1
} else {
frequency[value]! += 1
}
if frequency[value]! > maxFrequency {
maxFrequency = frequency[value]!
maxValue = value
}
}
if maxFrequency >= maxValue {
return maxValue
} else {
return -1
}
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 1
for j in i+1..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1 [/INST] ```swift
func search(lst: [Int]) -> Int {
var maxFrequency = -1
var maxValue = -1
for i in 0..<lst.count {
let value = lst[i]
var frequency = 1
for j in i+1..<lst.count {
if lst[j] == value {
frequency += 1
}
}
if frequency >= value && frequency > maxFrequency {
maxFrequency = frequency
maxValue = value
}
}
return maxValue
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result: [Int] = []
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result: [Int] = []
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sortedList = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
sortedList.append(lst[minIndex])
sortedList.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
sortedList.append(lst[minIndex])
}
return sortedList
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result = [Int]()
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result: [Int] = []
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result: [Int] = []
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
```
// XCTAssertTrue failed
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result: [Int] = []
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int] [/INST] ```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var result: [Int] = []
var minIndex = 0
var maxIndex = lst.count - 1
while minIndex < maxIndex {
result.append(lst[minIndex])
result.append(lst[maxIndex])
minIndex += 1
maxIndex -= 1
}
if minIndex == maxIndex {
result.append(lst[minIndex])
}
return result
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
let area = (a * b * c) / 2
return Double(area).rounded(to: 2)
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
let area = (a * b * c) / 2
return Double(area).rounded(to: 2)
} else {
return -1
}
}
```
return Double(area).rounded(to: 2) // no exact matches in call to instance method 'rounded'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double(a * b * c) / 2
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double(a * b * c) / 2
} else {
return -1
}
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double(a * b * c) / 2
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double(a * b * c) / 2
} else {
return -1
}
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double(a * b * c) / 2
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double(a * b * c) / 2
} else {
return -1
}
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return (a * b * sin(c)) / 2
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return (a * b * sin(c)) / 2
} else {
return -1
}
}
```
return (a * b * sin(c)) / 2 // cannot convert value of type 'Int' to expected argument type 'Double'
return (a * b * sin(c)) / 2 // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return (a * b * sin(c)) / 2
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return (a * b * sin(c)) / 2
} else {
return -1
}
}
```
return (a * b * sin(c)) / 2 // cannot convert value of type 'Int' to expected argument type 'Double'
return (a * b * sin(c)) / 2 // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return (a * b * sin(c)) / 2
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return (a * b * sin(c)) / 2
} else {
return -1
}
}
```
return (a * b * sin(c)) / 2 // cannot convert value of type 'Int' to expected argument type 'Double'
return (a * b * sin(c)) / 2 // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return (a * b * sin(c)) / 2
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return (a * b * sin(c)) / 2
} else {
return -1
}
}
```
return (a * b * sin(c)) / 2 // cannot convert value of type 'Int' to expected argument type 'Double'
return (a * b * sin(c)) / 2 // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double((a * b * c) / 2).rounded(to: 2)
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double((a * b * c) / 2).rounded(to: 2)
} else {
return -1
}
}
```
return Double((a * b * c) / 2).rounded(to: 2) // no exact matches in call to instance method 'rounded'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double((a * b * c) / 2).rounded(to: 2)
} else {
return -1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1 [/INST] ```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
if a + b > c && a + c > b && b + c > a {
return Double((a * b * c) / 2).rounded(to: 2)
} else {
return -1
}
}
```
return Double((a * b * c) / 2).rounded(to: 2) // no exact matches in call to instance method 'rounded'
func willItFly(q: [Int], w: Int) -> Bool {
let isBalanced = q.elementsEqual(q.reversed())
let sum = q.reduce(0, +)
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let isBalanced = q.elementsEqual(q.reversed())
let sum = q.reduce(0, +)
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.count == q.reversed().count
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.count == q.reversed().count
return isBalanced && sum <= w
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.elementsEqual(q.reversed())
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.elementsEqual(q.reversed())
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let isBalanced = q.elementsEqual(q.reversed())
let sum = q.reduce(0, +)
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let isBalanced = q.elementsEqual(q.reversed())
let sum = q.reduce(0, +)
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.elementsEqual(q.reversed())
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.elementsEqual(q.reversed())
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.count == q.reversed().count
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.count == q.reversed().count
return isBalanced && sum <= w
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.elementsEqual(q.reversed())
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.elementsEqual(q.reversed())
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.count == q.reversed().count
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.count == q.reversed().count
return isBalanced && sum <= w
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.count == q.reversed().count
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.count == q.reversed().count
return isBalanced && sum <= w
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.elementsEqual(q.reversed())
return isBalanced && sum <= w
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true [/INST] ```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.elementsEqual(q.reversed())
return isBalanced && sum <= w
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var dp = [Int](repeating: 0, count: n)
var left = 0, right = n - 1
while left < right {
if arr[left] == arr[right] {
dp[left] = dp[right]
} else {
dp[left] = min(dp[left], dp[right]) + 1
}
left += 1
right -= 1
}
return dp[0]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var dp = [Int](repeating: 0, count: n)
var left = 0, right = n - 1
while left < right {
if arr[left] == arr[right] {
dp[left] = dp[right]
} else {
dp[left] = min(dp[left], dp[right]) + 1
}
left += 1
right -= 1
}
return dp[0]
}
```
// XCTAssertTrue failed
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var count = 0
for i in 0..<arr.count / 2 {
if arr[i] != arr[arr.count - 1 - i] {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
var count = 0
for i in 0..<arr.count / 2 {
if arr[i] != arr[arr.count - 1 - i] {
count += 1
}
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0 [/INST] ```swift
func smallestChange(arr: [Int]) -> Int {
let n = arr.count
var left = 0
var right = n - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars2 < totalChars1 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars2 < totalChars1 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars2 < totalChars1 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars2 < totalChars1 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"] [/INST] ```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var primeFactors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= a {
if a % currentFactor == 0 {
primeFactors.append(currentFactor)
a /= currentFactor
} else {
currentFactor += 1
}
}
return primeFactors.count == 3
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var primeFactors = [Int]()
var currentFactor = 2
while currentFactor * currentFactor <= a {
if a % currentFactor == 0 {
primeFactors.append(currentFactor)
a /= currentFactor
} else {
currentFactor += 1
}
}
return primeFactors.count == 3
}
```
a /= currentFactor // left side of mutating operator isn't mutable: 'a' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...a/2 {
if a % i == 0 && isPrime(i) && isPrime(a / i) {
return true
}
}
}
return false
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...n/2 {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...a/2 {
if a % i == 0 && isPrime(i) && isPrime(a / i) {
return true
}
}
}
return false
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...n/2 {
if n % i == 0 {
return false
}
}
return true
}
```
if a % i == 0 && isPrime(i) && isPrime(a / i) { // missing argument label 'n:' in call
if a % i == 0 && isPrime(i) && isPrime(a / i) { // missing argument label 'n:' in call
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var primeFactors = [Int]()
for i in 2...a {
if a % i == 0 {
primeFactors.append(i)
}
}
return primeFactors.count == 3
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var primeFactors = [Int]()
for i in 2...a {
if a % i == 0 {
primeFactors.append(i)
}
}
return primeFactors.count == 3
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...a/2 {
if a % i == 0 {
for j in 2...i/2 {
if i % j == 0 {
return false
}
}
}
}
return true
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...a/2 {
if a % i == 0 {
for j in 2...i/2 {
if i % j == 0 {
return false
}
}
}
}
return true
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var isPrime = true
var i = 2
while i * i <= a {
if a % i == 0 {
isPrime = false
break
}
i += 1
}
return isPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var isPrime = true
var i = 2
while i * i <= a {
if a % i == 0 {
isPrime = false
break
}
i += 1
}
return isPrime
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
for i in 0..<primeNumbers.count {
for j in i+1..<primeNumbers.count {
for k in j+1..<primeNumbers.count {
if a == primeNumbers[i] * primeNumbers[j] * primeNumbers[k] {
return true
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
for i in 0..<primeNumbers.count {
for j in i+1..<primeNumbers.count {
for k in j+1..<primeNumbers.count {
if a == primeNumbers[i] * primeNumbers[j] * primeNumbers[k] {
return true
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var isPrime = true
var i = 2
while i * i <= a {
if a % i == 0 {
isPrime = false
break
}
i += 1
}
return isPrime
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var isPrime = true
var i = 2
while i * i <= a {
if a % i == 0 {
isPrime = false
break
}
i += 1
}
return isPrime
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var primeFactors = [Int]()
for i in 2...a {
if a % i == 0 {
primeFactors.append(i)
}
}
if primeFactors.count == 3 {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var primeFactors = [Int]()
for i in 2...a {
if a % i == 0 {
primeFactors.append(i)
}
}
if primeFactors.count == 3 {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...a/2 {
if a % i == 0 {
return false
}
}
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
for i in 2...a/2 {
if a % i == 0 {
return false
}
}
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var primeFactors = [Int]()
for i in 2...a {
if a % i == 0 {
primeFactors.append(i)
}
}
if primeFactors.count == 3 {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true [/INST] ```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var primeFactors = [Int]()
for i in 2...a {
if a % i == 0 {
primeFactors.append(i)
}
}
if primeFactors.count == 3 {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n.power(Int(log(Double(x)) / log(Double(n))))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n.power(Int(log(Double(x)) / log(Double(n))))
}
```
return x == n.power(Int(log(Double(x)) / log(Double(n)))) // value of type 'Int' has no member 'power'
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n ** Int(log(Double(x)) / log(Double(n)))
}
```
return x == n ** Int(log(Double(x)) / log(Double(n))) // no operator '**' is defined; did you mean 'pow(_:_:)'?
func isSimplePower(x: Int, n: Int) -> Bool {
if n == 1 {
return true
}
let int = Int(log(Double(x)) / log(Double(n)))
return int * n == x
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if n == 1 {
return true
}
let int = Int(log(Double(x)) / log(Double(n)))
return int * n == x
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
if n == 1 {
return true
}
var i = 1
while i <= x {
if i == x {
return true
}
i *= n
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if n == 1 {
return true
}
var i = 1
while i <= x {
if i == x {
return true
}
i *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n.power(Int(log(Double(x)) / log(Double(n))))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false [/INST] ```swift
func isSimplePower(x: Int, n: Int) -> Bool {
return x == n.power(Int(log(Double(x)) / log(Double(n))))
}
```
return x == n.power(Int(log(Double(x)) / log(Double(n)))) // value of type 'Int' has no member 'power'
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a).truncatingRemainder(dividingBy: 1) == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a).truncatingRemainder(dividingBy: 1) == 0
}
```
return a >= 0 && sqrt(a).truncatingRemainder(dividingBy: 1) == 0 // cannot convert value of type 'Int' to expected argument type 'Double'
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a) % 1 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a) % 1 == 0
}
```
return a >= 0 && sqrt(a) % 1 == 0 // cannot convert value of type 'Int' to expected argument type 'Double'
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a) % 1 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a) % 1 == 0
}
```
return a >= 0 && sqrt(a) % 1 == 0 // cannot convert value of type 'Int' to expected argument type 'Double'
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(round(pow(Double(a), 1.0/3.0)))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let cubeRoot = Int(pow(Double(a), 1.0 / 3.0))
return cubeRoot * cubeRoot * cubeRoot == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let cubeRoot = Int(pow(Double(a), 1.0 / 3.0))
return cubeRoot * cubeRoot * cubeRoot == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(Double(a)) == floor(sqrt(Double(a)))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(Double(a)) == floor(sqrt(Double(a)))
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a) % 1 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a) % 1 == 0
}
```
return a >= 0 && sqrt(a) % 1 == 0 // cannot convert value of type 'Int' to expected argument type 'Double'
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a) % 1 == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false [/INST] ```swift
func iscube(a: Int) -> Bool {
return a >= 0 && sqrt(a) % 1 == 0
}
```
return a >= 0 && sqrt(a) % 1 == 0 // cannot convert value of type 'Int' to expected argument type 'Double'
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(digit) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(digit) {
count += 1
}
}
return count
}
```
if primeDigits.contains(digit) { // cannot convert value of type 'Character' to expected argument type 'String'
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(digit) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(digit) {
count += 1
}
}
return count
}
```
if primeDigits.contains(digit) { // cannot convert value of type 'Character' to expected argument type 'String'
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(String(digit)) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(String(digit)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(digit) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(digit) {
count += 1
}
}
return count
}
```
if primeDigits.contains(digit) { // cannot convert value of type 'Character' to expected argument type 'String'
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(digit) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(digit) {
count += 1
}
}
return count
}
```
if primeDigits.contains(digit) { // cannot convert value of type 'Character' to expected argument type 'String'
func hexKey(num: String) -> Int {
let primeDigits: Set<Character> = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains($0) }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits: Set<Character> = ["2", "3", "5", "7", "B", "D"]
return num.filter { primeDigits.contains($0) }.count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(String(digit)) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(String(digit)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if primeDigits.contains(String(char)) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if primeDigits.contains(String(char)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(String(digit)) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(String(digit)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(String(digit)) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2 [/INST] ```swift
func hexKey(num: String) -> Int {
let primeDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeDigits.contains(String(digit)) {
count += 1
}
}
return count
}
```
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var num = decimal
while num > 0 {
binary = String(num % 2) + binary
num /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var num = decimal
while num > 0 {
binary = String(num % 2) + binary
num /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db" [/INST] ```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var remainder = decimal
while remainder > 0 {
binary = String(remainder % 2) + binary
remainder /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] && s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] && s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] && s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] && s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] && s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] && s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] && s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] && s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] && s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] && s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] && s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] && s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false [/INST] ```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
let letterGrade = gradeTable[grade] ?? "E"
return letterGrade
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
let letterGrade = gradeTable[grade] ?? "E"
return letterGrade
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
let letterGrade = gradeTable[grade] ?? "E"
return letterGrade
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
let letterGrade = gradeTable[grade] ?? "E"
return letterGrade
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
let letterGrade = gradeTable[grade] ?? "E"
return letterGrade
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
let letterGrade = gradeTable[grade] ?? "E"
return letterGrade
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
let letterGrade = gradeTable[grade] ?? "E"
return letterGrade
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
let letterGrade = gradeTable[grade] ?? "E"
return letterGrade
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"] [/INST] ```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
let gradeTable: [Double: String] = [
4.0: "A+",
3.7: "A",
3.3: "A-",
3.0: "B+",
2.7: "B",
2.3: "B-",
2.0: "C+",
1.7: "C",
1.3: "C-",
1.0: "D+",
0.7: "D",
0.0: "D-",
0.0: "E"
]
return grades.map { grade in
if let letterGrade = gradeTable[grade] {
return letterGrade
} else {
return "E"
}
}
}
```
0.0: "D-", // dictionary literal of type '[Double : String]' has duplicate entries for floating-point literal key '0.0'
// Fatal error: Dictionary literal contains duplicate keys
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 || length == 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 || length == 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2...length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2...length {
if length % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2...length / 2 {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2...length / 2 {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 || length == 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 || length == 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 || length == 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false [/INST] ```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 0 || length == 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).starts(with: "1") || String(i).ends(with: "1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).starts(with: "1") || String(i).ends(with: "1") {
count += 1
}
}
return count
}
```
if String(i).starts(with: "1") || String(i).ends(with: "1") { // value of type 'String' has no member 'ends'
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).starts(with: "1") || String(i).ends(with: "1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).starts(with: "1") || String(i).ends(with: "1") {
count += 1
}
}
return count
}
```
if String(i).starts(with: "1") || String(i).ends(with: "1") { // value of type 'String' has no member 'ends'
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. [/INST] ```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...n {
if String(i).hasPrefix("1") || String(i).hasSuffix("1") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var binary = ""
var n = N
while n > 0 {
let digit = n % 2
sum += digit
binary += String(digit)
n /= 2
}
return String(sum)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var binary = ""
var n = N
while n > 0 {
let digit = n % 2
sum += digit
binary += String(digit)
n /= 2
}
return String(sum)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100" [/INST] ```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
func add(lst: [Int]) -> Int {
var result = 0
for (index, element) in lst.enumerated() {
if index % 2 == 1 && element % 2 == 0 {
result += element
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var result = 0
for (index, element) in lst.enumerated() {
if index % 2 == 1 && element % 2 == 0 {
result += element
}
}
return result
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var result = 0
for (index, element) in lst.enumerated() {
if index % 2 == 1 && element % 2 == 0 {
result += element
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var result = 0
for (index, element) in lst.enumerated() {
if index % 2 == 1 && element % 2 == 0 {
result += element
}
}
return result
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (i, elem) in lst.enumerated() {
if i % 2 == 1 && elem % 2 == 0 {
sum += elem
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (i, elem) in lst.enumerated() {
if i % 2 == 1 && elem % 2 == 0 {
sum += elem
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var result = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
result += element
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2 [/INST] ```swift
func add(lst: [Int]) -> Int {
var result = 0
for (i, element) in lst.enumerated() {
if i % 2 == 1 && element % 2 == 0 {
result += element
}
}
return result
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let orderedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return orderedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let orderedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return orderedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let orderedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let orderedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let orderedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
let orderedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor" [/INST] ```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { word in
let characters = word.map { String($0) }
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue }
return sortedCharacters.joined()
}
return orderedWords.joined(separator: " ")
}
```
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // type '(_, _) -> Bool' cannot conform to 'SortComparator'
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // instance method 'sorted(using:)' requires the types 'String' and '((_, _) -> Bool).Compared' be equivalent
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$0' without a type annotation
let sortedCharacters = characters.sorted { $0.asciiValue < $1.asciiValue } // cannot infer type of closure parameter '$1' without a type annotation
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
if let j = row.firstIndex(of: x) {
result.append((i, j))
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
if let j = row.firstIndex(of: x) {
result.append((i, j))
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
if let j = row.firstIndex(of: x) {
result.append((i, j))
}
}
return result.sorted { $0.0 < $1.0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
if let j = row.firstIndex(of: x) {
result.append((i, j))
}
}
return result.sorted { $0.0 < $1.0 }
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, columns) in lst.enumerated() {
if let index = columns.firstIndex(of: x) {
result.append((row, index))
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, columns) in lst.enumerated() {
if let index = columns.firstIndex(of: x) {
result.append((row, index))
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated() {
if element == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated() {
if element == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 })
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 }
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 }
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 }
}
```
// XCTAssertTrue failed
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated() {
if element == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)] [/INST] ```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, element) in row.enumerated() {
if element == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 }
}
```
// XCTAssertTrue failed
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0] [/INST] ```swift
func sortArray(array: [Int]) -> [Int] {
let sum = array.first! + array.last!
if sum % 2 == 1 {
return array.sorted()
} else {
return array.sorted(by: >)
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString += rotatedAlphabet[index]
}
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString += rotatedAlphabet[index]
}
}
return encryptedString
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encrypted += rotatedAlphabet[index]
}
}
return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encrypted += rotatedAlphabet[index]
}
}
return encrypted
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for character in s {
if let index = alphabet.firstIndex(of: character) {
encryptedString.append(rotatedAlphabet[index])
}
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for character in s {
if let index = alphabet.firstIndex(of: character) {
encryptedString.append(rotatedAlphabet[index])
}
}
return encryptedString
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
return s.map { rotatedAlphabet[$0] }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
return s.map { rotatedAlphabet[$0] }.joined()
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for character in s {
if let index = alphabet.firstIndex(of: character) {
encryptedString.append(rotatedAlphabet[index])
}
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for character in s {
if let index = alphabet.firstIndex(of: character) {
encryptedString.append(rotatedAlphabet[index])
}
}
return encryptedString
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encrypted += rotatedAlphabet[index]
}
}
return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encrypted += rotatedAlphabet[index]
}
}
return encrypted
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
return s.map { String(rotatedAlphabet[alphabet.index(of: $0)!]) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
return s.map { String(rotatedAlphabet[alphabet.index(of: $0)!]) }.joined()
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encrypted.append(rotatedAlphabet[index])
}
}
return encrypted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encrypted = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encrypted.append(rotatedAlphabet[index])
}
}
return encrypted
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for character in s {
if let index = alphabet.firstIndex(of: character) {
encryptedString += rotatedAlphabet[index]
}
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for character in s {
if let index = alphabet.firstIndex(of: character) {
encryptedString += rotatedAlphabet[index]
}
}
return encryptedString
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString += rotatedAlphabet[index]
}
}
return encryptedString
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix" [/INST] ```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = alphabet.rotated(by: 2)
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString += rotatedAlphabet[index]
}
}
return encryptedString
}
```
let rotatedAlphabet = alphabet.rotated(by: 2) // value of type 'String' has no member 'rotated'
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil [/INST] ```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
for i in 1..<sorted.count {
if sorted[i] != sorted[i-1] {
return sorted[i]
}
}
return nil
}
```
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1 [/INST] ```swift
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".")
var boredomCount = 0
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger)
}
```
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if sum.truncatingRemainder(dividingBy: 1) == 0 {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if sum.truncatingRemainder(dividingBy: 1) == 0 {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger)
}
```
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger)
}
```
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
return sum.isInteger && (x.isInteger && y.isInteger && z.isInteger) // value of type 'Double' has no member 'isInteger'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false [/INST] ```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let xInt = Int(x)
let yInt = Int(y)
let zInt = Int(z)
if xInt == yInt + zInt || yInt == xInt + zInt || zInt == xInt + yInt {
return true
} else {
return false
}
}
```
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.firstIndex(of: character)
if vowels.contains(character) {
let newIndex = (index + 2) % alphabet.count
encodedMessage.append(alphabet[newIndex])
} else {
let newIndex = (index + 1) % alphabet.count
encodedMessage.append(alphabet[newIndex])
}
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.firstIndex(of: character)
if vowels.contains(character) {
let newIndex = (index + 2) % alphabet.count
encodedMessage.append(alphabet[newIndex])
} else {
let newIndex = (index + 1) % alphabet.count
encodedMessage.append(alphabet[newIndex])
}
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
if vowels.contains(character) { // cannot convert value of type 'Character' to expected argument type 'String'
let newIndex = (index + 2) % alphabet.count // cannot convert value of type 'String.Index?' to expected argument type 'Int'
let newIndex = (index + 1) % alphabet.count // cannot convert value of type 'String.Index?' to expected argument type 'Int'
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.firstIndex(of: character)
let newIndex = (index + 2) % alphabet.count
let newCharacter = alphabet[newIndex]
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.firstIndex(of: character)
let newIndex = (index + 2) % alphabet.count
let newCharacter = alphabet[newIndex]
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
let newIndex = (index + 2) % alphabet.count // cannot convert value of type 'String.Index?' to expected argument type 'Int'
func encode(message: String) -> String {
var encodedMessage = ""
for character in message {
if character.isLetter {
let newCharacter = character.isUppercase ? character.lowercased() : character.uppercased()
if character.isVowel {
let vowelIndex = "aeiou".firstIndex(of: character) ?? 0
let newVowelIndex = (vowelIndex + 2) % 5
let newVowel = "aeiou"[newVowelIndex]
encodedMessage.append(newVowel)
} else {
encodedMessage.append(newCharacter)
}
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for character in message {
if character.isLetter {
let newCharacter = character.isUppercase ? character.lowercased() : character.uppercased()
if character.isVowel {
let vowelIndex = "aeiou".firstIndex(of: character) ?? 0
let newVowelIndex = (vowelIndex + 2) % 5
let newVowel = "aeiou"[newVowelIndex]
encodedMessage.append(newVowel)
} else {
encodedMessage.append(newCharacter)
}
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
if character.isVowel { // value of type 'Character' has no member 'isVowel'
let vowelIndex = "aeiou".firstIndex(of: character) ?? 0 // binary operator '??' cannot be applied to operands of type 'String.Index?' and 'Int'
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.firstIndex(of: character) ?? 0
let newIndex = (index + 2) % 26
let newCharacter = alphabet[newIndex]
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.firstIndex(of: character) ?? 0
let newIndex = (index + 2) % 26
let newCharacter = alphabet[newIndex]
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
let index = alphabet.firstIndex(of: character) ?? 0 // binary operator '??' cannot be applied to operands of type 'String.Index?' and 'Int'
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if character.isLetter {
let index = alphabet.index(of: character)
let newIndex = (index + 2) % 26
let newCharacter = alphabet[newIndex]
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if character.isLetter {
let index = alphabet.index(of: character)
let newIndex = (index + 2) % 26
let newCharacter = alphabet[newIndex]
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
let index = alphabet.index(of: character) // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
let newIndex = (index + 2) % 26 // cannot convert value of type 'String.Index?' to expected argument type 'Int'
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.firstIndex(of: character)
if vowels.contains(character) {
let newIndex = (index + 2) % 26
encodedMessage.append(alphabet[newIndex])
} else {
encodedMessage.append(alphabet[index])
}
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.firstIndex(of: character)
if vowels.contains(character) {
let newIndex = (index + 2) % 26
encodedMessage.append(alphabet[newIndex])
} else {
encodedMessage.append(alphabet[index])
}
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
if vowels.contains(character) { // cannot convert value of type 'Character' to expected argument type 'String'
let newIndex = (index + 2) % 26 // cannot convert value of type 'String.Index?' to expected argument type 'Int'
encodedMessage.append(alphabet[index]) // value of optional type 'String.Index?' must be unwrapped to a value of type 'String.Index'
func encode(message: String) -> String {
var encodedMessage = ""
for character in message {
if character.isLetter {
let newCharacter = character.isUppercase ? character.lowercased() : character.uppercased()
if character.isVowel {
let vowelIndex = "aeiou".firstIndex(of: character) ?? 0
let newVowelIndex = (vowelIndex + 2) % 5
let newVowel = "aeiou"[newVowelIndex]
encodedMessage += newVowel
} else {
encodedMessage += newCharacter
}
} else {
encodedMessage += character
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for character in message {
if character.isLetter {
let newCharacter = character.isUppercase ? character.lowercased() : character.uppercased()
if character.isVowel {
let vowelIndex = "aeiou".firstIndex(of: character) ?? 0
let newVowelIndex = (vowelIndex + 2) % 5
let newVowel = "aeiou"[newVowelIndex]
encodedMessage += newVowel
} else {
encodedMessage += newCharacter
}
} else {
encodedMessage += character
}
}
return encodedMessage
}
```
if character.isVowel { // value of type 'Character' has no member 'isVowel'
let vowelIndex = "aeiou".firstIndex(of: character) ?? 0 // binary operator '??' cannot be applied to operands of type 'String.Index?' and 'Int'
encodedMessage += character // cannot convert value of type 'Character' to expected argument type 'String'
func encode(message: String) -> String {
var encodedMessage = ""
for character in message.lowercased() {
if character.isLetter {
let newCharacter = character.isUppercase ? character.lowercased() : character.uppercased()
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
var encodedMessage = ""
for character in message.lowercased() {
if character.isLetter {
let newCharacter = character.isUppercase ? character.lowercased() : character.uppercased()
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.index(of: character)
let newIndex = (index + 2) % alphabet.count
let newCharacter = alphabet[newIndex]
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message {
if character.isLetter {
let index = alphabet.index(of: character)
let newIndex = (index + 2) % alphabet.count
let newCharacter = alphabet[newIndex]
encodedMessage.append(newCharacter)
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
let index = alphabet.index(of: character) // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
let newIndex = (index + 2) % alphabet.count // cannot convert value of type 'String.Index?' to expected argument type 'Int'
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
let index = alphabet.index(of: character)
let newIndex = (index + 2) % alphabet.count
encodedMessage.append(alphabet[newIndex])
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG" [/INST] ```swift
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encodedMessage = ""
for character in message.lowercased() {
if vowels.contains(character) {
let index = alphabet.index(of: character)
let newIndex = (index + 2) % alphabet.count
encodedMessage.append(alphabet[newIndex])
} else {
encodedMessage.append(character)
}
}
return encodedMessage
}
```
if vowels.contains(character) { // cannot convert value of type 'Character' to expected argument type 'String'
let index = alphabet.index(of: character) // 'index(of:)' is deprecated: renamed to 'firstIndex(of:)'
let newIndex = (index + 2) % alphabet.count // cannot convert value of type 'String.Index?' to expected argument type 'Int'
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
for digit in String(largestPrime).characters { // 'characters' is unavailable: Please use String directly
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if isPrime(num) {
if num > largestPrime {
largestPrime = num
}
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if isPrime(num) {
if num > largestPrime {
largestPrime = num
}
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
for digit in String(largestPrime).characters { // 'characters' is unavailable: Please use String directly
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
for digit in String(largestPrime).characters { // 'characters' is unavailable: Please use String directly
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
for digit in String(largestPrime).characters { // 'characters' is unavailable: Please use String directly
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
for digit in String(largestPrime).characters { // 'characters' is unavailable: Please use String directly
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
for digit in String(largestPrime).characters { // 'characters' is unavailable: Please use String directly
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
for digit in String(largestPrime).characters { // 'characters' is unavailable: Please use String directly
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
var sumOfDigits = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
for digit in String(largestPrime).characters {
sumOfDigits += Int(String(digit))!
}
return sumOfDigits
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
for digit in String(largestPrime).characters { // 'characters' is unavailable: Please use String directly
func skjkasdkd(lst: [Int]) -> Int {
// Find the largest prime value in the array
let largestPrime = lst.filter { $0 > 1 }.reduce(1) { $0 > $1 ? $0 : $1 }
// Return the sum of its digits
return largestPrime.digits.reduce(0, +)
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
// Find the largest prime value in the array
let largestPrime = lst.filter { $0 > 1 }.reduce(1) { $0 > $1 ? $0 : $1 }
// Return the sum of its digits
return largestPrime.digits.reduce(0, +)
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func skjkasdkd(lst: [Int]) -> Int {
// Find the largest prime value in the array
let largestPrime = lst.filter { $0 > 1 }.max()!
// Return the sum of its digits
return largestPrime.digits.reduce(0, +)
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7 [/INST] ```swift
func skjkasdkd(lst: [Int]) -> Int {
// Find the largest prime value in the array
let largestPrime = lst.filter { $0 > 1 }.max()!
// Return the sum of its digits
return largestPrime.digits.reduce(0, +)
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
for i in 2..<n {
if n % i == 0 { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
for i in 2..<n {
if n % i == 0 { return false }
}
return true
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
var primeNumbers: [Int] = []
for i in 2...n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers: [Int] = []
for i in 2...n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primeNumbers = [Int]()
for i in 2...n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primeNumbers.append(i)
}
}
return primeNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primeNumbers = [Int]()
for i in 2...n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primeNumbers.append(i)
}
}
return primeNumbers
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
if primes.allSatisfy({ i % $0 != 0 }) {
primes.append(i)
}
}
return primes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
if primes.allSatisfy({ i % $0 != 0 }) {
primes.append(i)
}
}
return primes
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
if primes.allSatisfy({ i % $0 != 0 }) {
primes.append(i)
}
}
return primes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
if primes.allSatisfy({ i % $0 != 0 }) {
primes.append(i)
}
}
return primes
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
for i in 2..<n {
if n % i == 0 { return false }
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var primes: [Int] = []
for i in 2...n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
for i in 2..<n {
if n % i == 0 { return false }
}
return true
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
var result: [Int] = []
for i in 2...n {
if isPrime(i) {
result.append(i)
}
}
return result
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var result: [Int] = []
for i in 2...n {
if isPrime(i) {
result.append(i)
}
}
return result
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primeNumbers: [Int] = []
for i in 2...n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primeNumbers.append(i)
}
}
return primeNumbers
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers: [Int] = []
for i in 2...n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primeNumbers.append(i)
}
}
return primeNumbers
}
```
// XCTAssertTrue failed
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2...n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17] [/INST] ```swift
func countUpTo(n: Int) -> [Int] {
var primeNumbers = [Int]()
for i in 2...n {
if isPrime(i) {
primeNumbers.append(i)
}
}
return primeNumbers
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20 [/INST] ```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = a % 10
let unitDigitB = b % 10
return unitDigitA * unitDigitB
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && c.isUppercase {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && c.isUppercase {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && c.isUppercase {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && c.isUppercase {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && c.isUppercase {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && c.isUppercase {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0 [/INST] ```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if c.isUppercase && i.isMultiple(of: 2) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = doubleValue.rounded()
let roundedAwayFromZero = doubleValue.rounded(.awayFromZero)
if roundedValue == roundedAwayFromZero {
return Int(roundedValue)
} else {
return Int(roundedAwayFromZero)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = doubleValue.rounded()
let roundedAwayFromZero = doubleValue.rounded(.awayFromZero)
if roundedValue == roundedAwayFromZero {
return Int(roundedValue)
} else {
return Int(roundedAwayFromZero)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = doubleValue.rounded()
let roundedAwayFromZero = doubleValue.rounded(.awayFromZero)
if roundedValue == roundedAwayFromZero {
return Int(roundedValue)
} else {
return Int(roundedAwayFromZero)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = doubleValue.rounded()
let roundedAwayFromZero = doubleValue.rounded(.awayFromZero)
if roundedValue == roundedAwayFromZero {
return Int(roundedValue)
} else {
return Int(roundedAwayFromZero)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedValueAwayFromZero = roundedValue.sign == .minus ? ceil(doubleValue) : floor(doubleValue)
return Int(roundedValueAwayFromZero)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedValueAwayFromZero = roundedValue.sign == .minus ? ceil(doubleValue) : floor(doubleValue)
return Int(roundedValueAwayFromZero)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedAwayFromZero = roundedValue.rounded(.awayFromZero)
return Int(roundedAwayFromZero)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedAwayFromZero = roundedValue.rounded(.awayFromZero)
return Int(roundedAwayFromZero)
}
```
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedValueAwayFromZero = roundedValue.rounded(.awayFromZero)
return Int(roundedValueAwayFromZero)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedValueAwayFromZero = roundedValue.rounded(.awayFromZero)
return Int(roundedValueAwayFromZero)
}
```
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedAwayFromZero = roundedValue.rounded(.awayFromZero)
return Int(roundedAwayFromZero)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedAwayFromZero = roundedValue.rounded(.awayFromZero)
return Int(roundedAwayFromZero)
}
```
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedValueAwayFromZero = roundedValue.rounded(.awayFromZero)
return Int(roundedValueAwayFromZero)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
guard let doubleValue = Double(value) else {
return 0
}
let roundedValue = round(doubleValue)
let roundedValueAwayFromZero = roundedValue.rounded(.awayFromZero)
return Int(roundedValueAwayFromZero)
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
let rounded = round(number)
let awayFromZero = number > 0 ? ceil(number) : floor(number)
return Int(rounded == awayFromZero ? rounded : awayFromZero)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
let rounded = round(number)
let awayFromZero = number > 0 ? ceil(number) : floor(number)
return Int(rounded == awayFromZero ? rounded : awayFromZero)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let roundedNumber = round(number)
let roundedNumberAwayFromZero = roundedNumber < 0.0 ? ceil(number) : floor(number)
return Int(roundedNumberAwayFromZero)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let roundedNumber = round(number)
let roundedNumberAwayFromZero = roundedNumber < 0.0 ? ceil(number) : floor(number)
return Int(roundedNumberAwayFromZero)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let rounded = round(number)
let awayFromZero = number > 0.0 ? ceil(number) : floor(number)
return Int(rounded == awayFromZero ? rounded : awayFromZero)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15 [/INST] ```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let rounded = round(number)
let awayFromZero = number > 0.0 ? ceil(number) : floor(number)
return Int(rounded == awayFromZero ? rounded : awayFromZero)
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
while currentLevel > 0 {
result.append(currentLevel)
currentLevel = currentLevel.isEven ? currentLevel + 1 : currentLevel + 2
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
while currentLevel > 0 {
result.append(currentLevel)
currentLevel = currentLevel.isEven ? currentLevel + 1 : currentLevel + 2
}
return result
}
```
currentLevel = currentLevel.isEven ? currentLevel + 1 : currentLevel + 2 // value of type 'Int' has no member 'isEven'
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
while currentLevel > 0 {
result.append(currentLevel)
currentLevel = currentLevel.isEven ? currentLevel + 1 : currentLevel + 2
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
while currentLevel > 0 {
result.append(currentLevel)
currentLevel = currentLevel.isEven ? currentLevel + 1 : currentLevel + 2
}
return result
}
```
currentLevel = currentLevel.isEven ? currentLevel + 1 : currentLevel + 2 // value of type 'Int' has no member 'isEven'
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
while currentLevel > 0 {
result.append(currentLevel)
currentLevel = nextLevel(currentLevel)
}
return result
}
func nextLevel(n: Int) -> Int {
if n % 2 == 0 {
return n + 1
} else {
return n + 2
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
while currentLevel > 0 {
result.append(currentLevel)
currentLevel = nextLevel(currentLevel)
}
return result
}
func nextLevel(n: Int) -> Int {
if n % 2 == 0 {
return n + 1
} else {
return n + 2
}
}
```
currentLevel = nextLevel(currentLevel) // missing argument label 'n:' in call
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel + 2
}
return stones
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel + 2
}
return stones
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
var nextLevel = n
while currentLevel > 0 {
result.append(currentLevel)
nextLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel + 2
currentLevel = nextLevel
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
var nextLevel = n
while currentLevel > 0 {
result.append(currentLevel)
nextLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel + 2
currentLevel = nextLevel
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel + 2
}
return stones
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel + 2
}
return stones
}
```
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel - 1
}
return stones
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel - 1
}
return stones
}
```
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
while currentLevel > 0 {
result.append(currentLevel)
currentLevel = currentLevel.nextOddNumber()
}
return result
}
extension Int {
func nextOddNumber() -> Int {
return self + 2
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
while currentLevel > 0 {
result.append(currentLevel)
currentLevel = currentLevel.nextOddNumber()
}
return result
}
extension Int {
func nextOddNumber() -> Int {
return self + 2
}
}
```
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel - 1
}
return stones
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
currentLevel = currentLevel % 2 == 0 ? currentLevel + 1 : currentLevel - 1
}
return stones
}
```
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
var nextLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
if currentLevel.isMultiple(of: 2) {
nextLevel = currentLevel + 1
} else {
nextLevel = currentLevel + 2
}
currentLevel = nextLevel
}
return stones
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7] [/INST] ```swift
func makeAPile(n: Int) -> [Int] {
var stones = [Int]()
var currentLevel = n
var nextLevel = n
while currentLevel > 0 {
stones.append(currentLevel)
if currentLevel.isMultiple(of: 2) {
nextLevel = currentLevel + 1
} else {
nextLevel = currentLevel + 2
}
currentLevel = nextLevel
}
return stones
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines).filter { !$0.isEmpty }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines).filter { !$0.isEmpty }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines).filter { !$0.isEmpty }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines).filter { !$0.isEmpty }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines)
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines).filter { !$0.isEmpty }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] [/INST] ```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: .whitespacesAndNewlines).filter { !$0.isEmpty }
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
// Check if x and y are positive
guard x > 0 && y > 0 else {
return -1
}
// Find the biggest even integer in the range [x, y]
var current = x
while current <= y {
if current.isMultiple(of: 2) {
return current
}
current += 1
}
// If no even integer is found, return -1
return -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
// Check if x and y are positive
guard x > 0 && y > 0 else {
return -1
}
// Find the biggest even integer in the range [x, y]
var current = x
while current <= y {
if current.isMultiple(of: 2) {
return current
}
current += 1
}
// If no even integer is found, return -1
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1 [/INST] ```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binary = String(roundedAvg, radix: 2)
return .success(binary)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binary = String(roundedAvg, radix: 2)
return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binary = String(roundedAvg, radix: 2)
return .success(binary)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binary = String(roundedAvg, radix: 2)
return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binary = String(roundedAvg, radix: 2)
return .success(binary)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binary = String(roundedAvg, radix: 2)
return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let count = m - n + 1
let avg = sum / count
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
if n > m {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let count = m - n + 1
let avg = sum / count
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let roundedAvg = Int(round(Double(avg)))
let binaryString = String(roundedAvg, radix: 2)
return .success(binaryString)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let binary = String(avg, radix: 2)
return .success(binary)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let binary = String(avg, radix: 2)
return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let binary = String(avg, radix: 2)
return .success(binary)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010") [/INST] ```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let binary = String(avg, radix: 2)
return .success(binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
func uniqueDigits(x: [Int]) -> [Int] {
let sortedX = x.sorted()
var result: [Int] = []
for i in 0..<sortedX.count {
let current = sortedX[i]
var hasEvenDigit = false
while current > 0 {
let digit = current % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
current /= 10
}
if !hasEvenDigit {
result.append(current)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let sortedX = x.sorted()
var result: [Int] = []
for i in 0..<sortedX.count {
let current = sortedX[i]
var hasEvenDigit = false
while current > 0 {
let digit = current % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
current /= 10
}
if !hasEvenDigit {
result.append(current)
}
}
return result
}
```
current /= 10 // left side of mutating operator isn't mutable: 'current' is a 'let' constant
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
var hasEvenDigit = false
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
num /= 10
}
if !hasEvenDigit {
result.append(num)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
var hasEvenDigit = false
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
num /= 10
}
if !hasEvenDigit {
result.append(num)
}
}
return result.sorted()
}
```
num /= 10 // left side of mutating operator isn't mutable: 'num' is a 'let' constant
func uniqueDigits(x: [Int]) -> [Int] {
let sortedX = x.sorted()
var result: [Int] = []
for i in 0..<sortedX.count {
let current = sortedX[i]
var hasEvenDigit = false
while current > 0 {
let digit = current % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
current /= 10
}
if !hasEvenDigit {
result.append(current)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let sortedX = x.sorted()
var result: [Int] = []
for i in 0..<sortedX.count {
let current = sortedX[i]
var hasEvenDigit = false
while current > 0 {
let digit = current % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
current /= 10
}
if !hasEvenDigit {
result.append(current)
}
}
return result
}
```
current /= 10 // left side of mutating operator isn't mutable: 'current' is a 'let' constant
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
```
// XCTAssertTrue failed
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int] [/INST] ```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(x.flatMap { String($0).compactMap { Int(String($0)) }.filter { $0 % 2 == 0 } })
return x.filter { !evenDigits.contains($0) }.sorted()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
// Sort the integers between 1 and 9 inclusive
let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
// Reverse the resulting array
let reversed = sorted.reversed()
// Replace each digit by its corresponding name
let named = reversed.map {
switch $0 {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
// Sort the integers between 1 and 9 inclusive
let sorted = arr.filter { $0 >= 1 && $0 <= 9 }.sorted()
// Reverse the resulting array
let reversed = sorted.reversed()
// Replace each digit by its corresponding name
let named = reversed.map {
switch $0 {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1:
return "One"
case 2:
return "Two"
case 3:
return "Three"
case 4:
return "Four"
case 5:
return "Five"
case 6:
return "Six"
case 7:
return "Seven"
case 8:
return "Eight"
case 9:
return "Nine"
default:
return ""
}
}
return named
}
```
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"] [/INST] ```swift
func byLength(arr: [Int]) -> [String] {
let sorted = arr.filter { 1...9 ~= $0 }.sorted()
let reversed = sorted.reversed()
let named = reversed.map {
switch $0 {
case 1: return "One"
case 2: return "Two"
case 3: return "Three"
case 4: return "Four"
case 5: return "Five"
case 6: return "Six"
case 7: return "Seven"
case 8: return "Eight"
case 9: return "Nine"
default: return ""
}
}
return named
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sumOfNumbersTo(i))
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sumOfNumbersTo(n: Int) -> Int {
return (1...n).reduce(0, combine: +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sumOfNumbersTo(i))
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sumOfNumbersTo(n: Int) -> Int {
return (1...n).reduce(0, combine: +)
}
}
```
result.append(i.sumOfNumbersTo(i)) // missing argument label 'n:' in call
return (1...n).reduce(0, combine: +) // extraneous argument label 'combine:' in call
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15] [/INST] ```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(i.factorial())
} else {
result.append(i.sum())
}
}
return result
}
extension Int {
func factorial() -> Int {
if self == 0 {
return 1
}
return self * (self - 1).factorial()
}
func sum() -> Int {
return (1...self).reduce(0, +)
}
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
if isPalindrome(i) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
func isPalindrome(_ num: Int) -> Bool {
let numString = String(num)
return numString == String(numString.reversed())
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
if isPalindrome(i) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
func isPalindrome(_ num: Int) -> Bool {
let numString = String(num)
return numString == String(numString.reversed())
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6) [/INST] ```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
return arr.filter { $0.signum() > 0 }.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
return arr.filter { $0.signum() > 0 }.count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3 [/INST] ```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var n = num
while n != 0 {
sum += n % 10
n /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// Perform right shift operation on the array
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr.append(shiftedArr.removeFirst())
}
// Check if the shifted array is equal to the original array
if shiftedArr == arr {
return true
}
// Perform right shift operation on the sorted array
var shiftedSortedArr = sortedArr
for _ in 0..<sortedArr.count {
shiftedSortedArr.append(shiftedSortedArr.removeFirst())
}
// Check if the shifted sorted array is equal to the original array
if shiftedSortedArr == arr {
return true
}
// If none of the above conditions are met, return false
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// Perform right shift operation on the array
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr.append(shiftedArr.removeFirst())
}
// Check if the shifted array is equal to the original array
if shiftedArr == arr {
return true
}
// Perform right shift operation on the sorted array
var shiftedSortedArr = sortedArr
for _ in 0..<sortedArr.count {
shiftedSortedArr.append(shiftedSortedArr.removeFirst())
}
// Check if the shifted sorted array is equal to the original array
if shiftedSortedArr == arr {
return true
}
// If none of the above conditions are met, return false
return false
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// Perform right shift operation on the array
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr.append(shiftedArr.removeFirst())
}
// Check if the shifted array is equal to the original array
if shiftedArr == arr {
return true
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// Perform right shift operation on the array
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr.append(shiftedArr.removeFirst())
}
// Check if the shifted array is equal to the original array
if shiftedArr == arr {
return true
}
return false
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// Perform right shift operation on the array
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr.append(shiftedArr.removeFirst())
}
// Check if the shifted array is equal to the original array
if shiftedArr == arr {
return true
}
// If the array is not sorted and the shifted array is not equal to the original array,
// then it is not possible to get non-decreasing order by performing right shift operations.
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// Perform right shift operation on the array
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr.append(shiftedArr.removeFirst())
}
// Check if the shifted array is equal to the original array
if shiftedArr == arr {
return true
}
// If the array is not sorted and the shifted array is not equal to the original array,
// then it is not possible to get non-decreasing order by performing right shift operations.
return false
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already in non-decreasing order
if arr.isNonDecreasingOrder() {
return true
}
// Perform right shift operations until the array is in non-decreasing order
var currentIndex = 0
while !arr.isNonDecreasingOrder() {
// Perform right shift operation
arr.shiftRight()
// Check if the array is in non-decreasing order
if arr.isNonDecreasingOrder() {
return true
}
// Increment the current index
currentIndex += 1
}
// If the array is not in non-decreasing order after all right shift operations, return false
return false
}
extension Array where Element == Int {
func isNonDecreasingOrder() -> Bool {
for i in 0..<count - 1 {
if self[i] > self[i + 1] {
return false
}
}
return true
}
mutating func shiftRight() {
let lastElement = self.last!
self.removeLast()
self.insert(lastElement, at: 0)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already in non-decreasing order
if arr.isNonDecreasingOrder() {
return true
}
// Perform right shift operations until the array is in non-decreasing order
var currentIndex = 0
while !arr.isNonDecreasingOrder() {
// Perform right shift operation
arr.shiftRight()
// Check if the array is in non-decreasing order
if arr.isNonDecreasingOrder() {
return true
}
// Increment the current index
currentIndex += 1
}
// If the array is not in non-decreasing order after all right shift operations, return false
return false
}
extension Array where Element == Int {
func isNonDecreasingOrder() -> Bool {
for i in 0..<count - 1 {
if self[i] > self[i + 1] {
return false
}
}
return true
}
mutating func shiftRight() {
let lastElement = self.last!
self.removeLast()
self.insert(lastElement, at: 0)
}
}
```
arr.shiftRight() // cannot use mutating member on immutable value: 'arr' is a 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// If the sorted array is not equal to the original array,
// then perform a right shift operation on the original array
var shiftedArr = arr
shiftedArr.insert(shiftedArr.removeLast(), at: 0)
// Recursively call the function with the shifted array
return moveOneBall(arr: shiftedArr)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// If the sorted array is not equal to the original array,
// then perform a right shift operation on the original array
var shiftedArr = arr
shiftedArr.insert(shiftedArr.removeLast(), at: 0)
// Recursively call the function with the shifted array
return moveOneBall(arr: shiftedArr)
}
```
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// If the sorted array is not equal to the original array,
// perform a right shift operation on the original array
var shiftedArr = arr
shiftedArr.insert(shiftedArr.removeLast(), at: 0)
// Recursively call the function with the shifted array
return moveOneBall(arr: shiftedArr)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// If the sorted array is not equal to the original array,
// perform a right shift operation on the original array
var shiftedArr = arr
shiftedArr.insert(shiftedArr.removeLast(), at: 0)
// Recursively call the function with the shifted array
return moveOneBall(arr: shiftedArr)
}
```
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Initialize a variable to keep track of the number of right shift operations performed
var numRightShifts = 0
// Loop through the array and check if the current element is greater than the previous element
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
// If the current element is less than the previous element, perform a right shift operation
numRightShifts += 1
// Move the current element to the end of the array
arr.append(arr[i])
arr.remove(at: i)
}
}
// Check if the array is sorted in non-decreasing order
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Initialize a variable to keep track of the number of right shift operations performed
var numRightShifts = 0
// Loop through the array and check if the current element is greater than the previous element
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
// If the current element is less than the previous element, perform a right shift operation
numRightShifts += 1
// Move the current element to the end of the array
arr.append(arr[i])
arr.remove(at: i)
}
}
// Check if the array is sorted in non-decreasing order
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
return false
}
}
return true
}
```
arr.append(arr[i]) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
arr.remove(at: i) // cannot use mutating member on immutable value: 'arr' is a 'let' constant
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Initialize a variable to keep track of the number of right shift operations performed
var numRightShifts = 0
// Loop through the array and check if the current element is greater than the previous element
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
// If the current element is less than the previous element, perform a right shift operation
numRightShifts += 1
// Check if the current element is now greater than the previous element
if arr[i] > arr[i - 1] {
// If the current element is now greater than the previous element, return true
return true
}
}
}
// If the loop completes and no right shift operation was performed, return false
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Initialize a variable to keep track of the number of right shift operations performed
var numRightShifts = 0
// Loop through the array and check if the current element is greater than the previous element
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
// If the current element is less than the previous element, perform a right shift operation
numRightShifts += 1
// Check if the current element is now greater than the previous element
if arr[i] > arr[i - 1] {
// If the current element is now greater than the previous element, return true
return true
}
}
}
// If the loop completes and no right shift operation was performed, return false
return false
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already in non-decreasing order
if arr.isNonDecreasingOrder() {
return true
}
// Perform right shift operation
var shiftedArr = arr.shiftedRight()
// Check if the shifted array is in non-decreasing order
if shiftedArr.isNonDecreasingOrder() {
return true
}
// Perform right shift operation again
shiftedArr = shiftedArr.shiftedRight()
// Check if the shifted array is in non-decreasing order
if shiftedArr.isNonDecreasingOrder() {
return true
}
// If the array is not in non-decreasing order after two right shift operations, return false
return false
}
extension Array where Element: Comparable {
func isNonDecreasingOrder() -> Bool {
for i in 0..<count - 1 {
if self[i] > self[i + 1] {
return false
}
}
return true
}
func shiftedRight() -> [Element] {
var shiftedArr = self
shiftedArr.append(shiftedArr.removeFirst())
return shiftedArr
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Check if the array is already in non-decreasing order
if arr.isNonDecreasingOrder() {
return true
}
// Perform right shift operation
var shiftedArr = arr.shiftedRight()
// Check if the shifted array is in non-decreasing order
if shiftedArr.isNonDecreasingOrder() {
return true
}
// Perform right shift operation again
shiftedArr = shiftedArr.shiftedRight()
// Check if the shifted array is in non-decreasing order
if shiftedArr.isNonDecreasingOrder() {
return true
}
// If the array is not in non-decreasing order after two right shift operations, return false
return false
}
extension Array where Element: Comparable {
func isNonDecreasingOrder() -> Bool {
for i in 0..<count - 1 {
if self[i] > self[i + 1] {
return false
}
}
return true
}
func shiftedRight() -> [Element] {
var shiftedArr = self
shiftedArr.append(shiftedArr.removeFirst())
return shiftedArr
}
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// Perform right shift operation on the array
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr.append(shiftedArr.removeFirst())
}
// Check if the shifted array is equal to the original array
if shiftedArr == arr {
return true
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false [/INST] ```swift
func moveOneBall(arr: [Int]) -> Bool {
// Check if the array is empty
if arr.isEmpty {
return true
}
// Sort the array in non-decreasing order
let sortedArr = arr.sorted()
// Check if the sorted array is equal to the original array
if sortedArr == arr {
return true
}
// Perform right shift operation on the array
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr.append(shiftedArr.removeFirst())
}
// Check if the shifted array is equal to the original array
if shiftedArr == arr {
return true
}
return false
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count && oddCount == lst2.count {
return "YES"
} else {
return "NO"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count && oddCount == lst2.count {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1EvenCount = 0
var lst2EvenCount = 0
for num in lst1 {
if num % 2 == 0 {
lst1EvenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
lst2EvenCount += 1
}
}
if lst1EvenCount == lst1.count && lst2EvenCount == lst2.count {
return "YES"
} else {
return "NO"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1EvenCount = 0
var lst2EvenCount = 0
for num in lst1 {
if num % 2 == 0 {
lst1EvenCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
lst2EvenCount += 1
}
}
if lst1EvenCount == lst1.count && lst2EvenCount == lst2.count {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2[j] = lst1[i]
break
}
}
}
}
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2[j] = lst1[i]
break
}
}
}
}
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2[j] = lst1[i]
break
}
}
}
}
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2[j] = lst1[i]
break
}
}
}
}
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
return "NO"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2[j] = lst1[i]
break
}
}
}
}
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
return "NO"
}
}
return "YES"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO" [/INST] ```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2[j] = lst1[i]
break
}
}
}
}
for i in 0..<lst1.count {
if lst1[i] % 2 == 1 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.lowercased().characters {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.lowercased().characters {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
```
for letter in test.lowercased().characters { // 'characters' is unavailable: Please use String directly
if let count = counts[letter] { // cannot convert value of type 'Character' to expected argument type 'String'
counts[letter] = count + 1 // cannot convert value of type 'Character' to expected argument type 'String'
counts[letter] = 1 // cannot convert value of type 'Character' to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var histogram: [String : Int] = [:]
for letter in test.split(separator: " ") {
if let count = histogram[letter] {
histogram[letter] = count + 1
} else {
histogram[letter] = 1
}
}
return histogram
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var histogram: [String : Int] = [:]
for letter in test.split(separator: " ") {
if let count = histogram[letter] {
histogram[letter] = count + 1
} else {
histogram[letter] = 1
}
}
return histogram
}
```
if let count = histogram[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
for letter in test.split(separator: " ") {
if let count = histogram[letter] {
histogram[letter] = count + 1
} else {
histogram[letter] = 1
}
}
return histogram
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
for letter in test.split(separator: " ") {
if let count = histogram[letter] {
histogram[letter] = count + 1
} else {
histogram[letter] = 1
}
}
return histogram
}
```
if let count = histogram[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.split(separator: " ") {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.split(separator: " ") {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
```
if let count = counts[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
counts[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
counts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
```
if let count = counts[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
counts[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
counts[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.components(separatedBy: " ") {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.components(separatedBy: " ") {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = histogram[letter] {
histogram[letter] = count + 1
} else {
histogram[letter] = 1
}
}
return histogram
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
for letter in test.lowercased().split(separator: " ") {
if let count = histogram[letter] {
histogram[letter] = count + 1
} else {
histogram[letter] = 1
}
}
return histogram
}
```
if let count = histogram[letter] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[letter] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
histogram[letter] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var counts = [String : Int]()
for letter in letters {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
let letters = test.components(separatedBy: " ")
var counts = [String : Int]()
for letter in letters {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.lowercased().components(separatedBy: " ") {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var counts = [String : Int]()
for letter in test.lowercased().components(separatedBy: " ") {
if let count = counts[letter] {
counts[letter] = count + 1
} else {
counts[letter] = 1
}
}
return counts
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
for letter in test.components(separatedBy: " ") {
if let count = histogram[letter] {
histogram[letter] = count + 1
} else {
histogram[letter] = 1
}
}
return histogram
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int] [/INST] ```swift
func histogram(test: String) -> [String : Int] {
var histogram = [String : Int]()
for letter in test.components(separatedBy: " ") {
if let count = histogram[letter] {
histogram[letter] = count + 1
} else {
histogram[letter] = 1
}
}
return histogram
}
```
// XCTAssertTrue failed
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true) [/INST] ```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result.isPalindrome())
}
extension String {
func isPalindrome() -> Bool {
return self == String(self.reversed())
}
}
```
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isOddDigit {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
extension Character {
var isOddDigit: Bool {
return self.isDigit && self.digitValue % 2 == 1
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isOddDigit {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
extension Character {
var isOddDigit: Bool {
return self.isDigit && self.digitValue % 2 == 1
}
}
```
return self.isDigit && self.digitValue % 2 == 1 // value of type 'Character' has no member 'digitValue'
return self.isDigit && self.digitValue % 2 == 1 // value of type 'Character' has no member 'isDigit'
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isOdd {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isOdd {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
```
if char.isOdd { // value of type 'Character' has no member 'isOdd'
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
```
if char.isNumber && char.toInt() % 2 == 1 { // value of type 'Character' has no member 'toInt'
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
```
if char.isNumber && char.toInt() % 2 == 1 { // value of type 'Character' has no member 'toInt'
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (i, str) in lst.enumerated() {
let count = str.filter { Int(String($0))! % 2 == 1 }.count
result.append("the number of odd elements \(count) in the string \(i) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (i, str) in lst.enumerated() {
let count = str.filter { Int(String($0))! % 2 == 1 }.count
result.append("the number of odd elements \(count) in the string \(i) of the input.")
}
return result
}
```
// XCTAssertTrue failed
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
```
if char.isNumber && char.toInt() % 2 == 1 { // value of type 'Character' has no member 'toInt'
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
```
if char.isNumber && char.toInt() % 2 == 1 { // value of type 'Character' has no member 'toInt'
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isOdd {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isOdd {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
```
if char.isOdd { // value of type 'Character' has no member 'isOdd'
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
```
if char.isNumber && char.toInt() % 2 == 1 { // value of type 'Character' has no member 'toInt'
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] [/INST] ```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if char.isNumber && char.toInt() % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count) in the string \(str) of the input.")
}
return result
}
```
if char.isNumber && char.toInt() % 2 == 1 { // value of type 'Character' has no member 'toInt'
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
for i in 0..<nums.count {
var sum = 0
for j in i..<nums.count {
sum += nums[j]
minSum = min(minSum, sum)
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
for i in 0..<nums.count {
var sum = 0
for j in i..<nums.count {
sum += nums[j]
minSum = min(minSum, sum)
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum < 0 {
currentSum = 0
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var sum = 0
for i in 0..<nums.count {
sum += nums[i]
if sum < minSum {
minSum = sum
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var sum = 0
for i in 0..<nums.count {
sum += nums[i]
if sum < minSum {
minSum = sum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var sum = 0
for i in 0..<nums.count {
sum += nums[i]
if sum < minSum {
minSum = sum
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var sum = 0
for i in 0..<nums.count {
sum += nums[i]
if sum < minSum {
minSum = sum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var sum = 0
for num in nums {
sum += num
minSum = min(minSum, sum)
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var sum = 0
for num in nums {
sum += num
minSum = min(minSum, sum)
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
for i in 0..<nums.count {
var sum = 0
for j in i..<nums.count {
sum += nums[j]
if sum < minSum {
minSum = sum
}
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
for i in 0..<nums.count {
var sum = 0
for j in i..<nums.count {
sum += nums[j]
if sum < minSum {
minSum = sum
}
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
for i in 0..<nums.count {
var sum = 0
for j in i..<nums.count {
sum += nums[j]
if sum < minSum {
minSum = sum
}
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
for i in 0..<nums.count {
var sum = 0
for j in i..<nums.count {
sum += nums[j]
if sum < minSum {
minSum = sum
}
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var sum = 0
for num in nums {
sum += num
minSum = min(minSum, sum)
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var sum = 0
for num in nums {
sum += num
minSum = min(minSum, sum)
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
if currentSum < minSum {
minSum = currentSum
}
}
return minSum
}
```
// XCTAssertTrue failed
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
for i in 0..<nums.count {
var sum = 0
for j in i..<nums.count {
sum += nums[j]
minSum = min(minSum, sum)
}
}
return minSum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6 [/INST] ```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
for i in 0..<nums.count {
var sum = 0
for j in i..<nums.count {
sum += nums[j]
minSum = min(minSum, sum)
}
}
return minSum
}
```
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var buckets = [Int](repeating: 0, count: rows)
var result = 0
for col in 0..<cols {
for row in 0..<rows {
if grid[row][col] == 1 {
buckets[row] += 1
}
}
for row in 0..<rows {
if buckets[row] > capacity {
result += 1
buckets[row] = 0
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
let rows = grid.count
let cols = grid[0].count
var buckets = [Int](repeating: 0, count: rows)
var result = 0
for col in 0..<cols {
for row in 0..<rows {
if grid[row][col] == 1 {
buckets[row] += 1
}
}
for row in 0..<rows {
if buckets[row] > capacity {
result += 1
buckets[row] = 0
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for column in row {
if column == 1 && currentCapacity > 0 {
result += 1
currentCapacity -= 1
}
}
if currentCapacity == 0 {
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for column in row {
if column == 1 && currentCapacity > 0 {
result += 1
currentCapacity -= 1
}
}
if currentCapacity == 0 {
break
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
// Initialize variables
var totalWater = 0
var buckets = [Int](repeating: 0, count: grid.count)
// Loop through each row of the grid
for i in 0..<grid.count {
// Loop through each column of the current row
for j in 0..<grid[i].count {
// If the current cell has water, add it to the total water
if grid[i][j] == 1 {
totalWater += 1
}
// If the current cell is not empty and the bucket is not full, add water to the bucket
if grid[i][j] == 1 && buckets[i] < capacity {
buckets[i] += 1
}
}
}
// Return the number of times the buckets were lowered
return buckets.count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
// Initialize variables
var totalWater = 0
var buckets = [Int](repeating: 0, count: grid.count)
// Loop through each row of the grid
for i in 0..<grid.count {
// Loop through each column of the current row
for j in 0..<grid[i].count {
// If the current cell has water, add it to the total water
if grid[i][j] == 1 {
totalWater += 1
}
// If the current cell is not empty and the bucket is not full, add water to the bucket
if grid[i][j] == 1 && buckets[i] < capacity {
buckets[i] += 1
}
}
}
// Return the number of times the buckets were lowered
return buckets.count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
currentCapacity += 1
}
}
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
currentCapacity += 1
}
}
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
result += 1
currentCapacity = capacity
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
result += 1
currentCapacity = capacity
}
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
currentCapacity += 1
}
}
result += 1
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
currentCapacity += 1
}
}
result += 1
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
currentCapacity += 1
}
}
result += 1
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
currentCapacity += 1
}
}
result += 1
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
}
}
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
}
}
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
// Initialize variables
var totalWater = 0
var bucketCapacity = capacity
var row = 0
var col = 0
// Loop through the grid
while row < grid.count {
// Check if the current cell has water
if grid[row][col] == 1 {
// If the bucket is not full, fill it with water from the current cell
if bucketCapacity > 0 {
bucketCapacity -= 1
totalWater += 1
} else {
// If the bucket is full, move on to the next row
row += 1
col = 0
bucketCapacity = capacity
}
} else {
// If the current cell does not have water, move on to the next cell
col += 1
}
}
return totalWater
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
// Initialize variables
var totalWater = 0
var bucketCapacity = capacity
var row = 0
var col = 0
// Loop through the grid
while row < grid.count {
// Check if the current cell has water
if grid[row][col] == 1 {
// If the bucket is not full, fill it with water from the current cell
if bucketCapacity > 0 {
bucketCapacity -= 1
totalWater += 1
} else {
// If the bucket is full, move on to the next row
row += 1
col = 0
bucketCapacity = capacity
}
} else {
// If the current cell does not have water, move on to the next cell
col += 1
}
}
return totalWater
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
currentCapacity += 1
}
}
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0 [/INST] ```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
var currentCapacity = capacity
for row in grid {
for unit in row {
if unit == 1 && currentCapacity > 0 {
currentCapacity -= 1
} else if unit == 0 && currentCapacity < capacity {
currentCapacity += 1
}
}
if currentCapacity == 0 {
result += 1
currentCapacity = capacity
}
}
return result
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
```
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
```
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
let sorted = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
return sorted
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
let sorted = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count
let bOnes = b.binaryRepresentation.filter { $0 == 1 }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
return sorted
}
```
let aOnes = a.binaryRepresentation.filter { $0 == 1 }.count // value of type 'Int' has no member 'binaryRepresentation'
func sortArray(arr: [Int]) -> [Int] {
let sorted = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
return sorted
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
let sorted = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
return sorted
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
let sortedArray = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryOnes
let bOnes = b.binaryOnes
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
return sortedArray
}
extension Int {
var binaryOnes: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
let sortedArray = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryOnes
let bOnes = b.binaryOnes
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
return sortedArray
}
extension Int {
var binaryOnes: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
let sorted = arr.sorted { (a, b) in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
return sorted
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
let sorted = arr.sorted { (a, b) in
let aOnes = a.binaryOnesCount
let bOnes = b.binaryOnesCount
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
return sorted
}
extension Int {
var binaryOnesCount: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
let sorted = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryOnes
let bOnes = b.binaryOnes
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
return sorted
}
extension Int {
var binaryOnes: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4] [/INST] ```swift
func sortArray(arr: [Int]) -> [Int] {
let sorted = arr.sorted { (a, b) -> Bool in
let aOnes = a.binaryOnes
let bOnes = b.binaryOnes
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
return sorted
}
extension Int {
var binaryOnes: Int {
var count = 0
var n = self
while n > 0 {
count += n & 1
n >>= 1
}
return count
}
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
var words: [String] = []
let consonants = "bcdfghjklmnpqrstvwxyz"
for word in s.components(separatedBy: " ") {
var consonantCount = 0
for char in word {
if consonants.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
words.append(word)
}
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words: [String] = []
let consonants = "bcdfghjklmnpqrstvwxyz"
for word in s.components(separatedBy: " ") {
var consonantCount = 0
for char in word {
if consonants.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
words.append(word)
}
}
return words
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { $0.isConsonant }
if consonants.count == n {
result.append(word)
}
}
return result
}
extension Character {
var isConsonant: Bool {
return !isVowel
}
var isVowel: Bool {
switch self {
case "a", "e", "i", "o", "u":
return true
default:
return false
}
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { $0.isConsonant }
if consonants.count == n {
result.append(word)
}
}
return result
}
extension Character {
var isConsonant: Bool {
return !isVowel
}
var isVowel: Bool {
switch self {
case "a", "e", "i", "o", "u":
return true
default:
return false
}
}
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
let consonants = "bcdfghjklmnpqrstvwxyz"
for word in s.components(separatedBy: " ") {
let numConsonants = word.filter { consonants.contains($0) }.count
if numConsonants == n {
words.append(word)
}
}
return words
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
let consonants = "bcdfghjklmnpqrstvwxyz"
for word in s.components(separatedBy: " ") {
let numConsonants = word.filter { consonants.contains($0) }.count
if numConsonants == n {
words.append(word)
}
}
return words
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
var words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
if word.countConsonants() == n {
result.append(word)
}
}
return result
}
extension String {
func countConsonants() -> Int {
var count = 0
for char in self.lowercased() where char.isConsonant() {
count += 1
}
return count
}
}
extension Character {
func isConsonant() -> Bool {
return !self.isVowel()
}
func isVowel() -> Bool {
return "aeiou".contains(self.lowercased())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
var words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
if word.countConsonants() == n {
result.append(word)
}
}
return result
}
extension String {
func countConsonants() -> Int {
var count = 0
for char in self.lowercased() where char.isConsonant() {
count += 1
}
return count
}
}
extension Character {
func isConsonant() -> Bool {
return !self.isVowel()
}
func isVowel() -> Bool {
return "aeiou".contains(self.lowercased())
}
}
```
var words = s.components(separatedBy: " ") // variable 'words' was never mutated; consider changing to 'let' constant
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
result.append(word) // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"] [/INST] ```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !"aeiou".contains($0) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let reversedWord = word.reversed()
for (i, char) in reversedWord.enumerated() {
if vowels.contains(char) && i > 0 && i < reversedWord.count - 1 {
return String(char)
}
}
return ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let reversedWord = word.reversed()
for (i, char) in reversedWord.enumerated() {
if vowels.contains(char) && i > 0 && i < reversedWord.count - 1 {
return String(char)
}
}
return ""
}
```
if vowels.contains(char) && i > 0 && i < reversedWord.count - 1 { // cannot convert value of type 'ReversedCollection<String>.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = word[i]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = word[i]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
```
let char = word[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let reversedWord = word.reversed()
for (index, char) in reversedWord.enumerated() {
if vowels.contains(char) && index > 0 && index < reversedWord.count - 1 {
return String(char)
}
}
return ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let reversedWord = word.reversed()
for (index, char) in reversedWord.enumerated() {
if vowels.contains(char) && index > 0 && index < reversedWord.count - 1 {
return String(char)
}
}
return ""
}
```
if vowels.contains(char) && index > 0 && index < reversedWord.count - 1 { // cannot convert value of type 'ReversedCollection<String>.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
if vowels.contains(word[i]) {
closestVowel = word[i]
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
if vowels.contains(word[i]) {
closestVowel = word[i]
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
```
if vowels.contains(word[i]) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = word[i] // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = word[i]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = word[i]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
```
let char = word[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = word[i]
if vowels.contains(char) {
foundVowel = true
closestVowel = char
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = word[i]
if vowels.contains(char) {
foundVowel = true
closestVowel = char
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
```
let char = word[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let reversedWord = word.reversed()
var closestVowel = ""
for (index, character) in reversedWord.enumerated() {
if vowels.contains(character) {
closestVowel = String(character)
break
}
if index == reversedWord.count - 1 {
return ""
}
}
return closestVowel
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let reversedWord = word.reversed()
var closestVowel = ""
for (index, character) in reversedWord.enumerated() {
if vowels.contains(character) {
closestVowel = String(character)
break
}
if index == reversedWord.count - 1 {
return ""
}
}
return closestVowel
}
```
if vowels.contains(character) { // cannot convert value of type 'ReversedCollection<String>.Element' (aka 'Character') to expected argument type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = String(word[i])
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = String(word[i])
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
```
let char = String(word[i]) // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = word[i]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
var closestVowel = ""
var foundVowel = false
for i in (0..<word.count).reversed() {
let char = word[i]
if vowels.contains(char) {
closestVowel = char
foundVowel = true
break
}
}
if foundVowel {
return closestVowel
} else {
return ""
}
}
```
let char = word[i] // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if vowels.contains(char) { // cannot convert value of type 'Character' to expected argument type 'String'
closestVowel = char // cannot assign value of type 'Character' to type 'String'
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let reversedWord = String(word.reversed())
for i in 0..<reversedWord.count-1 {
if vowels.contains(reversedWord[i]) && !vowels.contains(reversedWord[i+1]) {
return String(reversedWord[i])
}
}
return ""
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == "" [/INST] ```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let reversedWord = String(word.reversed())
for i in 0..<reversedWord.count-1 {
if vowels.contains(reversedWord[i]) && !vowels.contains(reversedWord[i+1]) {
return String(reversedWord[i])
}
}
return ""
}
```
if vowels.contains(reversedWord[i]) && !vowels.contains(reversedWord[i+1]) { // cannot convert value of type 'Character' to expected argument type 'String'
if vowels.contains(reversedWord[i]) && !vowels.contains(reversedWord[i+1]) { // cannot convert value of type 'Character' to expected argument type 'String'
return String(reversedWord[i]) // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count != rightParens.count {
return "No"
}
var leftCount = 0
var rightCount = 0
for i in 0..<leftParens.count {
if leftParens[i] == "(" {
leftCount += 1
} else {
rightCount += 1
}
}
if leftCount == rightCount {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count != rightParens.count {
return "No"
}
var leftCount = 0
var rightCount = 0
for i in 0..<leftParens.count {
if leftParens[i] == "(" {
leftCount += 1
} else {
rightCount += 1
}
}
if leftCount == rightCount {
return "Yes"
} else {
return "No"
}
}
```
if leftParens[i] == "(" { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count != rightParens.count {
return "No"
}
var leftParensStack = [Character]()
var rightParensStack = [Character]()
for paren in leftParens {
if paren == "(" {
leftParensStack.append(paren)
} else {
rightParensStack.append(paren)
}
}
for paren in rightParens {
if paren == ")" {
rightParensStack.append(paren)
} else {
leftParensStack.append(paren)
}
}
if leftParensStack.count == rightParensStack.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count != rightParens.count {
return "No"
}
var leftParensStack = [Character]()
var rightParensStack = [Character]()
for paren in leftParens {
if paren == "(" {
leftParensStack.append(paren)
} else {
rightParensStack.append(paren)
}
}
for paren in rightParens {
if paren == ")" {
rightParensStack.append(paren)
} else {
leftParensStack.append(paren)
}
}
if leftParensStack.count == rightParensStack.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No" [/INST] ```swift
func matchParens(lst: [String]) -> String {
let leftParens = lst[0].filter { $0 == "(" }
let rightParens = lst[1].filter { $0 == ")" }
if leftParens.count == rightParens.count {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
// Sort the array in descending order
let sortedArr = arr.sorted(by: >)
// Return the first k elements of the sorted array
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
// Sort the array in descending order
let sortedArr = arr.sorted(by: >)
// Return the first k elements of the sorted array
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
// Check if k is valid
if k <= 0 || k > arr.count {
return []
}
// Sort the array in descending order
let sortedArr = arr.sorted(by: >)
// Return the first k elements
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
// Check if k is valid
if k <= 0 || k > arr.count {
return []
}
// Sort the array in descending order
let sortedArr = arr.sorted(by: >)
// Return the first k elements
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
// Sort the array in descending order
let sortedArr = arr.sorted(by: >)
// Return the first k elements of the sorted array
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
// Sort the array in descending order
let sortedArr = arr.sorted(by: >)
// Return the first k elements of the sorted array
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 && k <= arr.count else { return [] }
let sortedArr = arr.sorted(by: >)
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
// Sort the array in descending order
let sortedArr = arr.sorted(by: >)
// Return the first k elements of the sorted array
return Array(sortedArr[0..<k])
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2] [/INST] ```swift
func maximum(arr: [Int], k: Int) -> [Int] {
// Sort the array in descending order
let sortedArr = arr.sorted(by: >)
// Return the first k elements of the sorted array
return Array(sortedArr[0..<k])
}
```
// XCTAssertTrue failed
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0 [/INST] ```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (i, element) in lst.enumerated() {
if i % 2 == 0 && element % 2 != 0 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24 [/INST] ```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 100 {
sum += element
}
}
return sum
}
```
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5] [/INST] ```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current > 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
// Check if the date string is empty
if date.isEmpty {
return false
}
// Split the date string into components
let components = date.components(separatedBy: "-")
// Check if the number of components is 3
if components.count != 3 {
return false
}
// Check if the month is valid
let month = Int(components[0])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the day is valid
let day = Int(components[1])
if day == nil || day! < 1 || day! > 31 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 || year! > 9999 {
return false
}
// Check if the date is valid
let dateComponents = DateComponents(year: year!, month: month!, day: day!)
let calendar = Calendar.current
if !calendar.isDate(dateComponents, equalTo: Date(), toGranularity: .day) {
return false
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
// Check if the date string is empty
if date.isEmpty {
return false
}
// Split the date string into components
let components = date.components(separatedBy: "-")
// Check if the number of components is 3
if components.count != 3 {
return false
}
// Check if the month is valid
let month = Int(components[0])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the day is valid
let day = Int(components[1])
if day == nil || day! < 1 || day! > 31 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 || year! > 9999 {
return false
}
// Check if the date is valid
let dateComponents = DateComponents(year: year!, month: month!, day: day!)
let calendar = Calendar.current
if !calendar.isDate(dateComponents, equalTo: Date(), toGranularity: .day) {
return false
}
return true
}
```
if !calendar.isDate(dateComponents, equalTo: Date(), toGranularity: .day) { // cannot convert value of type 'DateComponents' to expected argument type 'Date'
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
if dateComponents.count != 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 || day! > 31 {
return false
}
if month! == 2 && day! > 29 {
return false
}
if month! == 4 || month! == 6 || month! == 9 || month! == 11 {
if day! > 30 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
if dateComponents.count != 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 || day! > 31 {
return false
}
if month! == 2 && day! > 29 {
return false
}
if month! == 4 || month! == 6 || month! == 9 || month! == 11 {
if day! > 30 {
return false
}
}
return true
}
```
func validDate(date: String) -> Bool {
// Check if the date string is empty
if date.isEmpty {
return false
}
// Split the date string into an array of components
let components = date.components(separatedBy: "-")
// Check if the number of components is not equal to 3
if components.count != 3 {
return false
}
// Check if the month is valid
let month = Int(components[0])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the day is valid
let day = Int(components[1])
if day == nil || day! < 1 || day! > 31 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 || year! > 9999 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if !date.hasPrefix("mm-dd-yyyy") {
return false
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
// Check if the date string is empty
if date.isEmpty {
return false
}
// Split the date string into an array of components
let components = date.components(separatedBy: "-")
// Check if the number of components is not equal to 3
if components.count != 3 {
return false
}
// Check if the month is valid
let month = Int(components[0])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the day is valid
let day = Int(components[1])
if day == nil || day! < 1 || day! > 31 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 || year! > 9999 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if !date.hasPrefix("mm-dd-yyyy") {
return false
}
return true
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
if dateComponents.count != 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 || day! > 31 {
return false
}
if month! == 2 && day! > 29 {
return false
}
if month! == 4 || month! == 6 || month! == 9 || month! == 11 {
if day! > 30 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
if dateComponents.count != 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 || day! > 31 {
return false
}
if month! == 2 && day! > 29 {
return false
}
if month! == 4 || month! == 6 || month! == 9 || month! == 11 {
if day! > 30 {
return false
}
}
return true
}
```
func validDate(date: String) -> Bool {
// Check if the date string is empty
if date.isEmpty {
return false
}
// Split the date string into components
let components = date.split(separator: "-")
// Check if the number of components is not 3
if components.count != 3 {
return false
}
// Check if the month is valid
let month = Int(components[0])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the day is valid
let day = Int(components[1])
if day == nil || day! < 1 || day! > 31 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if !date.hasPrefix("mm-dd-yyyy") {
return false
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
// Check if the date string is empty
if date.isEmpty {
return false
}
// Split the date string into components
let components = date.split(separator: "-")
// Check if the number of components is not 3
if components.count != 3 {
return false
}
// Check if the month is valid
let month = Int(components[0])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the day is valid
let day = Int(components[1])
if day == nil || day! < 1 || day! > 31 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if !date.hasPrefix("mm-dd-yyyy") {
return false
}
return true
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
// Split the date string into components
let components = date.components(separatedBy: "-")
// Check if the date string is empty
if components.isEmpty {
return false
}
// Check if the number of days is valid
let days = Int(components[0])
if days == nil || days! < 1 || days! > 31 {
return false
}
// Check if the month is valid
let month = Int(components[1])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if components.count != 3 || components[0].count != 2 || components[1].count != 2 || components[2].count != 4 {
return false
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
// Split the date string into components
let components = date.components(separatedBy: "-")
// Check if the date string is empty
if components.isEmpty {
return false
}
// Check if the number of days is valid
let days = Int(components[0])
if days == nil || days! < 1 || days! > 31 {
return false
}
// Check if the month is valid
let month = Int(components[1])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if components.count != 3 || components[0].count != 2 || components[1].count != 2 || components[2].count != 4 {
return false
}
return true
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
// Check if the date string is empty
if date.isEmpty {
return false
}
// Split the date string into components
let components = date.components(separatedBy: "-")
// Check if the number of components is not equal to 3
if components.count != 3 {
return false
}
// Check if the month is valid
let month = Int(components[0])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the day is valid
let day = Int(components[1])
if day == nil || day! < 1 || day! > 31 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if components[0].count != 2 || components[1].count != 2 || components[2].count != 4 {
return false
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
// Check if the date string is empty
if date.isEmpty {
return false
}
// Split the date string into components
let components = date.components(separatedBy: "-")
// Check if the number of components is not equal to 3
if components.count != 3 {
return false
}
// Check if the month is valid
let month = Int(components[0])
if month == nil || month! < 1 || month! > 12 {
return false
}
// Check if the day is valid
let day = Int(components[1])
if day == nil || day! < 1 || day! > 31 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if components[0].count != 2 || components[1].count != 2 || components[2].count != 4 {
return false
}
return true
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
if dateComponents.count != 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 || day! > 31 {
return false
}
if month! == 2 && day! > 29 {
return false
}
if month! == 4 || month! == 6 || month! == 9 || month! == 11 {
if day! > 30 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
let dateComponents = date.components(separatedBy: "-")
if dateComponents.count != 3 {
return false
}
let month = Int(dateComponents[0])
let day = Int(dateComponents[1])
let year = Int(dateComponents[2])
if month == nil || day == nil || year == nil {
return false
}
if month! < 1 || month! > 12 {
return false
}
if day! < 1 || day! > 31 {
return false
}
if month! == 2 && day! > 29 {
return false
}
if month! == 4 || month! == 6 || month! == 9 || month! == 11 {
if day! > 30 {
return false
}
}
return true
}
```
func validDate(date: String) -> Bool {
// Split the date string into components
let components = date.components(separatedBy: "-")
// Check if the date string is empty
if components.isEmpty {
return false
}
// Check if the number of days is valid
let days = Int(components[1])
if days == nil || days! < 1 || days! > 31 {
return false
}
// Check if the month is valid
let months = Int(components[0])
if months == nil || months! < 1 || months! > 12 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if components.count != 3 || components[0].count != 2 || components[1].count != 2 || components[2].count != 4 {
return false
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
// Split the date string into components
let components = date.components(separatedBy: "-")
// Check if the date string is empty
if components.isEmpty {
return false
}
// Check if the number of days is valid
let days = Int(components[1])
if days == nil || days! < 1 || days! > 31 {
return false
}
// Check if the month is valid
let months = Int(components[0])
if months == nil || months! < 1 || months! > 12 {
return false
}
// Check if the year is valid
let year = Int(components[2])
if year == nil || year! < 1 {
return false
}
// Check if the date is in the format mm-dd-yyyy
if components.count != 3 || components[0].count != 2 || components[1].count != 2 || components[2].count != 4 {
return false
}
return true
}
```
// Fatal error: Index out of range
func validDate(date: String) -> Bool {
// Split the date string into components
let components = date.split(separator: "-")
// Check if the date string is empty
if components.count != 3 {
return false
}
// Check if the number of days is valid
let days = Int(components[0])
if days == nil || days! < 1 || days! > 31 {
return false
}
// Check if the number of months is valid
let months = Int(components[1])
if months == nil || months! < 1 || months! > 12 {
return false
}
// Check if the number of years is valid
let years = Int(components[2])
if years == nil || years! < 1 {
return false
}
// Check if the date is in the correct format
if !date.hasPrefix("mm-dd-yyyy") {
return false
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false [/INST] ```swift
func validDate(date: String) -> Bool {
// Split the date string into components
let components = date.split(separator: "-")
// Check if the date string is empty
if components.count != 3 {
return false
}
// Check if the number of days is valid
let days = Int(components[0])
if days == nil || days! < 1 || days! > 31 {
return false
}
// Check if the number of months is valid
let months = Int(components[1])
if months == nil || months! < 1 || months! > 12 {
return false
}
// Check if the number of years is valid
let years = Int(components[2])
if years == nil || years! < 1 {
return false
}
// Check if the date is in the correct format
if !date.hasPrefix("mm-dd-yyyy") {
return false
}
return true
}
```
// XCTAssertTrue failed
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let whitespaceIndex = txt.firstIndex(of: " ") { // value 'whitespaceIndex' was defined but never used; consider replacing with boolean test
} else if let commaIndex = txt.firstIndex(of: ",") { // value 'commaIndex' was defined but never used; consider replacing with boolean test
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
let words = txt.split(separator: " ")
return .success(words)
} else if let commaIndex = txt.firstIndex(of: ",") {
let words = txt.split(separator: ",")
return .success(words)
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
let count = oddOrderLetters.count
return .failure(count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
let words = txt.split(separator: " ")
return .success(words)
} else if let commaIndex = txt.firstIndex(of: ",") {
let words = txt.split(separator: ",")
return .success(words)
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
let count = oddOrderLetters.count
return .failure(count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let whitespaceIndex = txt.firstIndex(of: " ") { // value 'whitespaceIndex' was defined but never used; consider replacing with boolean test
} else if let commaIndex = txt.firstIndex(of: ",") { // value 'commaIndex' was defined but never used; consider replacing with boolean test
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }.map { $0.element }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }.map { $0.element }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let whitespaceIndex = txt.firstIndex(of: " ") { // value 'whitespaceIndex' was defined but never used; consider replacing with boolean test
} else if let commaIndex = txt.firstIndex(of: ",") { // value 'commaIndex' was defined but never used; consider replacing with boolean test
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }.map { $0.element }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }.map { $0.element }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let whitespaceIndex = txt.firstIndex(of: " ") { // value 'whitespaceIndex' was defined but never used; consider replacing with boolean test
} else if let commaIndex = txt.firstIndex(of: ",") { // value 'commaIndex' was defined but never used; consider replacing with boolean test
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let index = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " "))
} else if let index = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ","))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let index = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " "))
} else if let index = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ","))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(txt.split(separator: " ")) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(txt.split(separator: ",")) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let index = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let index = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }.map { $0.element }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let index = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let index = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }.map { $0.element }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let index = txt.firstIndex(of: " ") { // value 'index' was defined but never used; consider replacing with boolean test
} else if let index = txt.firstIndex(of: ",") { // value 'index' was defined but never used; consider replacing with boolean test
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
let words = txt.split(separator: " ")
return .success(words)
} else if let commaIndex = txt.firstIndex(of: ",") {
let words = txt.split(separator: ",")
return .success(words)
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
let words = txt.split(separator: " ")
return .success(words)
} else if let commaIndex = txt.firstIndex(of: ",") {
let words = txt.split(separator: ",")
return .success(words)
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(words) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
if let whitespaceIndex = txt.firstIndex(of: " ") { // value 'whitespaceIndex' was defined but never used; consider replacing with boolean test
} else if let commaIndex = txt.firstIndex(of: ",") { // value 'commaIndex' was defined but never used; consider replacing with boolean test
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " "))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ","))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3) [/INST] ```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let whitespaceIndex = txt.firstIndex(of: " ") {
return .success(txt.split(separator: " "))
} else if let commaIndex = txt.firstIndex(of: ",") {
return .success(txt.split(separator: ","))
} else {
let lowercaseLetters = txt.filter { $0.isLowercase }
let oddOrderLetters = lowercaseLetters.enumerated().filter { $0.offset % 2 == 1 }
return .failure(oddOrderLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
return .success(txt.split(separator: " ")) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
return .success(txt.split(separator: ",")) // cannot convert value of type '[String.SubSequence]' (aka 'Array<Substring>') to expected argument type '[String]'
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i - 1] {
return false
}
previous = lst[i]
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i - 1] {
return false
}
previous = lst[i]
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previousNumber = lst[0]
for i in 1..<lst.count {
let currentNumber = lst[i]
if currentNumber < previousNumber {
return false
}
if currentNumber == previousNumber && i < lst.count - 1 && lst[i + 1] == currentNumber {
return false
}
previousNumber = currentNumber
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previousNumber = lst[0]
for i in 1..<lst.count {
let currentNumber = lst[i]
if currentNumber < previousNumber {
return false
}
if currentNumber == previousNumber && i < lst.count - 1 && lst[i + 1] == currentNumber {
return false
}
previousNumber = currentNumber
}
return true
}
```
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var previousNumber = lst[0]
for number in lst[1..<lst.count] {
if number <= previousNumber {
return false
}
previousNumber = number
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
var previousNumber = lst[0]
for number in lst[1..<lst.count] {
if number <= previousNumber {
return false
}
previousNumber = number
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previousNumber = lst[0]
for number in lst[1...] {
if number <= previousNumber {
return false
}
previousNumber = number
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previousNumber = lst[0]
for number in lst[1...] {
if number <= previousNumber {
return false
}
previousNumber = number
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous {
return false
}
previous = lst[i]
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous {
return false
}
previous = lst[i]
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false [/INST] ```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
for i in 1..<lst.count {
if lst[i] < previous {
return false
}
if lst[i] == previous && lst[i] != lst[i-1] {
return false
}
previous = lst[i]
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersectionStart = max(interval1.start, interval2.start)
let intersectionEnd = min(interval1.end, interval2.end)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersectionStart = max(interval1.start, interval2.start)
let intersectionEnd = min(interval1.end, interval2.end)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
```
let intersectionStart = max(interval1.start, interval2.start) // value of tuple type '(Int, Int)' has no member 'start'
let intersectionStart = max(interval1.start, interval2.start) // value of tuple type '(Int, Int)' has no member 'start'
let intersectionEnd = min(interval1.end, interval2.end) // value of tuple type '(Int, Int)' has no member 'end'
let intersectionEnd = min(interval1.end, interval2.end) // value of tuple type '(Int, Int)' has no member 'end'
let intersectionLength = intersectionEnd - intersectionStart + 1 // binary operator '+' cannot be applied to operands of type 'Duration' and 'Int'
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
if intersection.0 <= intersection.1 {
let length = intersection.1 - intersection.0 + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
if intersection.0 <= intersection.1 {
let length = intersection.1 - intersection.0 + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
if intersection.0 <= intersection.1 {
let length = intersection.1 - intersection.0 + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
if intersection.0 <= intersection.1 {
let length = intersection.1 - intersection.0 + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end1 || start2 > end2 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...number / 2 {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end1 || start2 > end2 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...number / 2 {
if number % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.start, interval2.start), min(interval1.end, interval2.end))
if intersection.start <= intersection.end {
let length = intersection.end - intersection.start + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.start, interval2.start), min(interval1.end, interval2.end))
if intersection.start <= intersection.end {
let length = intersection.end - intersection.start + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
let intersection = (max(interval1.start, interval2.start), min(interval1.end, interval2.end)) // value of tuple type '(Int, Int)' has no member 'start'
let intersection = (max(interval1.start, interval2.start), min(interval1.end, interval2.end)) // value of tuple type '(Int, Int)' has no member 'start'
let intersection = (max(interval1.start, interval2.start), min(interval1.end, interval2.end)) // value of tuple type '(Int, Int)' has no member 'end'
let intersection = (max(interval1.start, interval2.start), min(interval1.end, interval2.end)) // value of tuple type '(Int, Int)' has no member 'end'
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
if intersection.0 <= intersection.1 {
let length = intersection.1 - intersection.0 + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
if intersection.0 <= intersection.1 {
let length = intersection.1 - intersection.0 + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end1 || start2 > end2 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...number / 2 {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end1 || start2 > end2 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...number / 2 {
if number % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end1 || start2 > end2 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...number / 2 {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start1 = interval1.0
let end1 = interval1.1
let start2 = interval2.0
let end2 = interval2.1
if start1 > end1 || start2 > end2 {
return "NO"
}
let intersectionStart = max(start1, start2)
let intersectionEnd = min(end1, end2)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...number / 2 {
if number % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersectionStart = max(interval1.start, interval2.start)
let intersectionEnd = min(interval1.end, interval2.end)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersectionStart = max(interval1.start, interval2.start)
let intersectionEnd = min(interval1.end, interval2.end)
if intersectionStart > intersectionEnd {
return "NO"
}
let intersectionLength = intersectionEnd - intersectionStart + 1
if isPrime(intersectionLength) {
return "YES"
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2..<number {
if number % i == 0 {
return false
}
}
return true
}
```
let intersectionStart = max(interval1.start, interval2.start) // value of tuple type '(Int, Int)' has no member 'start'
let intersectionStart = max(interval1.start, interval2.start) // value of tuple type '(Int, Int)' has no member 'start'
let intersectionEnd = min(interval1.end, interval2.end) // value of tuple type '(Int, Int)' has no member 'end'
let intersectionEnd = min(interval1.end, interval2.end) // value of tuple type '(Int, Int)' has no member 'end'
let intersectionLength = intersectionEnd - intersectionStart + 1 // binary operator '+' cannot be applied to operands of type 'Duration' and 'Int'
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
if intersection.0 <= intersection.1 {
let length = intersection.1 - intersection.0 + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES" [/INST] ```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
if intersection.0 <= intersection.1 {
let length = intersection.1 - intersection.0 + 1
if isPrime(length) {
return "YES"
} else {
return "NO"
}
} else {
return "NO"
}
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
return signs.reduce(1, *) * magnitudes.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
return signs.reduce(1, *) * magnitudes.reduce(0, +)
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
return signs.reduce(1, *) * magnitudes.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
return signs.reduce(1, *) * magnitudes.reduce(0, +)
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
return signs.reduce(1, *) * magnitudes.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes = arr.map { abs($0) }
return signs.reduce(1, *) * magnitudes.reduce(0, +)
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs: [Int] = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes: [Int] = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil [/INST] ```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs: [Int] = arr.map { $0 >= 0 ? 1 : -1 }
let magnitudes: [Int] = arr.map { abs($0) }
let productOfSigns = signs.reduce(1, *)
let sumOfMagnitudes = magnitudes.reduce(0, +)
return productOfSigns * sumOfMagnitudes
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: false, count: n * n)
var queue = [(0, 0, [])]
var minPath: [Int]?
while !queue.isEmpty {
let (x, y, path) = queue.removeFirst()
if visited[x * n + y] {
continue
}
visited[x * n + y] = true
path.append(grid[x][y])
if path.count == k {
minPath = path
break
}
for (dx, dy) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let newX = x + dx
let newY = y + dy
if newX >= 0 && newX < n && newY >= 0 && newY < n {
queue.append((newX, newY, path))
}
}
}
return minPath!
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: false, count: n * n)
var queue = [(0, 0, [])]
var minPath: [Int]?
while !queue.isEmpty {
let (x, y, path) = queue.removeFirst()
if visited[x * n + y] {
continue
}
visited[x * n + y] = true
path.append(grid[x][y])
if path.count == k {
minPath = path
break
}
for (dx, dy) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let newX = x + dx
let newY = y + dy
if newX >= 0 && newX < n && newY >= 0 && newY < n {
queue.append((newX, newY, path))
}
}
}
return minPath!
}
```
path.append(grid[x][y]) // cannot use mutating member on immutable value: 'path' is a 'let' constant
minPath = path // cannot assign value of type '[Any]' to type '[Int]'
func minPath(grid: [[Int]], k: Int) -> [Int] {
// Initialize the minimum path with the first cell
var minPath = [grid[0][0]]
// Initialize the visited cells
var visited = [[Bool]](repeating: [Bool](repeating: false, count: grid[0].count), count: grid.count)
visited[0][0] = true
// Initialize the queue with the first cell
var queue = [(cell: (Int, Int), path: [Int])]()
queue.append((cell: (0, 0), path: [grid[0][0]]))
// Loop until we have a path of length k
while queue.count > 0 && minPath.count < k {
// Dequeue the next cell
let (cell, path) = queue.removeFirst()
// Check if the cell is in the grid and not visited
if cell.0 >= 0 && cell.0 < grid.count && cell.1 >= 0 && cell.1 < grid[0].count && !visited[cell.0][cell.1] {
// Mark the cell as visited
visited[cell.0][cell.1] = true
// Add the cell to the path
path.append(grid[cell.0][cell.1])
// Check if the path is of length k
if path.count == k {
// If the path is of length k, check if it's less than the current minimum path
if minPath.count == 0 || path.lexicographicallyLess(minPath) {
minPath = path
}
} else {
// If the path is not of length k, add the cell to the queue
queue.append((cell: (cell.0 + 1, cell.1), path: path))
queue.append((cell: (cell.0 - 1, cell.1), path: path))
queue.append((cell: (cell.0, cell.1 + 1), path: path))
queue.append((cell: (cell.0, cell.1 - 1), path: path))
}
}
}
return minPath
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
// Initialize the minimum path with the first cell
var minPath = [grid[0][0]]
// Initialize the visited cells
var visited = [[Bool]](repeating: [Bool](repeating: false, count: grid[0].count), count: grid.count)
visited[0][0] = true
// Initialize the queue with the first cell
var queue = [(cell: (Int, Int), path: [Int])]()
queue.append((cell: (0, 0), path: [grid[0][0]]))
// Loop until we have a path of length k
while queue.count > 0 && minPath.count < k {
// Dequeue the next cell
let (cell, path) = queue.removeFirst()
// Check if the cell is in the grid and not visited
if cell.0 >= 0 && cell.0 < grid.count && cell.1 >= 0 && cell.1 < grid[0].count && !visited[cell.0][cell.1] {
// Mark the cell as visited
visited[cell.0][cell.1] = true
// Add the cell to the path
path.append(grid[cell.0][cell.1])
// Check if the path is of length k
if path.count == k {
// If the path is of length k, check if it's less than the current minimum path
if minPath.count == 0 || path.lexicographicallyLess(minPath) {
minPath = path
}
} else {
// If the path is not of length k, add the cell to the queue
queue.append((cell: (cell.0 + 1, cell.1), path: path))
queue.append((cell: (cell.0 - 1, cell.1), path: path))
queue.append((cell: (cell.0, cell.1 + 1), path: path))
queue.append((cell: (cell.0, cell.1 - 1), path: path))
}
}
}
return minPath
}
// Test the function
let grid = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
let k = 3
let result = minPath(grid: grid, k: k)
print(result) // [1, 2, 1]
```
path.append(grid[cell.0][cell.1]) // cannot use mutating member on immutable value: 'path' is a 'let' constant
if minPath.count == 0 || path.lexicographicallyLess(minPath) { // value of type '[Int]' has no member 'lexicographicallyLess'
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
var path = [Int]()
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
queue.append((i, j, 0))
visited.insert(grid[i][j])
}
}
}
while !queue.isEmpty {
let (i, j, count) = queue.removeFirst()
if count == k {
path.append(grid[i][j])
break
}
for (di, dj) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let (ni, nj) = (i + di, j + dj)
if 0 <= ni && ni < grid.count && 0 <= nj && nj < grid[i].count && !visited.contains(grid[ni][nj]) {
queue.append((ni, nj, count + 1))
visited.insert(grid[ni][nj])
}
}
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
var path = [Int]()
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
queue.append((i, j, 0))
visited.insert(grid[i][j])
}
}
}
while !queue.isEmpty {
let (i, j, count) = queue.removeFirst()
if count == k {
path.append(grid[i][j])
break
}
for (di, dj) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let (ni, nj) = (i + di, j + dj)
if 0 <= ni && ni < grid.count && 0 <= nj && nj < grid[i].count && !visited.contains(grid[ni][nj]) {
queue.append((ni, nj, count + 1))
visited.insert(grid[ni][nj])
}
}
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
let m = grid[0].count
var visited = [[Bool]](repeating: [Bool](repeating: false, count: m), count: n)
var queue = [(Int, Int, Int)]()
var path = [Int]()
queue.append((0, 0, 0))
visited[0][0] = true
while !queue.isEmpty {
let (x, y, length) = queue.removeFirst()
path.append(grid[x][y])
if length == k {
return path
}
for (dx, dy) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let newX = x + dx
let newY = y + dy
if newX >= 0 && newX < n && newY >= 0 && newY < m && !visited[newX][newY] {
visited[newX][newY] = true
queue.append((newX, newY, length + 1))
}
}
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
let m = grid[0].count
var visited = [[Bool]](repeating: [Bool](repeating: false, count: m), count: n)
var queue = [(Int, Int, Int)]()
var path = [Int]()
queue.append((0, 0, 0))
visited[0][0] = true
while !queue.isEmpty {
let (x, y, length) = queue.removeFirst()
path.append(grid[x][y])
if length == k {
return path
}
for (dx, dy) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let newX = x + dx
let newY = y + dy
if newX >= 0 && newX < n && newY >= 0 && newY < m && !visited[newX][newY] {
visited[newX][newY] = true
queue.append((newX, newY, length + 1))
}
}
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
var path = [Int]()
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
queue.append((i, j, 0))
visited.insert(1)
break
}
}
}
while !queue.isEmpty {
let (i, j, count) = queue.removeFirst()
if count == k {
path.append(grid[i][j])
break
}
for (di, dj) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let (ni, nj) = (i + di, j + dj)
if 0 <= ni && ni < grid.count && 0 <= nj && nj < grid[i].count && !visited.contains(grid[ni][nj]) {
visited.insert(grid[ni][nj])
queue.append((ni, nj, count + 1))
}
}
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
var path = [Int]()
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
queue.append((i, j, 0))
visited.insert(1)
break
}
}
}
while !queue.isEmpty {
let (i, j, count) = queue.removeFirst()
if count == k {
path.append(grid[i][j])
break
}
for (di, dj) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let (ni, nj) = (i + di, j + dj)
if 0 <= ni && ni < grid.count && 0 <= nj && nj < grid[i].count && !visited.contains(grid[ni][nj]) {
visited.insert(grid[ni][nj])
queue.append((ni, nj, count + 1))
}
}
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: false, count: n * n)
var queue = [(Int, Int, Int)]() // (row, col, length)
var result = [Int]()
// Initialize the queue with the first cell
queue.append((0, 0, 0))
// Loop until the queue is empty
while !queue.isEmpty {
let (row, col, length) = queue.removeFirst()
// If the current cell is not visited and the length is less than k, mark it as visited and add it to the queue
if !visited[row * n + col] && length < k {
visited[row * n + col] = true
queue.append((row, col, length + 1))
}
// If the current cell is visited and the length is equal to k, add it to the result
if visited[row * n + col] && length == k {
result.append(grid[row][col])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: false, count: n * n)
var queue = [(Int, Int, Int)]() // (row, col, length)
var result = [Int]()
// Initialize the queue with the first cell
queue.append((0, 0, 0))
// Loop until the queue is empty
while !queue.isEmpty {
let (row, col, length) = queue.removeFirst()
// If the current cell is not visited and the length is less than k, mark it as visited and add it to the queue
if !visited[row * n + col] && length < k {
visited[row * n + col] = true
queue.append((row, col, length + 1))
}
// If the current cell is visited and the length is equal to k, add it to the result
if visited[row * n + col] && length == k {
result.append(grid[row][col])
}
}
return result
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
var path = [Int]()
queue.append((0, 0, 0))
while !queue.isEmpty {
let (row, col, depth) = queue.removeFirst()
if depth == k {
path.append(grid[row][col])
break
}
for (i, j) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let newRow = row + i
let newCol = col + j
if newRow >= 0 && newRow < grid.count && newCol >= 0 && newCol < grid[0].count {
let value = grid[newRow][newCol]
if !visited.contains(value) {
visited.insert(value)
queue.append((newRow, newCol, depth + 1))
}
}
}
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
var path = [Int]()
queue.append((0, 0, 0))
while !queue.isEmpty {
let (row, col, depth) = queue.removeFirst()
if depth == k {
path.append(grid[row][col])
break
}
for (i, j) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let newRow = row + i
let newCol = col + j
if newRow >= 0 && newRow < grid.count && newCol >= 0 && newCol < grid[0].count {
let value = grid[newRow][newCol]
if !visited.contains(value) {
visited.insert(value)
queue.append((newRow, newCol, depth + 1))
}
}
}
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: false, count: n * n)
var queue = [(0, 0, [Int]())]
while !queue.isEmpty {
let (i, j, path) = queue.removeFirst()
if visited[i * n + j] {
continue
}
visited[i * n + j] = true
if path.count == k {
return path
}
for (di, dj) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let ni = i + di
let nj = j + dj
if ni >= 0 && ni < n && nj >= 0 && nj < n {
queue.append((ni, nj, path + [grid[ni][nj]]))
}
}
}
return []
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: false, count: n * n)
var queue = [(0, 0, [Int]())]
while !queue.isEmpty {
let (i, j, path) = queue.removeFirst()
if visited[i * n + j] {
continue
}
visited[i * n + j] = true
if path.count == k {
return path
}
for (di, dj) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let ni = i + di
let nj = j + dj
if ni >= 0 && ni < n && nj >= 0 && nj < n {
queue.append((ni, nj, path + [grid[ni][nj]]))
}
}
}
return []
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
var path = [Int]()
let n = grid.count
let m = grid[0].count
for i in 0..<n {
for j in 0..<m {
if grid[i][j] == 1 {
queue.append((i, j, 0))
visited.insert(i * m + j)
break
}
}
}
while !queue.isEmpty {
let (i, j, count) = queue.removeFirst()
if count == k {
path.append(grid[i][j])
break
}
for (di, dj) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let ni = i + di
let nj = j + dj
if ni >= 0 && ni < n && nj >= 0 && nj < m && !visited.contains(ni * m + nj) {
queue.append((ni, nj, count + 1))
visited.insert(ni * m + nj)
}
}
}
return path
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
var path = [Int]()
let n = grid.count
let m = grid[0].count
for i in 0..<n {
for j in 0..<m {
if grid[i][j] == 1 {
queue.append((i, j, 0))
visited.insert(i * m + j)
break
}
}
}
while !queue.isEmpty {
let (i, j, count) = queue.removeFirst()
if count == k {
path.append(grid[i][j])
break
}
for (di, dj) in [(0, 1), (0, -1), (1, 0), (-1, 0)] {
let ni = i + di
let nj = j + dj
if ni >= 0 && ni < n && nj >= 0 && nj < m && !visited.contains(ni * m + nj) {
queue.append((ni, nj, count + 1))
visited.insert(ni * m + nj)
}
}
}
return path
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: false, count: n * n)
var queue = [(Int, Int, Int)]() // (row, col, length)
var result = [Int]()
// Initialize the queue with the starting cell
queue.append((0, 0, 0))
while !queue.isEmpty {
let (row, col, length) = queue.removeFirst()
// If we have reached the end of the path, add the value to the result
if length == k {
result.append(grid[row][col])
continue
}
// If the cell has not been visited before, mark it as visited and add it to the queue
if !visited[row * n + col] {
visited[row * n + col] = true
queue.append((row, col, length + 1))
}
// Add the neighbors of the cell to the queue
for (r, c) in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)] {
if r >= 0 && r < n && c >= 0 && c < n && !visited[r * n + c] {
queue.append((r, c, length + 1))
}
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1] [/INST] ```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var visited = Array(repeating: false, count: n * n)
var queue = [(Int, Int, Int)]() // (row, col, length)
var result = [Int]()
// Initialize the queue with the starting cell
queue.append((0, 0, 0))
while !queue.isEmpty {
let (row, col, length) = queue.removeFirst()
// If we have reached the end of the path, add the value to the result
if length == k {
result.append(grid[row][col])
continue
}
// If the cell has not been visited before, mark it as visited and add it to the queue
if !visited[row * n + col] {
visited[row * n + col] = true
queue.append((row, col, length + 1))
}
// Add the neighbors of the cell to the queue
for (r, c) in [(row - 1, col), (row + 1, col), (row, col - 1), (row, col + 1)] {
if r >= 0 && r < n && c >= 0 && c < n && !visited[r * n + c] {
queue.append((r, c, length + 1))
}
}
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result: [Int] = [1]
var a = 1
var b = 3
var c = 2
for i in 1...n {
if i % 2 == 0 {
result.append(a + i / 2)
} else {
result.append(b + c + i)
}
a = b
b = c
c = result[i]
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result: [Int] = [1]
var a = 1
var b = 3
var c = 2
for i in 1...n {
if i % 2 == 0 {
result.append(a + i / 2)
} else {
result.append(b + c + i)
}
a = b
b = c
c = result[i]
}
return result
}
```
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(tri(n: i - 1) + tri(n: i - 2) + tri(n: i + 1))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(tri(n: i - 1) + tri(n: i - 2) + tri(n: i + 1))
}
}
return result
}
```
result.append(tri(n: i - 1) + tri(n: i - 2) + tri(n: i + 1)) // missing argument label 'contentsOf:' in call
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8] [/INST] ```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
result *= digit
}
num /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var isEven = true
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
product *= digit
isEven = false
}
num /= 10
}
return isEven ? 0 : product
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15 [/INST] ```swift
func digits(n: Int) -> Int {
var product = 1
var isEven = true
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 == 1 {
product *= digit
isEven = false
}
num /= 10
}
return isEven ? 0 : product
}
```
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
let brackets = string.filter { $0 == "[" || $0 == "]" }
var stack = [Character]()
for bracket in brackets {
if bracket == "[" {
stack.append(bracket)
} else if bracket == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
let brackets = string.filter { $0 == "[" || $0 == "]" }
var stack = [Character]()
for bracket in brackets {
if bracket == "[" {
stack.append(bracket)
} else if bracket == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
let brackets = string.filter { $0 == "[" || $0 == "]" }
var stack = [Character]()
for bracket in brackets {
if bracket == "[" {
stack.append(bracket)
} else if bracket == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
let brackets = string.filter { $0 == "[" || $0 == "]" }
var stack = [Character]()
for bracket in brackets {
if bracket == "[" {
stack.append(bracket)
} else if bracket == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true [/INST] ```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6 [/INST] ```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +)
}
```
return lst.map { ceil($0) }.map { $0 * $0 }.reduce(0, +) // cannot convert value of type 'Double' to closure result type 'Int'
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
let lastCharIsLetter = lastChar!.isLetter
let lastCharIsNotPartOfWord = !txt.contains(" ")
return lastCharIsLetter && lastCharIsNotPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
let lastCharIsLetter = lastChar!.isLetter
let lastCharIsNotPartOfWord = !txt.contains(" ")
return lastCharIsLetter && lastCharIsNotPartOfWord
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
let isAlphabetical = lastChar!.isAlphabetical
let isPartOfWord = txt.contains(" ")
return isAlphabetical && !isPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
let isAlphabetical = lastChar!.isAlphabetical
let isPartOfWord = txt.contains(" ")
return isAlphabetical && !isPartOfWord
}
```
let isAlphabetical = lastChar!.isAlphabetical // value of type 'String.Element' (aka 'Character') has no member 'isAlphabetical'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !txt.contains(" ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !txt.contains(" ")
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
let lastCharIsLetter = lastChar!.isLetter
let lastCharIsPartOfWord = txt.contains(" ")
return lastCharIsLetter && !lastCharIsPartOfWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if lastChar == nil {
return false
}
let lastCharIsLetter = lastChar!.isLetter
let lastCharIsPartOfWord = txt.contains(" ")
return lastCharIsLetter && !lastCharIsPartOfWord
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.contains(" ")
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar, lastChar.isLetter {
let words = txt.components(separatedBy: " ")
let lastWord = words.last
if lastWord == nil || lastWord!.count == 0 {
return true
} else {
return false
}
} else {
return false
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false [/INST] ```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar, lastChar.isLetter {
let words = txt.components(separatedBy: " ")
let lastWord = words.last
if lastWord == nil || lastWord!.count == 0 {
return true
} else {
return false
}
} else {
return false
}
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count-1 {
if arr[i] < arr[i+1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count-1 {
if arr[i] < arr[i+1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 0..<arr.count-1 {
if arr[i] >= arr[i+1] {
maxIndex = i
}
}
return maxIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 0..<arr.count-1 {
if arr[i] >= arr[i+1] {
maxIndex = i
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] < arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] < arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] < arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] < arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] >= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] >= arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 0..<arr.count-1 {
if arr[i] >= arr[i+1] {
maxIndex = i
}
}
return maxIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 0..<arr.count-1 {
if arr[i] >= arr[i+1] {
maxIndex = i
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count-1 {
if arr[i] < arr[i+1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count-1 {
if arr[i] < arr[i+1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] < arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] < arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 0..<arr.count-1 {
if arr[i] >= arr[i+1] {
maxIndex = i
}
}
return maxIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 0..<arr.count-1 {
if arr[i] >= arr[i+1] {
maxIndex = i
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] < arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1 [/INST] ```swift
func canArrange(arr: [Int]) -> Int {
var largestIndex = -1
for i in 0..<arr.count - 1 {
if arr[i] < arr[i + 1] {
largestIndex = i
}
}
return largestIndex
}
```
// XCTAssertTrue failed
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil) [/INST] ```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for element in lst {
if element < 0 {
if largestNegative == nil || element > largestNegative {
largestNegative = element
}
} else if element > 0 {
if smallestPositive == nil || element < smallestPositive {
smallestPositive = element
}
}
}
return (largestNegative, smallestPositive)
}
```
if largestNegative == nil || element > largestNegative { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
if smallestPositive == nil || element < smallestPositive { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
case (.intValue(let a), .doubleValue(let b)):
return Double(a) > b ? .doubleValue(Double(a)) : nil
case (.intValue(let a), .stringValue(let b)):
return Double(a) > Double(b) ? .stringValue(b) : nil
case (.doubleValue(let a), .intValue(let b)):
return a > Double(b) ? .doubleValue(a) : nil
case (.doubleValue(let a), .stringValue(let b)):
return a > Double(b) ? .stringValue(b) : nil
case (.stringValue(let a), .intValue(let b)):
return Double(a) > Double(b) ? .intValue(b) : nil
case (.stringValue(let a), .doubleValue(let b)):
return Double(a) > b ? .doubleValue(b) : nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
case (.intValue(let a), .doubleValue(let b)):
return Double(a) > b ? .doubleValue(Double(a)) : nil
case (.intValue(let a), .stringValue(let b)):
return Double(a) > Double(b) ? .stringValue(b) : nil
case (.doubleValue(let a), .intValue(let b)):
return a > Double(b) ? .doubleValue(a) : nil
case (.doubleValue(let a), .stringValue(let b)):
return a > Double(b) ? .stringValue(b) : nil
case (.stringValue(let a), .intValue(let b)):
return Double(a) > Double(b) ? .intValue(b) : nil
case (.stringValue(let a), .doubleValue(let b)):
return Double(a) > b ? .doubleValue(b) : nil
}
}
```
return Double(a) > Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .intValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > b ? .doubleValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.intValue(a), .doubleValue(b)):
return Double(a) > b ? .doubleValue(b) : nil
case let (.intValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .stringValue(b) : nil
case let (.doubleValue(a), .intValue(b)):
return a > Double(b) ? .doubleValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.doubleValue(a), .stringValue(b)):
return a > Double(b) ? .stringValue(b) : nil
case let (.stringValue(a), .intValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
case let (.stringValue(a), .doubleValue(b)):
return Double(a) > b ? .stringValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.intValue(a), .doubleValue(b)):
return Double(a) > b ? .doubleValue(b) : nil
case let (.intValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .stringValue(b) : nil
case let (.doubleValue(a), .intValue(b)):
return a > Double(b) ? .doubleValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.doubleValue(a), .stringValue(b)):
return a > Double(b) ? .stringValue(b) : nil
case let (.stringValue(a), .intValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
case let (.stringValue(a), .doubleValue(b)):
return Double(a) > b ? .stringValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
default:
return nil
}
}
```
return Double(a) > Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > b ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
case (.intValue(let a), .doubleValue(let b)):
return Double(a) > b ? .doubleValue(Double(a)) : nil
case (.intValue(let a), .stringValue(let b)):
return Double(a) > Double(b) ? .stringValue(b) : nil
case (.doubleValue(let a), .intValue(let b)):
return a > Double(b) ? .doubleValue(a) : nil
case (.doubleValue(let a), .stringValue(let b)):
return a > Double(b) ? .doubleValue(a) : nil
case (.stringValue(let a), .intValue(let b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
case (.stringValue(let a), .doubleValue(let b)):
return Double(a) > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : nil
case (.stringValue(let a), .stringValue(let b)):
return a > b ? .stringValue(a) : nil
case (.intValue(let a), .doubleValue(let b)):
return Double(a) > b ? .doubleValue(Double(a)) : nil
case (.intValue(let a), .stringValue(let b)):
return Double(a) > Double(b) ? .stringValue(b) : nil
case (.doubleValue(let a), .intValue(let b)):
return a > Double(b) ? .doubleValue(a) : nil
case (.doubleValue(let a), .stringValue(let b)):
return a > Double(b) ? .doubleValue(a) : nil
case (.stringValue(let a), .intValue(let b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
case (.stringValue(let a), .doubleValue(let b)):
return Double(a) > b ? .stringValue(a) : nil
default:
return nil
}
}
```
return Double(a) > Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > Double(b) ? .doubleValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > b ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.intValue(a), .doubleValue(b)):
return Double(a) > b ? .doubleValue(b) : nil
case let (.intValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .stringValue(b) : nil
case let (.doubleValue(a), .intValue(b)):
return a > Double(b) ? .doubleValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.doubleValue(a), .stringValue(b)):
return a > Double(b) ? .stringValue(b) : nil
case let (.stringValue(a), .intValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
case let (.stringValue(a), .doubleValue(b)):
return Double(a) > b ? .stringValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.intValue(a), .doubleValue(b)):
return Double(a) > b ? .doubleValue(b) : nil
case let (.intValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .stringValue(b) : nil
case let (.doubleValue(a), .intValue(b)):
return a > Double(b) ? .doubleValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.doubleValue(a), .stringValue(b)):
return a > Double(b) ? .stringValue(b) : nil
case let (.stringValue(a), .intValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
case let (.stringValue(a), .doubleValue(b)):
return Double(a) > b ? .stringValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : nil
}
}
```
return Double(a) > Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > b ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : nil
default:
return nil
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil [/INST] ```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
var sum = 0
var count = 0
for i in 1...n {
if i % 2 == 0 {
sum += i
count += 1
}
}
return sum == n && count == 4
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
var sum = 0
var count = 0
for i in 1...n {
if i % 2 == 0 {
sum += i
count += 1
}
}
return sum == n && count == 4
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true [/INST] ```swift
func isEqualToSumEven(n: Int) -> Bool {
let evenNumbers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
for i in 0..<evenNumbers.count {
for j in i+1..<evenNumbers.count {
for k in j+1..<evenNumbers.count {
for l in k+1..<evenNumbers.count {
if evenNumbers[i] + evenNumbers[j] + evenNumbers[k] + evenNumbers[l] == n {
return true
}
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
if n <= 0 {
return 1
}
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288 [/INST] ```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * specialFactorial(n: n - 1)
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
let spaces = text.components(separatedBy: " ")
var result = ""
for (index, space) in spaces.enumerated() {
if index > 0 && space.count > 2 {
result += "-"
} else {
result += "_"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
let spaces = text.components(separatedBy: " ")
var result = ""
for (index, space) in spaces.enumerated() {
if index > 0 && space.count > 2 {
result += "-"
} else {
result += "_"
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
let spaces = text.components(separatedBy: " ")
var result = ""
for (index, space) in spaces.enumerated() {
if index > 0 && space.count > 2 {
result += "-"
} else {
result += "_"
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
let spaces = text.components(separatedBy: " ")
var result = ""
for (index, space) in spaces.enumerated() {
if index > 0 && space.count > 2 {
result += "-"
} else {
result += "_"
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for character in text {
if character == " " {
consecutiveSpaces += 1
if consecutiveSpaces > 2 {
result += "-"
} else {
result += "_"
}
} else {
result += String(character)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for character in text {
if character == " " {
consecutiveSpaces += 1
if consecutiveSpaces > 2 {
result += "-"
} else {
result += "_"
}
} else {
result += String(character)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
if consecutiveSpaces > 2 {
result += "-"
consecutiveSpaces = 0
} else {
result += "_"
}
} else {
result += String(char)
consecutiveSpaces = 0
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
if consecutiveSpaces > 2 {
result += "-"
consecutiveSpaces = 0
} else {
result += "_"
}
} else {
result += String(char)
consecutiveSpaces = 0
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = text.replacingOccurrences(of: " ", with: "_")
while result.contains("__") {
result = result.replacingOccurrences(of: "__", with: "-")
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = text.replacingOccurrences(of: " ", with: "_")
while result.contains("__") {
result = result.replacingOccurrences(of: "__", with: "-")
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
let replacedText = text.replacingOccurrences(of: " ", with: "_")
if replacedText.contains("__") {
return replacedText.replacingOccurrences(of: "__", with: "-")
}
return replacedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
let replacedText = text.replacingOccurrences(of: " ", with: "_")
if replacedText.contains("__") {
return replacedText.replacingOccurrences(of: "__", with: "-")
}
return replacedText
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for character in text {
if character == " " {
consecutiveSpaces += 1
} else {
if consecutiveSpaces > 2 {
result += "-"
} else {
result += "_"
}
consecutiveSpaces = 0
}
result += String(character)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for character in text {
if character == " " {
consecutiveSpaces += 1
} else {
if consecutiveSpaces > 2 {
result += "-"
} else {
result += "_"
}
consecutiveSpaces = 0
}
result += String(character)
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
if consecutiveSpaces > 2 {
result += "-"
} else {
result += "_"
}
} else {
result += String(char)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
if consecutiveSpaces > 2 {
result += "-"
} else {
result += "_"
}
} else {
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
let replacedText = text.replacingOccurrences(of: " ", with: "_")
let consecutiveSpaces = replacedText.components(separatedBy: "_").filter { $0.count > 2 }
if consecutiveSpaces.count > 0 {
let replacement = consecutiveSpaces.map { $0.count > 2 ? "-" : "_" }.joined(separator: "")
return replacedText.replacingOccurrences(of: consecutiveSpaces.joined(separator: ""), with: replacement)
}
return replacedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
let replacedText = text.replacingOccurrences(of: " ", with: "_")
let consecutiveSpaces = replacedText.components(separatedBy: "_").filter { $0.count > 2 }
if consecutiveSpaces.count > 0 {
let replacement = consecutiveSpaces.map { $0.count > 2 ? "-" : "_" }.joined(separator: "")
return replacedText.replacingOccurrences(of: consecutiveSpaces.joined(separator: ""), with: replacement)
}
return replacedText
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
let trimmedText = text.trimmingCharacters(in: .whitespaces)
let replacedText = trimmedText.replacingOccurrences(of: " ", with: "_")
let consecutiveSpaces = replacedText.components(separatedBy: "_").filter { $0.isEmpty }
if consecutiveSpaces.count > 2 {
return replacedText.replacingOccurrences(of: "_", with: "-")
}
return replacedText
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3" [/INST] ```swift
func fixSpaces(text: String) -> String {
let trimmedText = text.trimmingCharacters(in: .whitespaces)
let replacedText = trimmedText.replacingOccurrences(of: " ", with: "_")
let consecutiveSpaces = replacedText.components(separatedBy: "_").filter { $0.isEmpty }
if consecutiveSpaces.count > 2 {
return replacedText.replacingOccurrences(of: "_", with: "-")
}
return replacedText
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") {
return "No"
}
if extension != "txt" && extension != "exe" && extension != "dll" {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") {
return "No"
}
if extension != "txt" && extension != "exe" && extension != "dll" {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // cannot convert value of type 'String' to expected argument type 'UnboundedRange_'
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // cannot convert value of type 'String' to expected argument type '(String.Element, ().Element) throws -> Bool' (aka '(Character, ().Element) throws -> Bool')
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // type '()' cannot conform to 'Sequence'
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // type '()' cannot conform to 'Sequence'
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // expected ',' separator
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // cannot convert value of type 'String' to expected argument type '(String.Element, ().Element) throws -> Bool' (aka '(Character, ().Element) throws -> Bool')
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // expected ',' separator
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // cannot convert value of type 'String' to expected argument type 'UnboundedRange_'
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // missing argument label 'by:' in call
if name.count > 3 || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // missing argument label 'by:' in call
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // expected expression, var, or let in 'if' condition
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: ["a"..."z", "A"..."Z"]) {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: ["a"..."z", "A"..."Z"]) {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.starts(with: ["a"..."z", "A"..."Z"]) { // cannot convert value of type 'ClosedRange<String>' to expected element type 'String.Element' (aka 'Character')
if name.isEmpty || !name.starts(with: ["a"..."z", "A"..."Z"]) { // cannot convert value of type 'ClosedRange<String>' to expected element type 'String.Element' (aka 'Character')
if !["txt", "exe", "dll"].contains(extension) { // expected '{' in extension
if !["txt", "exe", "dll"].contains(extension) { // missing argument for parameter 'where' in call
if !["txt", "exe", "dll"].contains(extension) { // declaration is only valid at file scope
if !["txt", "exe", "dll"].contains(extension) { // expected expression in list of expressions
if !["txt", "exe", "dll"].contains(extension) { // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let nameComponents = fileName.components(separatedBy: ".")
if nameComponents.count != 2 {
return "No"
}
let name = nameComponents[0]
let extension = nameComponents[1]
if name.count > 3 || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") {
return "No"
}
if extension != "txt" && extension != "exe" && extension != "dll" {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let nameComponents = fileName.components(separatedBy: ".")
if nameComponents.count != 2 {
return "No"
}
let name = nameComponents[0]
let extension = nameComponents[1]
if name.count > 3 || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") {
return "No"
}
if extension != "txt" && extension != "exe" && extension != "dll" {
return "No"
}
return "Yes"
}
```
let extension = nameComponents[1] // keyword 'extension' cannot be used as an identifier here
if name.count > 3 || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if name.count > 3 || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if extension != "txt" && extension != "exe" && extension != "dll" { // expected expression, var, or let in 'if' condition
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") {
return "No"
}
if !extension.isOneOf(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") {
return "No"
}
if !extension.isOneOf(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // cannot convert value of type 'String' to expected argument type '(String.Element, ().Element) throws -> Bool' (aka '(Character, ().Element) throws -> Bool')
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // missing argument label 'by:' in call
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // type '()' cannot conform to 'Sequence'
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // missing argument label 'by:' in call
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // cannot convert value of type 'String' to expected argument type '(String.Element, ().Element) throws -> Bool' (aka '(Character, ().Element) throws -> Bool')
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // cannot convert value of type 'String' to expected argument type 'UnboundedRange_'
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // cannot convert value of type 'String' to expected argument type 'UnboundedRange_'
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // type '()' cannot conform to 'Sequence'
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // expected ',' separator
if name.isEmpty || !name.starts(with: "a"... "z") || !name.starts(with: "A"... "Z") { // expected ',' separator
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected expression, var, or let in 'if' condition
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected type name in extension declaration
if !extension.isOneOf(["txt", "exe", "dll"]) { // declaration is only valid at file scope
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected '{' in extension
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: "a-zA-Z") {
return "No"
}
if !extension.isEmpty && !["txt", "exe", "dll"].contains(extension) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: "a-zA-Z") {
return "No"
}
if !extension.isEmpty && !["txt", "exe", "dll"].contains(extension) {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if !extension.isEmpty && !["txt", "exe", "dll"].contains(extension) { // expected '{' in extension
if !extension.isEmpty && !["txt", "exe", "dll"].contains(extension) { // declaration is only valid at file scope
if !extension.isEmpty && !["txt", "exe", "dll"].contains(extension) { // expected type name in extension declaration
if !extension.isEmpty && !["txt", "exe", "dll"].contains(extension) { // expected expression, var, or let in 'if' condition
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.count > 3 || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.count > 3 || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") {
return "No"
}
if !["txt", "exe", "dll"].contains(extension) {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.count > 3 || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if name.count > 3 || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if !["txt", "exe", "dll"].contains(extension) { // expected '{' in extension
if !["txt", "exe", "dll"].contains(extension) { // missing argument for parameter 'where' in call
if !["txt", "exe", "dll"].contains(extension) { // declaration is only valid at file scope
if !["txt", "exe", "dll"].contains(extension) { // expected expression in list of expressions
if !["txt", "exe", "dll"].contains(extension) { // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: Character("a"...Character("z"))) {
return "No"
}
if !extension.isOneOf(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: Character("a"...Character("z"))) {
return "No"
}
if !extension.isOneOf(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.starts(with: Character("a"...Character("z"))) { // no exact matches in call to initializer
if name.isEmpty || !name.starts(with: Character("a"...Character("z"))) { // instance method 'starts(with:)' requires that 'Character' conform to 'RegexComponent'
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected type name in extension declaration
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected expression, var, or let in 'if' condition
if !extension.isOneOf(["txt", "exe", "dll"]) { // declaration is only valid at file scope
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected '{' in extension
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") {
return "No"
}
if !extension.isOneOf(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") {
return "No"
}
if !extension.isOneOf(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if name.isEmpty || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected expression, var, or let in 'if' condition
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected type name in extension declaration
if !extension.isOneOf(["txt", "exe", "dll"]) { // declaration is only valid at file scope
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected '{' in extension
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") {
return "No"
}
if !extension.isOneOf(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extension = components[1]
if name.isEmpty || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") {
return "No"
}
if !extension.isOneOf(["txt", "exe", "dll"]) {
return "No"
}
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
if name.isEmpty || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if name.isEmpty || !name.starts(with: "a"..."z") || !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected expression, var, or let in 'if' condition
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected type name in extension declaration
if !extension.isOneOf(["txt", "exe", "dll"]) { // declaration is only valid at file scope
if !extension.isOneOf(["txt", "exe", "dll"]) { // expected '{' in extension
func fileNameCheck(fileName: String) -> String {
let nameComponents = fileName.components(separatedBy: ".")
if nameComponents.count != 2 {
return "No"
}
let name = nameComponents[0]
let extension = nameComponents[1]
if name.count > 3 || name.count == 0 {
return "No"
}
if !name.starts(with: "a"..."z") && !name.starts(with: "A"..."Z") {
return "No"
}
if extension != "txt" && extension != "exe" && extension != "dll" {
return "No"
}
return "Yes"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No" [/INST] ```swift
func fileNameCheck(fileName: String) -> String {
let nameComponents = fileName.components(separatedBy: ".")
if nameComponents.count != 2 {
return "No"
}
let name = nameComponents[0]
let extension = nameComponents[1]
if name.count > 3 || name.count == 0 {
return "No"
}
if !name.starts(with: "a"..."z") && !name.starts(with: "A"..."Z") {
return "No"
}
if extension != "txt" && extension != "exe" && extension != "dll" {
return "No"
}
return "Yes"
}
```
let extension = nameComponents[1] // keyword 'extension' cannot be used as an identifier here
if !name.starts(with: "a"..."z") && !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if !name.starts(with: "a"..."z") && !name.starts(with: "A"..."Z") { // instance method 'starts(with:)' requires that 'ClosedRange<String>' conform to 'RegexComponent'
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // expected expression, var, or let in 'if' condition
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // expected type name in extension declaration
if extension != "txt" && extension != "exe" && extension != "dll" { // declaration is only valid at file scope
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
if extension != "txt" && extension != "exe" && extension != "dll" { // expected '{' in extension
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for" [/INST] ```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var result = ""
for word in words {
if primeNumbers.contains(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
```
return result.isWholeNumber // value of type 'Int' has no member 'isWholeNumber'
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(x)
let nFraction = Fraction(n)
let result = xFraction * nFraction
return result.isWholeNumber
}
struct Fraction {
let numerator: Int
let denominator: Int
init?(_ string: String) {
let components = string.components(separatedBy: "/")
guard components.count == 2,
let numerator = Int(components[0]),
let denominator = Int(components[1]) else {
return nil
}
self.numerator = numerator
self.denominator = denominator
}
var isWholeNumber: Bool {
return denominator == 1
}
static func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(x)
let nFraction = Fraction(n)
let result = xFraction * nFraction
return result.isWholeNumber
}
struct Fraction {
let numerator: Int
let denominator: Int
init?(_ string: String) {
let components = string.components(separatedBy: "/")
guard components.count == 2,
let numerator = Int(components[0]),
let denominator = Int(components[1]) else {
return nil
}
self.numerator = numerator
self.denominator = denominator
}
var isWholeNumber: Bool {
return denominator == 1
}
static func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
```
let result = xFraction * nFraction // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
let result = xFraction * nFraction // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // cannot convert value of type 'Int' to expected argument type 'String'
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // extra argument 'denominator' in call
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isWholeNumber
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isWholeNumber
}
```
return result.isWholeNumber // value of type 'Int' has no member 'isWholeNumber'
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
```
return result.isWholeNumber // value of type 'Int' has no member 'isWholeNumber'
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
```
return result.isWholeNumber // value of type 'Int' has no member 'isWholeNumber'
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(x)
let nFraction = Fraction(n)
let result = xFraction * nFraction
return result.isWholeNumber
}
struct Fraction {
let numerator: Int
let denominator: Int
init?(_ string: String) {
let components = string.components(separatedBy: "/")
guard components.count == 2,
let numerator = Int(components[0]),
let denominator = Int(components[1]) else {
return nil
}
self.numerator = numerator
self.denominator = denominator
}
var isWholeNumber: Bool {
return denominator == 1
}
static func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(x)
let nFraction = Fraction(n)
let result = xFraction * nFraction
return result.isWholeNumber
}
struct Fraction {
let numerator: Int
let denominator: Int
init?(_ string: String) {
let components = string.components(separatedBy: "/")
guard components.count == 2,
let numerator = Int(components[0]),
let denominator = Int(components[1]) else {
return nil
}
self.numerator = numerator
self.denominator = denominator
}
var isWholeNumber: Bool {
return denominator == 1
}
static func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator)
}
}
```
let result = xFraction * nFraction // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
let result = xFraction * nFraction // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // cannot convert value of type 'Int' to expected argument type 'String'
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
return Fraction(numerator: lhs.numerator * rhs.numerator, denominator: lhs.denominator * rhs.denominator) // extra argument 'denominator' in call
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
```
return result.isWholeNumber // value of type 'Int' has no member 'isWholeNumber'
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let result = xNumerator * nNumerator / (xDenominator * nDenominator)
return result.isWholeNumber
}
```
return result.isWholeNumber // value of type 'Int' has no member 'isWholeNumber'
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(x)
let nFraction = Fraction(n)
return xFraction * nFraction == Fraction(wholeNumber: 1)
}
struct Fraction {
let numerator: Int
let denominator: Int
init?(_ string: String) {
let components = string.components(separatedBy: "/")
guard components.count == 2,
let numerator = Int(components[0]),
let denominator = Int(components[1]) else {
return nil
}
self.numerator = numerator
self.denominator = denominator
}
static func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(wholeNumber: lhs.numerator * rhs.numerator)
}
static func == (lhs: Fraction, rhs: Fraction) -> Bool {
return lhs.numerator == rhs.numerator && lhs.denominator == rhs.denominator
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = Fraction(x)
let nFraction = Fraction(n)
return xFraction * nFraction == Fraction(wholeNumber: 1)
}
struct Fraction {
let numerator: Int
let denominator: Int
init?(_ string: String) {
let components = string.components(separatedBy: "/")
guard components.count == 2,
let numerator = Int(components[0]),
let denominator = Int(components[1]) else {
return nil
}
self.numerator = numerator
self.denominator = denominator
}
static func * (lhs: Fraction, rhs: Fraction) -> Fraction {
return Fraction(wholeNumber: lhs.numerator * rhs.numerator)
}
static func == (lhs: Fraction, rhs: Fraction) -> Bool {
return lhs.numerator == rhs.numerator && lhs.denominator == rhs.denominator
}
}
```
return xFraction * nFraction == Fraction(wholeNumber: 1) // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
return xFraction * nFraction == Fraction(wholeNumber: 1) // extraneous argument label 'wholeNumber:' in call
return xFraction * nFraction == Fraction(wholeNumber: 1) // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
return xFraction * nFraction == Fraction(wholeNumber: 1) // cannot convert value of type 'Int' to expected argument type 'String'
return xFraction * nFraction == Fraction(wholeNumber: 1) // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
return Fraction(wholeNumber: lhs.numerator * rhs.numerator) // value of optional type 'Fraction?' must be unwrapped to a value of type 'Fraction'
return Fraction(wholeNumber: lhs.numerator * rhs.numerator) // cannot convert value of type 'Int' to expected argument type 'String'
return Fraction(wholeNumber: lhs.numerator * rhs.numerator) // extraneous argument label 'wholeNumber:' in call
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultNumerator % resultDenominator == 0
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false [/INST] ```swift
func simplify(x: String, n: String) -> Bool {
let xFraction = x.split(separator: "/")
let nFraction = n.split(separator: "/")
let xNumerator = Int(xFraction[0])!
let xDenominator = Int(xFraction[1])!
let nNumerator = Int(nFraction[0])!
let nDenominator = Int(nFraction[1])!
let resultNumerator = xNumerator * nNumerator
let resultDenominator = xDenominator * nDenominator
return resultNumerator % resultDenominator == 0
}
```
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
return nums.sorted { (a, b) in // type '(_, _) -> _' cannot conform to 'Sequence'
return nums.sorted { (a, b) in // cannot infer type of closure parameter 'a' without a type annotation
return nums.sorted { (a, b) in // cannot infer type of closure parameter 'b' without a type annotation
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
return nums.sorted { (a, b) -> Bool in // cannot infer type of closure parameter 'a' without a type annotation
return nums.sorted { (a, b) -> Bool in // cannot infer type of closure parameter 'b' without a type annotation
return nums.sorted { (a, b) -> Bool in // type '(_, _) -> Bool' cannot conform to 'SortComparator'
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
} else {
return sumA < sumB
}
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
} else {
return sumA < sumB
}
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
return nums.sorted { (a, b) in // type '(_, _) -> _' cannot conform to 'Sequence'
return nums.sorted { (a, b) in // cannot infer type of closure parameter 'a' without a type annotation
return nums.sorted { (a, b) in // cannot infer type of closure parameter 'b' without a type annotation
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
return nums.sorted { (a, b) in // type '(_, _) -> _' cannot conform to 'Sequence'
return nums.sorted { (a, b) in // cannot infer type of closure parameter 'a' without a type annotation
return nums.sorted { (a, b) in // cannot infer type of closure parameter 'b' without a type annotation
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
return nums.sorted { (a, b) -> Bool in // cannot infer type of closure parameter 'a' without a type annotation
return nums.sorted { (a, b) -> Bool in // cannot infer type of closure parameter 'b' without a type annotation
return nums.sorted { (a, b) -> Bool in // type '(_, _) -> Bool' cannot conform to 'SortComparator'
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a.index < b.index
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
return nums.sorted { (a, b) in // type '(_, _) -> _' cannot conform to 'Sequence'
return nums.sorted { (a, b) in // cannot infer type of closure parameter 'a' without a type annotation
return nums.sorted { (a, b) in // cannot infer type of closure parameter 'b' without a type annotation
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a < b
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a < b
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a < b
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a < b
}
return sumA < sumB
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a < b
}
return sumA < sumB
}
return sortedNums
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a < b
}
return sumA < sumB
}
return sortedNums
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a < b
}
return sumA < sumB
}
return sortedNums
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int] [/INST] ```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sortedNums = nums.sorted { (a, b) -> Bool in
let sumA = a.digits.reduce(0, +)
let sumB = b.digits.reduce(0, +)
if sumA == sumB {
return a < b
}
return sumA < sumB
}
return sortedNums
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num.firstDigit.isOdd && num.lastDigit.isOdd {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num.firstDigit.isOdd && num.lastDigit.isOdd {
count += 1
}
}
return count
}
```
if num > 10 && num.firstDigit.isOdd && num.lastDigit.isOdd { // value of type 'Int' has no member 'firstDigit'
if num > 10 && num.firstDigit.isOdd && num.lastDigit.isOdd { // value of type 'Int' has no member 'lastDigit'
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num.firstDigit.isOdd && num.lastDigit.isOdd {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num.firstDigit.isOdd && num.lastDigit.isOdd {
count += 1
}
}
return count
}
```
if num > 10 && num.firstDigit.isOdd && num.lastDigit.isOdd { // value of type 'Int' has no member 'firstDigit'
if num > 10 && num.firstDigit.isOdd && num.lastDigit.isOdd { // value of type 'Int' has no member 'lastDigit'
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num / 10 % 10 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num / 10 % 10 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num / 10 % 10 == 1 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num / 10 % 10 == 1 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == num / 10 % 10 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == num / 10 % 10 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2 [/INST] ```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 10 == 1 && num % 100 != 10 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i-1] = i * i - i + 1
}
var count = 0
for i in 1...n-2 {
for j in i+1...n-1 {
for k in j+1...n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i-1] = i * i - i + 1
}
var count = 0
for i in 1...n-2 {
for j in i+1...n-1 {
for k in j+1...n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// Fatal error: Index out of range
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i-1] = i * i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i-1] = i * i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i-1] = i * i - i + 1
}
var count = 0
for i in 1...n-2 {
for j in i+1...n-1 {
for k in j+1...n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i-1] = i * i - i + 1
}
var count = 0
for i in 1...n-2 {
for j in i+1...n-1 {
for k in j+1...n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// Fatal error: Index out of range
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i-1] = i * i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1 [/INST] ```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int](repeating: 0, count: n)
for i in 1...n {
a[i-1] = i * i - i + 1
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if a[i] + a[j] + a[k] % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
var result: [String] = []
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
return result.sorted(by: { $0.count < $1.count })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
var result: [String] = []
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
return result.sorted(by: { $0.count < $1.count })
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
var result: [String] = []
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
return result.sorted(by: { $0.count < $1.count })
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
var result: [String] = []
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
return result.sorted(by: { $0.count < $1.count })
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"] [/INST] ```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let uniqueList = Array(Set(sortedList))
return uniqueList.sorted { $0.count < $1.count }
}
```
// XCTAssertTrue failed
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5 [/INST] ```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if isPrime(n) {
return x
} else {
return y
}
}
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
if isPrime(n) { // missing argument label 'n:' in call
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 && num > 0 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 && num > 0 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 && num > 0 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 && num > 0 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 && num > 0 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 && num > 0 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 && num > 0 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 && num > 0 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 && num > 0 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0 [/INST] ```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num % 2 == 1 {
sum += num * num
}
}
return sum
}
```
if num.isInteger && num % 2 == 1 { // value of type 'Double' has no member 'isInteger'
sum += num * num // cannot convert value of type 'Double' to expected argument type 'Int'
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
let diff = abs(game[i] - guess[i])
result.append(diff)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
let diff = abs(game[i] - guess[i])
result.append(diff)
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for (i, score) in game.enumerated() {
let guess = guess[i]
result.append(abs(score - guess))
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for (i, score) in game.enumerated() {
let guess = guess[i]
result.append(abs(score - guess))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
if game[i] == guess[i] {
result.append(0)
} else {
result.append(abs(game[i] - guess[i]))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for (i, score) in game.enumerated() {
let guess = guess[i]
let difference = abs(score - guess)
result.append(difference)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for (i, score) in game.enumerated() {
let guess = guess[i]
let difference = abs(score - guess)
result.append(difference)
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for (i, score) in game.enumerated() {
let guess = guess[i]
result.append(abs(score - guess))
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for (i, score) in game.enumerated() {
let guess = guess[i]
result.append(abs(score - guess))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
let score = game[i]
let guess = guess[i]
let difference = abs(score - guess)
result.append(difference)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
let score = game[i]
let guess = guess[i]
let difference = abs(score - guess)
result.append(difference)
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
guard game.count == guess.count else {
fatalError("game and guess must have the same length")
}
var result: [Int] = []
for i in 0..<game.count {
let score = game[i]
let guess = guess[i]
if score == guess {
result.append(0)
} else {
result.append(abs(score - guess))
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
guard game.count == guess.count else {
fatalError("game and guess must have the same length")
}
var result: [Int] = []
for i in 0..<game.count {
let score = game[i]
let guess = guess[i]
if score == guess {
result.append(0)
} else {
result.append(abs(score - guess))
}
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
let score = game[i]
let guess = guess[i]
let difference = abs(score - guess)
result.append(difference)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
let score = game[i]
let guess = guess[i]
let difference = abs(score - guess)
result.append(difference)
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for (i, score) in game.enumerated() {
let guess = guess[i]
let diff = abs(score - guess)
result.append(diff)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for (i, score) in game.enumerated() {
let guess = guess[i]
let diff = abs(score - guess)
result.append(diff)
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
let score = game[i]
let guess = guess[i]
let difference = abs(score - guess)
result.append(difference)
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6] [/INST] ```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
let score = game[i]
let guess = guess[i]
let difference = abs(score - guess)
result.append(difference)
}
return result
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0.0
for extension in extensions {
let uppercaseCount = extension.uppercaseString.characters.count
let lowercaseCount = extension.lowercaseString.characters.count
let strength = Double(uppercaseCount - lowercaseCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0.0
for extension in extensions {
let uppercaseCount = extension.uppercaseString.characters.count
let lowercaseCount = extension.lowercaseString.characters.count
let strength = Double(uppercaseCount - lowercaseCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let uppercaseCount = extension.uppercaseString.characters.count // expected type name in extension declaration
let uppercaseCount = extension.uppercaseString.characters.count // expected initial value after '='
let uppercaseCount = extension.uppercaseString.characters.count // consecutive statements on a line must be separated by ';'
let uppercaseCount = extension.uppercaseString.characters.count // declaration is only valid at file scope
let uppercaseCount = extension.uppercaseString.characters.count // expected '{' in extension
let lowercaseCount = extension.lowercaseString.characters.count // expected type name in extension declaration
let lowercaseCount = extension.lowercaseString.characters.count // expected initial value after '='
let lowercaseCount = extension.lowercaseString.characters.count // declaration is only valid at file scope
let lowercaseCount = extension.lowercaseString.characters.count // consecutive statements on a line must be separated by ';'
let lowercaseCount = extension.lowercaseString.characters.count // expected '{' in extension
let strength = Double(uppercaseCount - lowercaseCount) // no exact matches in call to initializer
strongestExtension = extension // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
} // expected type name in extension declaration
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.reduce(0) { $0 + ($1.isUppercase ? 1 : -1) }
let extensionStrengths = extensions.map { $0.reduce(0) { $0 + ($1.isUppercase ? 1 : -1) } }
let strongestExtensionIndex = extensionStrengths.firstIndex(of: extensionStrengths.max()!)!
return "\(className).\(extensions[strongestExtensionIndex])"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.reduce(0) { $0 + ($1.isUppercase ? 1 : -1) }
let extensionStrengths = extensions.map { $0.reduce(0) { $0 + ($1.isUppercase ? 1 : -1) } }
let strongestExtensionIndex = extensionStrengths.firstIndex(of: extensionStrengths.max()!)!
return "\(className).\(extensions[strongestExtensionIndex])"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let classStrength = className.reduce(0) { $0 + ($1.isUppercase ? 1 : -1) } // initialization of immutable value 'classStrength' was never used; consider replacing with assignment to '_' or removing it
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.uppercaseLetters.count - className.lowercaseLetters.count
var strongestExtension: String?
var strongestExtensionStrength = 0
for extension in extensions {
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count
if extensionStrength > strongestExtensionStrength {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.uppercaseLetters.count - className.lowercaseLetters.count
var strongestExtension: String?
var strongestExtensionStrength = 0
for extension in extensions {
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count
if extensionStrength > strongestExtensionStrength {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let classStrength = className.uppercaseLetters.count - className.lowercaseLetters.count // value of type 'String' has no member 'lowercaseLetters'
let classStrength = className.uppercaseLetters.count - className.lowercaseLetters.count // value of type 'String' has no member 'uppercaseLetters'
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count // expected type name in extension declaration
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count // declaration is only valid at file scope
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count // expected '{' in extension
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count // expected '{' in extension
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count // declaration is only valid at file scope
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count // expected initial value after '='
let extensionStrength = extension.uppercaseLetters.count - extension.lowercaseLetters.count // expected type name in extension declaration
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtensionStrength = extensionStrength // expected '{' in extension
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count
var strongestExtension = ""
var strongestExtensionStrength = 0
for extension in extensions {
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count
if extensionStrength > strongestExtensionStrength {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count
var strongestExtension = ""
var strongestExtensionStrength = 0
for extension in extensions {
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count
if extensionStrength > strongestExtensionStrength {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count // value of type 'String' has no member 'lowercaseString'
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count // value of type 'String' has no member 'uppercaseString'
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected type name in extension declaration
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected initial value after '='
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected type name in extension declaration
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // declaration is only valid at file scope
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // declaration is only valid at file scope
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected '{' in extension
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected '{' in extension
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtensionStrength = extensionStrength // expected '{' in extension
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count
var strongestExtension: String?
var strongestExtensionStrength = 0
for extension in extensions {
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count
if extensionStrength > strongestExtensionStrength {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
if let strongestExtension = strongestExtension {
return "\(className).\(strongestExtension)"
} else {
return ""
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count
var strongestExtension: String?
var strongestExtensionStrength = 0
for extension in extensions {
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count
if extensionStrength > strongestExtensionStrength {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
if let strongestExtension = strongestExtension {
return "\(className).\(strongestExtension)"
} else {
return ""
}
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count // value of type 'String' has no member 'lowercaseString'
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count // value of type 'String' has no member 'uppercaseString'
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected type name in extension declaration
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected initial value after '='
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected type name in extension declaration
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // declaration is only valid at file scope
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // declaration is only valid at file scope
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected '{' in extension
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected '{' in extension
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtensionStrength = extensionStrength // expected '{' in extension
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0.0
for extension in extensions {
let uppercaseCount = extension.uppercaseLetterCount()
let lowercaseCount = extension.lowercaseLetterCount()
let strength = Double(uppercaseCount - lowercaseCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
extension String {
func uppercaseLetterCount() -> Int {
var count = 0
for character in self {
if character.isUppercase {
count += 1
}
}
return count
}
func lowercaseLetterCount() -> Int {
var count = 0
for character in self {
if character.isLowercase {
count += 1
}
}
return count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double = 0.0
for extension in extensions {
let uppercaseCount = extension.uppercaseLetterCount()
let lowercaseCount = extension.lowercaseLetterCount()
let strength = Double(uppercaseCount - lowercaseCount)
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension)"
}
extension String {
func uppercaseLetterCount() -> Int {
var count = 0
for character in self {
if character.isUppercase {
count += 1
}
}
return count
}
func lowercaseLetterCount() -> Int {
var count = 0
for character in self {
if character.isLowercase {
count += 1
}
}
return count
}
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let uppercaseCount = extension.uppercaseLetterCount() // expected type name in extension declaration
let uppercaseCount = extension.uppercaseLetterCount() // expected initial value after '='
let uppercaseCount = extension.uppercaseLetterCount() // consecutive statements on a line must be separated by ';'
let uppercaseCount = extension.uppercaseLetterCount() // expected '{' in extension
let uppercaseCount = extension.uppercaseLetterCount() // declaration is only valid at file scope
let lowercaseCount = extension.lowercaseLetterCount() // expected type name in extension declaration
let lowercaseCount = extension.lowercaseLetterCount() // declaration is only valid at file scope
let lowercaseCount = extension.lowercaseLetterCount() // consecutive statements on a line must be separated by ';'
let lowercaseCount = extension.lowercaseLetterCount() // expected initial value after '='
let lowercaseCount = extension.lowercaseLetterCount() // expected '{' in extension
let strength = Double(uppercaseCount - lowercaseCount) // no exact matches in call to initializer
strongestExtension = extension // expected '{' in extension
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
} // expected type name in extension declaration
return "\(className).\(strongestExtension)" // string interpolation produces a debug description for an optional value; did you mean to make this explicit?
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count
var strongestExtension: String?
var strongestExtensionStrength = 0
for extension in extensions {
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count
if extensionStrength > strongestExtensionStrength {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension!)"
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count
var strongestExtension: String?
var strongestExtensionStrength = 0
for extension in extensions {
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count
if extensionStrength > strongestExtensionStrength {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count // value of type 'String' has no member 'lowercaseString'
let classStrength = className.uppercaseString.characters.count - className.lowercaseString.characters.count // value of type 'String' has no member 'uppercaseString'
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected type name in extension declaration
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected initial value after '='
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected type name in extension declaration
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // declaration is only valid at file scope
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // declaration is only valid at file scope
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected '{' in extension
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // consecutive statements on a line must be separated by ';'
let extensionStrength = extension.uppercaseString.characters.count - extension.lowercaseString.characters.count // expected '{' in extension
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtensionStrength = extensionStrength // expected '{' in extension
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double?
for extension in extensions {
let strength = calculateStrength(extension: extension)
if strongestStrength == nil || strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
}
}
return "\(className).\(strongestExtension!)"
}
func calculateStrength(extension: String) -> Double {
let uppercaseLetters = extension.filter { $0.isUppercase }
let lowercaseLetters = extension.filter { $0.isLowercase }
return Double(uppercaseLetters.count - lowercaseLetters.count)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double?
for extension in extensions {
let strength = calculateStrength(extension: extension)
if strongestStrength == nil || strength > strongestStrength {
strongestExtension = extension
strongestStrength = strength
}
}
return "\(className).\(strongestExtension!)"
}
func calculateStrength(extension: String) -> Double {
let uppercaseLetters = extension.filter { $0.isUppercase }
let lowercaseLetters = extension.filter { $0.isLowercase }
return Double(uppercaseLetters.count - lowercaseLetters.count)
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let strength = calculateStrength(extension: extension) // missing argument for parameter 'extension' in call
let strength = calculateStrength(extension: extension) // expected type name in extension declaration
let strength = calculateStrength(extension: extension) // declaration is only valid at file scope
let strength = calculateStrength(extension: extension) // consecutive statements on a line must be separated by ';'
let strength = calculateStrength(extension: extension) // expected '{' in extension
let strength = calculateStrength(extension: extension) // expected expression in list of expressions
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // declaration is only valid at file scope
strongestStrength = strength // cannot find type 'strongestStrength' in scope
strongestStrength = strength // expected '{' in extension
let uppercaseLetters = extension.filter { $0.isUppercase } // expected initial value after '='
let uppercaseLetters = extension.filter { $0.isUppercase } // expected '{' in extension
let uppercaseLetters = extension.filter { $0.isUppercase } // consecutive statements on a line must be separated by ';'
let uppercaseLetters = extension.filter { $0.isUppercase } // declaration is only valid at file scope
let uppercaseLetters = extension.filter { $0.isUppercase } // expected type name in extension declaration
let lowercaseLetters = extension.filter { $0.isLowercase } // expected initial value after '='
let lowercaseLetters = extension.filter { $0.isLowercase } // expected type name in extension declaration
let lowercaseLetters = extension.filter { $0.isLowercase } // declaration is only valid at file scope
let lowercaseLetters = extension.filter { $0.isLowercase } // consecutive statements on a line must be separated by ';'
let lowercaseLetters = extension.filter { $0.isLowercase } // expected '{' in extension
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double?
for extension in extensions {
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount)
if let currentStrongestStrength = strongestStrength {
if strength > currentStrongestStrength {
strongestStrength = strength
strongestExtension = extension
}
} else {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
extension String {
var uppercaseLetterCount: Int {
return self.filter { $0.isUppercase }.count
}
var lowercaseLetterCount: Int {
return self.filter { $0.isLowercase }.count
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double?
for extension in extensions {
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount)
if let currentStrongestStrength = strongestStrength {
if strength > currentStrongestStrength {
strongestStrength = strength
strongestExtension = extension
}
} else {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
extension String {
var uppercaseLetterCount: Int {
return self.filter { $0.isUppercase }.count
}
var lowercaseLetterCount: Int {
return self.filter { $0.isLowercase }.count
}
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount) // expected expression in list of expressions
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount) // expected type name in extension declaration
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount) // consecutive statements on a line must be separated by ';'
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount) // declaration is only valid at file scope
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount) // expected '{' in extension
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount) // expected '{' in extension
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount) // expected type name in extension declaration
let strength = Double(extension.uppercaseLetterCount - extension.lowercaseLetterCount) // declaration is only valid at file scope
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected '{' in extension
strongestExtension = extension // expected expression in assignment
} // expected type name in extension declaration
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // expected '{' in extension
} // expected type name in extension declaration
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double?
for extension in extensions {
let strength = calculateStrength(extension: extension)
if strongestStrength == nil || strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
func calculateStrength(extension: String) -> Double {
let uppercaseCount = extension.filter { $0.isUppercase }.count
let lowercaseCount = extension.filter { $0.isLowercase }.count
return Double(uppercaseCount - lowercaseCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA" [/INST] ```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestStrength: Double?
for extension in extensions {
let strength = calculateStrength(extension: extension)
if strongestStrength == nil || strength > strongestStrength {
strongestStrength = strength
strongestExtension = extension
}
}
return "\(className).\(strongestExtension!)"
}
func calculateStrength(extension: String) -> Double {
let uppercaseCount = extension.filter { $0.isUppercase }.count
let lowercaseCount = extension.filter { $0.isLowercase }.count
return Double(uppercaseCount - lowercaseCount)
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected pattern
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
let strength = calculateStrength(extension: extension) // missing argument for parameter 'extension' in call
let strength = calculateStrength(extension: extension) // expected type name in extension declaration
let strength = calculateStrength(extension: extension) // declaration is only valid at file scope
let strength = calculateStrength(extension: extension) // consecutive statements on a line must be separated by ';'
let strength = calculateStrength(extension: extension) // expected '{' in extension
let strength = calculateStrength(extension: extension) // expected expression in list of expressions
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtension = extension // expected '{' in extension
} // expected type name in extension declaration
let uppercaseCount = extension.filter { $0.isUppercase }.count // consecutive statements on a line must be separated by ';'
let uppercaseCount = extension.filter { $0.isUppercase }.count // expected type name in extension declaration
let uppercaseCount = extension.filter { $0.isUppercase }.count // declaration is only valid at file scope
let uppercaseCount = extension.filter { $0.isUppercase }.count // expected initial value after '='
let uppercaseCount = extension.filter { $0.isUppercase }.count // expected '{' in extension
let lowercaseCount = extension.filter { $0.isLowercase }.count // expected '{' in extension
let lowercaseCount = extension.filter { $0.isLowercase }.count // consecutive statements on a line must be separated by ';'
let lowercaseCount = extension.filter { $0.isLowercase }.count // expected type name in extension declaration
let lowercaseCount = extension.filter { $0.isLowercase }.count // declaration is only valid at file scope
let lowercaseCount = extension.filter { $0.isLowercase }.count // expected initial value after '='
return Double(uppercaseCount - lowercaseCount) // no exact matches in call to initializer
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
return a.contains(b) || bRotations.contains { a.contains($0) }
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
return a.contains(b) || bRotations.contains { a.contains($0) }
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
```
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
return a.contains(b) || bRotations.contains { a.contains($0) }
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
return a.contains(b) || bRotations.contains { a.contains($0) }
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
```
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
return bRotations.contains(where: { a.contains($0) })
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
return bRotations.contains(where: { a.contains($0) })
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
```
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = [b, b.rotated(by: 1), b.rotated(by: 2), b.rotated(by: 3)]
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotated(by: Int) -> String {
let startIndex = self.index(self.startIndex, offsetBy: by)
let endIndex = self.index(self.endIndex, offsetBy: -by)
return String(self[startIndex..<endIndex])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = [b, b.rotated(by: 1), b.rotated(by: 2), b.rotated(by: 3)]
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotated(by: Int) -> String {
let startIndex = self.index(self.startIndex, offsetBy: by)
let endIndex = self.index(self.endIndex, offsetBy: -by)
return String(self[startIndex..<endIndex])
}
}
```
// Fatal error: Range requires lowerBound <= upperBound
func cycpatternCheck(a: String, b: String) -> Bool {
let rotations = b.rotations()
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = self[i..<count] + self[0..<i]
rotations.append(rotation)
}
return rotations
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let rotations = b.rotations()
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = self[i..<count] + self[0..<i]
rotations.append(rotation)
}
return rotations
}
}
```
let rotation = self[i..<count] + self[0..<i] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let rotation = self[i..<count] + self[0..<i] // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
```
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = b.rotations()
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotations() -> [String] {
var rotations = [String]()
for i in 0..<count {
let rotation = String(self[i..<count]) + String(self[0..<i])
rotations.append(rotation)
}
return rotations
}
}
```
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
let rotation = String(self[i..<count]) + String(self[0..<i]) // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = [b, String(b.reversed())]
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = [b, String(b.reversed())]
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = [b, b.rotated(by: 1), b.rotated(by: 2), b.rotated(by: 3)]
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotated(by: Int) -> String {
let startIndex = self.index(self.startIndex, offsetBy: by)
let endIndex = self.index(self.endIndex, offsetBy: -by)
return String(self[startIndex..<endIndex])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = [b, b.rotated(by: 1), b.rotated(by: 2), b.rotated(by: 3)]
for rotation in bRotations {
if a.contains(rotation) {
return true
}
}
return false
}
extension String {
func rotated(by: Int) -> String {
let startIndex = self.index(self.startIndex, offsetBy: by)
let endIndex = self.index(self.endIndex, offsetBy: -by)
return String(self[startIndex..<endIndex])
}
}
```
// Fatal error: Range requires lowerBound <= upperBound
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = [b, b.rotated(by: 1), b.rotated(by: 2), b.rotated(by: 3)]
return bRotations.contains { a.contains($0) }
}
extension String {
func rotated(by: Int) -> String {
let startIndex = self.index(self.startIndex, offsetBy: by)
let endIndex = self.index(self.endIndex, offsetBy: -by)
return String(self[startIndex..<endIndex])
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true [/INST] ```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = [b, b.rotated(by: 1), b.rotated(by: 2), b.rotated(by: 3)]
return bRotations.contains { a.contains($0) }
}
extension String {
func rotated(by: Int) -> String {
let startIndex = self.index(self.startIndex, offsetBy: by)
let endIndex = self.index(self.endIndex, offsetBy: -by)
return String(self[startIndex..<endIndex])
}
}
```
// Fatal error: Range requires lowerBound <= upperBound
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit.isEven {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit.isEven {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
if digit.isEven { // value of type 'Character' has no member 'isEven'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit == "0" || digit == "2" || digit == "4" || digit == "6" || digit == "8" {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for char in numString {
if char.isNumber {
if Int(char) % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(num)
for char in numString {
if char.isNumber {
if Int(char) % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
if Int(char) % 2 == 0 { // no exact matches in call to initializer
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit.isNumber && digit.toInt() % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if digit.isNumber && digit.toInt() % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
if digit.isNumber && digit.toInt() % 2 == 0 { // value of type 'Character' has no member 'toInt'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if Int(String(digit)) % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if Int(String(digit)) % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
if Int(String(digit)) % 2 == 0 { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if Int(String(digit)) % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2) [/INST] ```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for digit in String(num).characters {
if Int(String(digit)) % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
return (evenCount, oddCount)
}
```
for digit in String(num).characters { // 'characters' is unavailable: Please use String directly
if Int(String(digit)) % 2 == 0 { // value of optional type 'Int?' must be unwrapped to a value of type 'Int'
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals: [Int: String] = [
1: "i",
5: "v",
10: "x",
50: "l",
100: "c",
500: "d",
1000: "m"
]
var result = ""
var remainder = number
while remainder > 0 {
let currentValue = romanNumerals[remainder]!
result += currentValue
remainder -= currentValue
}
return result.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals: [Int: String] = [
1: "i",
5: "v",
10: "x",
50: "l",
100: "c",
500: "d",
1000: "m"
]
var result = ""
var remainder = number
while remainder > 0 {
let currentValue = romanNumerals[remainder]!
result += currentValue
remainder -= currentValue
}
return result.lowercased()
}
```
remainder -= currentValue // cannot convert value of type 'String' to expected argument type 'Int'
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals: [Int: String] = [
1: "i",
5: "v",
10: "x",
50: "l",
100: "c",
500: "d",
1000: "m"
]
var result = ""
var remainder = number
while remainder > 0 {
let currentValue = romanNumerals[remainder]!
result += currentValue
remainder -= currentValue
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals: [Int: String] = [
1: "i",
5: "v",
10: "x",
50: "l",
100: "c",
500: "d",
1000: "m"
]
var result = ""
var remainder = number
while remainder > 0 {
let currentValue = romanNumerals[remainder]!
result += currentValue
remainder -= currentValue
}
return result
}
```
remainder -= currentValue // cannot convert value of type 'String' to expected argument type 'Int'
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals: [Int: String] = [
1: "i",
5: "v",
10: "x",
50: "l",
100: "c",
500: "d",
1000: "m"
]
var result = ""
var remainder = number
while remainder > 0 {
let currentValue = romanNumerals[remainder]!
result += currentValue
remainder -= currentValue
}
return result.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals: [Int: String] = [
1: "i",
5: "v",
10: "x",
50: "l",
100: "c",
500: "d",
1000: "m"
]
var result = ""
var remainder = number
while remainder > 0 {
let currentValue = romanNumerals[remainder]!
result += currentValue
remainder -= currentValue
}
return result.lowercased()
}
```
remainder -= currentValue // cannot convert value of type 'String' to expected argument type 'Int'
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
var result = ""
var num = number
while num > 0 {
let digit = num % 10
num /= 10
switch digit {
case 9:
result += romanNumerals[6]
break
case 8:
result += romanNumerals[5]
break
case 7:
result += romanNumerals[4]
break
case 6:
result += romanNumerals[3]
break
case 5:
result += romanNumerals[2]
break
case 4:
result += romanNumerals[1]
break
case 3:
result += romanNumerals[0]
break
case 2:
result += romanNumerals[0]
break
case 1:
result += romanNumerals[0]
break
default:
break
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
var result = ""
var num = number
while num > 0 {
let digit = num % 10
num /= 10
switch digit {
case 9:
result += romanNumerals[6]
break
case 8:
result += romanNumerals[5]
break
case 7:
result += romanNumerals[4]
break
case 6:
result += romanNumerals[3]
break
case 5:
result += romanNumerals[2]
break
case 4:
result += romanNumerals[1]
break
case 3:
result += romanNumerals[0]
break
case 2:
result += romanNumerals[0]
break
case 1:
result += romanNumerals[0]
break
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var romanNumeral = ""
var remainder = number
while remainder > 0 {
let digit = remainder % 10
remainder /= 10
switch digit {
case 9:
romanNumeral += "ix"
case 8:
romanNumeral += "viii"
case 7:
romanNumeral += "vii"
case 6:
romanNumeral += "vi"
case 5:
romanNumeral += "v"
case 4:
romanNumeral += "iv"
case 3:
romanNumeral += "iii"
case 2:
romanNumeral += "ii"
case 1:
romanNumeral += "i"
default:
break
}
}
return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var romanNumeral = ""
var remainder = number
while remainder > 0 {
let digit = remainder % 10
remainder /= 10
switch digit {
case 9:
romanNumeral += "ix"
case 8:
romanNumeral += "viii"
case 7:
romanNumeral += "vii"
case 6:
romanNumeral += "vi"
case 5:
romanNumeral += "v"
case 4:
romanNumeral += "iv"
case 3:
romanNumeral += "iii"
case 2:
romanNumeral += "ii"
case 1:
romanNumeral += "i"
default:
break
}
}
return romanNumeral.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
var result = ""
var num = number
while num > 0 {
let digit = num % 10
num /= 10
switch digit {
case 9:
result += "IX"
case 8:
result += "VIII"
case 7:
result += "VII"
case 6:
result += "VI"
case 5:
result += "V"
case 4:
result += "IV"
case 3:
result += "III"
case 2:
result += "II"
case 1:
result += "I"
default:
break
}
}
return result.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
var result = ""
var num = number
while num > 0 {
let digit = num % 10
num /= 10
switch digit {
case 9:
result += "IX"
case 8:
result += "VIII"
case 7:
result += "VII"
case 6:
result += "VI"
case 5:
result += "V"
case 4:
result += "IV"
case 3:
result += "III"
case 2:
result += "II"
case 1:
result += "I"
default:
break
}
}
return result.lowercased()
}
```
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"] // initialization of immutable value 'romanNumerals' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var romanNumeral = ""
var remainder = number
while remainder > 0 {
let digit = remainder % 10
remainder /= 10
switch digit {
case 9:
romanNumeral += "ix"
case 8:
romanNumeral += "viii"
case 7:
romanNumeral += "vii"
case 6:
romanNumeral += "vi"
case 5:
romanNumeral += "v"
case 4:
romanNumeral += "iv"
case 3:
romanNumeral += "iii"
case 2:
romanNumeral += "ii"
case 1:
romanNumeral += "i"
default:
break
}
}
return romanNumeral.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
var romanNumeral = ""
var remainder = number
while remainder > 0 {
let digit = remainder % 10
remainder /= 10
switch digit {
case 9:
romanNumeral += "ix"
case 8:
romanNumeral += "viii"
case 7:
romanNumeral += "vii"
case 6:
romanNumeral += "vi"
case 5:
romanNumeral += "v"
case 4:
romanNumeral += "iv"
case 3:
romanNumeral += "iii"
case 2:
romanNumeral += "ii"
case 1:
romanNumeral += "i"
default:
break
}
}
return romanNumeral.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
let values = [1000, 500, 100, 50, 10, 5, 1]
var result = ""
var remaining = number
for (i, value) in values.enumerated() {
let count = remaining / value
remaining %= value
if count > 0 {
result += String(repeating: romanNumerals[i], count: count)
}
}
return result.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
let values = [1000, 500, 100, 50, 10, 5, 1]
var result = ""
var remaining = number
for (i, value) in values.enumerated() {
let count = remaining / value
remaining %= value
if count > 0 {
result += String(repeating: romanNumerals[i], count: count)
}
}
return result.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals: [Int: String] = [
1: "i",
5: "v",
10: "x",
50: "l",
100: "c",
500: "d",
1000: "m"
]
var result = ""
var remainder = number
while remainder > 0 {
let currentValue = romanNumerals[remainder]!
result += currentValue
remainder -= currentValue.count
}
return result.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals: [Int: String] = [
1: "i",
5: "v",
10: "x",
50: "l",
100: "c",
500: "d",
1000: "m"
]
var result = ""
var remainder = number
while remainder > 0 {
let currentValue = romanNumerals[remainder]!
result += currentValue
remainder -= currentValue.count
}
return result.lowercased()
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
let values = [1000, 500, 100, 50, 10, 5, 1]
var result = ""
var remaining = number
for (i, value) in values.enumerated() {
let count = remaining / value
remaining %= value
if count > 0 {
result += String(repeating: romanNumerals[i], count: count)
}
}
return result.lowercased()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi" [/INST] ```swift
func intToMiniRoman(number: Int) -> String {
precondition(number > 0 && number <= 1000, "Number must be between 1 and 1000")
let romanNumerals = ["M", "D", "C", "L", "X", "V", "I"]
let values = [1000, 500, 100, 50, 10, 5, 1]
var result = ""
var remaining = number
for (i, value) in values.enumerated() {
let count = remaining / value
remaining %= value
if count > 0 {
result += String(repeating: romanNumerals[i], count: count)
}
}
return result.lowercased()
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let anglesSum = angles.reduce(0, +)
return anglesSum == 180
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let anglesSum = angles.reduce(0, +)
return anglesSum == 180
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let rightAngle = 90
return angles.contains(rightAngle)
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let rightAngle = 90
return angles.contains(rightAngle)
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let angleSum = angles.reduce(0, +)
return angleSum == 180
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let angleSum = angles.reduce(0, +)
return angleSum == 180
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let anglesSum = angles.reduce(0, +)
return anglesSum == 180
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let anglesSum = angles.reduce(0, +)
return anglesSum == 180
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c].sorted()
return angles[0] * angles[0] + angles[1] * angles[1] == angles[2] * angles[2]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c].sorted()
return angles[0] * angles[0] + angles[1] * angles[1] == angles[2] * angles[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let anglesSet = Set(angles)
return anglesSet.count == 2
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let anglesSet = Set(angles)
return anglesSet.count == 2
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let angleSquared = angles.map { $0 * $0 }
let sumOfSquares = angleSquared.reduce(0, +)
return sumOfSquares == 100
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let angleSquared = angles.map { $0 * $0 }
let sumOfSquares = angleSquared.reduce(0, +)
return sumOfSquares == 100
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let anglesSum = angles.reduce(0, +)
return anglesSum == 180
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angles = [a, b, c]
let anglesSum = angles.reduce(0, +)
return anglesSum == 180
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angleA = acos((b * b + c * c - a * a) / (2 * b * c))
let angleB = acos((a * a + c * c - b * b) / (2 * a * c))
let angleC = acos((a * a + b * b - c * c) / (2 * a * b))
return angleA == 90 || angleB == 90 || angleC == 90
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angleA = acos((b * b + c * c - a * a) / (2 * b * c))
let angleB = acos((a * a + c * c - b * b) / (2 * a * c))
let angleC = acos((a * a + b * b - c * c) / (2 * a * b))
return angleA == 90 || angleB == 90 || angleC == 90
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angleA = acos((b * b + c * c - a * a) / (2 * b * c))
let angleB = acos((a * a + c * c - b * b) / (2 * a * c))
let angleC = acos((a * a + b * b - c * c) / (2 * a * b))
return angleA == 90 || angleB == 90 || angleC == 90
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false [/INST] ```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let angleA = acos((b * b + c * c - a * a) / (2 * b * c))
let angleB = acos((a * a + c * c - b * b) / (2 * a * c))
let angleC = acos((a * a + b * b - c * c) / (2 * a * b))
return angleA == 90 || angleB == 90 || angleC == 90
}
```
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxWord = word
} else if uniqueChars == maxUniqueChars && word < maxWord {
maxWord = word
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxWord = word
} else if uniqueChars == maxUniqueChars && word < maxWord {
maxWord = word
}
}
return maxWord
}
```
var maxUniqueChars = Set(maxWord.characters).count // 'characters' is unavailable: Please use String directly
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord).count
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord).count
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
```
// XCTAssertTrue failed
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
```
var maxUniqueChars = Set(maxWord.characters).count // 'characters' is unavailable: Please use String directly
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
```
var maxUniqueChars = Set(maxWord.characters).count // 'characters' is unavailable: Please use String directly
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
```
var maxUniqueChars = Set(maxWord.characters).count // 'characters' is unavailable: Please use String directly
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
}
}
return maxWord
}
```
var maxUniqueChars = Set(maxWord.characters).count // 'characters' is unavailable: Please use String directly
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueChars = 0
var currentUniqueChars = 0
var currentWord = ""
for word in words {
currentUniqueChars = 0
currentWord = word
for char in word.characters {
if !currentWord.contains(char) {
currentUniqueChars += 1
}
}
if currentUniqueChars > maxUniqueChars {
maxUniqueChars = currentUniqueChars
maxWord = currentWord
} else if currentUniqueChars == maxUniqueChars {
if currentWord < maxWord {
maxWord = currentWord
}
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueChars = 0
var currentUniqueChars = 0
var currentWord = ""
for word in words {
currentUniqueChars = 0
currentWord = word
for char in word.characters {
if !currentWord.contains(char) {
currentUniqueChars += 1
}
}
if currentUniqueChars > maxUniqueChars {
maxUniqueChars = currentUniqueChars
maxWord = currentWord
} else if currentUniqueChars == maxUniqueChars {
if currentWord < maxWord {
maxWord = currentWord
}
}
}
return maxWord
}
```
for char in word.characters { // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
} else if uniqueChars == maxUniqueChars && word < maxWord {
maxWord = word
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = words[0]
var maxUniqueChars = Set(maxWord.characters).count
for word in words {
let uniqueChars = Set(word.characters).count
if uniqueChars > maxUniqueChars {
maxWord = word
maxUniqueChars = uniqueChars
} else if uniqueChars == maxUniqueChars && word < maxWord {
maxWord = word
}
}
return maxWord
}
```
var maxUniqueChars = Set(maxWord.characters).count // 'characters' is unavailable: Please use String directly
let uniqueChars = Set(word.characters).count // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueChars = 0
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxWord = word
} else if uniqueChars == maxUniqueChars {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueChars = 0
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxWord = word
} else if uniqueChars == maxUniqueChars {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueChars = 0
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxWord = word
} else if uniqueChars == maxUniqueChars {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa" [/INST] ```swift
func findMax(words: [String]) -> String {
var maxWord = ""
var maxUniqueChars = 0
for word in words {
let uniqueChars = Set(word).count
if uniqueChars > maxUniqueChars {
maxUniqueChars = uniqueChars
maxWord = word
} else if uniqueChars == maxUniqueChars {
if word < maxWord {
maxWord = word
}
}
}
return maxWord
}
```
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number + need
var left = remaining - need
if left < 0 {
left = 0
}
return [total, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number + need
var left = remaining - need
if left < 0 {
left = 0
}
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
var total = number + need // variable 'total' was never mutated; consider changing to 'let' constant
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsToEat = need - totalEaten
if carrotsToEat <= carrotsLeft {
totalEaten += carrotsToEat
carrotsLeft -= carrotsToEat
} else {
totalEaten = need
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsToEat = need - totalEaten
if carrotsToEat <= carrotsLeft {
totalEaten += carrotsToEat
carrotsLeft -= carrotsToEat
} else {
totalEaten = need
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsNeeded = need - totalEaten
if carrotsNeeded <= carrotsLeft {
totalEaten += carrotsNeeded
carrotsLeft -= carrotsNeeded
} else {
totalEaten += carrotsLeft
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsNeeded = need - totalEaten
if carrotsNeeded <= carrotsLeft {
totalEaten += carrotsNeeded
carrotsLeft -= carrotsNeeded
} else {
totalEaten += carrotsLeft
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number + need
var left = remaining - need
if left < 0 {
left = 0
}
return [total, left]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number + need
var left = remaining - need
if left < 0 {
left = 0
}
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
var total = number + need // variable 'total' was never mutated; consider changing to 'let' constant
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let totalEaten = number + need
let carrotsLeft = max(0, remaining - totalEaten)
return [totalEaten, carrotsLeft]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let totalEaten = number + need
let carrotsLeft = max(0, remaining - totalEaten)
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let totalEaten = number + need
let carrotsLeft = remaining - need
return [totalEaten, carrotsLeft]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let totalEaten = number + need
let carrotsLeft = remaining - need
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsToEat = need - totalEaten
if carrotsToEat <= carrotsLeft {
totalEaten += carrotsToEat
carrotsLeft -= carrotsToEat
} else {
totalEaten = need
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsToEat = need - totalEaten
if carrotsToEat <= carrotsLeft {
totalEaten += carrotsToEat
carrotsLeft -= carrotsToEat
} else {
totalEaten = need
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if need > remaining {
totalEaten += remaining
carrotsLeft = 0
} else {
totalEaten += need
carrotsLeft -= need
}
return [totalEaten, carrotsLeft]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if need > remaining {
totalEaten += remaining
carrotsLeft = 0
} else {
totalEaten += need
carrotsLeft -= need
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsToEat = need - totalEaten
if carrotsToEat <= carrotsLeft {
totalEaten += carrotsToEat
carrotsLeft -= carrotsToEat
} else {
totalEaten += carrotsLeft
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsToEat = need - totalEaten
if carrotsToEat <= carrotsLeft {
totalEaten += carrotsToEat
carrotsLeft -= carrotsToEat
} else {
totalEaten += carrotsLeft
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsToEat = need - totalEaten
if carrotsToEat <= carrotsLeft {
totalEaten += carrotsToEat
carrotsLeft -= carrotsToEat
} else {
totalEaten += carrotsLeft
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0] [/INST] ```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var totalEaten = number
var carrotsLeft = remaining
if totalEaten < need {
let carrotsToEat = need - totalEaten
if carrotsToEat <= carrotsLeft {
totalEaten += carrotsToEat
carrotsLeft -= carrotsToEat
} else {
totalEaten += carrotsLeft
carrotsLeft = 0
}
}
return [totalEaten, carrotsLeft]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
var operatorIndex = 0
var operandIndex = 0
while operatorIndex < operators.count {
let operator = operators[operatorIndex]
let operand = operands[operandIndex]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
break
}
operatorIndex += 1
operandIndex += 1
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = 0
var operatorIndex = 0
var operandIndex = 0
while operatorIndex < operators.count {
let operator = operators[operatorIndex]
let operand = operands[operandIndex]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
break
}
operatorIndex += 1
operandIndex += 1
}
return result
}
```
let operator = operators[operatorIndex] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
// Perform the operation
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
// Perform the operation
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
```
for (index, operator) in operators.enumerated() { // expected pattern
for (index, operator) in operators.enumerated() { // expected Sequence expression for for-each loop
for (index, operator) in operators.enumerated() { // expected 'in' after for-each pattern
for (index, operator) in operators.enumerated() { // expected '{' to start the body of for-each loop
switch operator { // expected expression in 'switch' statement
switch operator { // expected operator name in operator declaration
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
```
for (index, operator) in operators.enumerated() { // expected pattern
for (index, operator) in operators.enumerated() { // expected Sequence expression for for-each loop
for (index, operator) in operators.enumerated() { // expected 'in' after for-each pattern
for (index, operator) in operators.enumerated() { // expected '{' to start the body of for-each loop
switch operator { // expected expression in 'switch' statement
switch operator { // expected operator name in operator declaration
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
// Perform the operation
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
// Perform the operation
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
```
for (index, operator) in operators.enumerated() { // expected pattern
for (index, operator) in operators.enumerated() { // expected Sequence expression for for-each loop
for (index, operator) in operators.enumerated() { // expected 'in' after for-each pattern
for (index, operator) in operators.enumerated() { // expected '{' to start the body of for-each loop
switch operator { // expected expression in 'switch' statement
switch operator { // expected operator name in operator declaration
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let op = operators[i - 1]
let operand = operands[i]
switch op {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator: \(op)")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let op = operators[i - 1]
let operand = operands[i]
switch op {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator: \(op)")
}
}
return result
}
```
result **= operand // cannot find operator '**=' in scope
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = result ** operand
default:
fatalError("Invalid operator")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = result ** operand
default:
fatalError("Invalid operator")
}
}
return result
}
```
for (index, operator) in operators.enumerated() { // expected pattern
for (index, operator) in operators.enumerated() { // expected Sequence expression for for-each loop
for (index, operator) in operators.enumerated() { // expected 'in' after for-each pattern
for (index, operator) in operators.enumerated() { // expected '{' to start the body of for-each loop
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
// Perform the operation
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
// Perform the operation
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
```
for (index, operator) in operators.enumerated() { // expected pattern
for (index, operator) in operators.enumerated() { // expected Sequence expression for for-each loop
for (index, operator) in operators.enumerated() { // expected 'in' after for-each pattern
for (index, operator) in operators.enumerated() { // expected '{' to start the body of for-each loop
switch operator { // expected expression in 'switch' statement
switch operator { // expected operator name in operator declaration
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = result ** operand
default:
fatalError("Invalid operator")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = result ** operand
default:
fatalError("Invalid operator")
}
}
return result
}
```
for (index, operator) in operators.enumerated() { // expected pattern
for (index, operator) in operators.enumerated() { // expected Sequence expression for for-each loop
for (index, operator) in operators.enumerated() { // expected 'in' after for-each pattern
for (index, operator) in operators.enumerated() { // expected '{' to start the body of for-each loop
switch operator { // expected expression in 'switch' statement
switch operator { // expected operator name in operator declaration
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
// Perform the operation
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for (index, operator) in operators.enumerated() {
let operand = operands[index + 1]
// Perform the operation
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result **= operand
default:
fatalError("Invalid operator")
}
}
return result
}
```
for (index, operator) in operators.enumerated() { // expected pattern
for (index, operator) in operators.enumerated() { // expected Sequence expression for for-each loop
for (index, operator) in operators.enumerated() { // expected 'in' after for-each pattern
for (index, operator) in operators.enumerated() { // expected '{' to start the body of for-each loop
switch operator { // expected expression in 'switch' statement
switch operator { // expected operator name in operator declaration
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input: operators and operands must have the same length")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for i in 1..<operands.count {
let operator = operators[i - 1]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = result ** operand
default:
fatalError("Invalid operator: \(operator)")
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands. [/INST] ```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
// Check if the input is valid
guard operators.count == operands.count - 1 else {
fatalError("Invalid input: operators and operands must have the same length")
}
// Initialize the result to the first operand
var result = operands[0]
// Iterate over the operators and operands
for i in 1..<operands.count {
let operator = operators[i - 1]
let operand = operands[i]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = result ** operand
default:
fatalError("Invalid operator: \(operator)")
}
}
return result
}
```
let operator = operators[i - 1] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return s.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return s.reversed()
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return $0 // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
return s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return String(s.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return String(s.reversed())
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return $0 // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return s.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return s.reversed()
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return $0 // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
return s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return s.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return s.reversed()
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return $0 // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
return s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map { character in
if character.isLetter {
return character.isUppercase ? character.lowercased() : character.uppercased()
} else {
return character
}
}.joined()
} else {
return s.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map { character in
if character.isLetter {
return character.isUppercase ? character.lowercased() : character.uppercased()
} else {
return character
}
}.joined()
} else {
return s.reversed()
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return character // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
return s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map { character in
if character.isLetter {
return character.isUppercase ? character.lowercased() : character.uppercased()
} else {
return character
}
}.joined()
} else {
return s.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map { character in
if character.isLetter {
return character.isUppercase ? character.lowercased() : character.uppercased()
} else {
return character
}
}.joined()
} else {
return s.reversed()
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return character // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
return s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return s.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map {
if $0.isLetter {
return $0.isUppercase ? $0.lowercased() : $0.uppercased()
} else {
return $0
}
}.joined()
} else {
return s.reversed()
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return $0 // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
return s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map { character in
if character.isLetter {
return character.isLowercase ? character.uppercased() : character.lowercased()
} else {
return character
}
}.joined()
} else {
return String(s.reversed())
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map { character in
if character.isLetter {
return character.isLowercase ? character.uppercased() : character.lowercased()
} else {
return character
}
}.joined()
} else {
return String(s.reversed())
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return character // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map { $0.isLetter ? $0.toUpperCase : $0.toLowerCase }.joined()
} else {
return s.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map { $0.isLetter ? $0.toUpperCase : $0.toLowerCase }.joined()
} else {
return s.reversed()
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return s.map { $0.isLetter ? $0.toUpperCase : $0.toLowerCase }.joined() // value of type 'String.Element' (aka 'Character') has no member 'toLowerCase'
return s.map { $0.isLetter ? $0.toUpperCase : $0.toLowerCase }.joined() // value of type 'String.Element' (aka 'Character') has no member 'toUpperCase'
return s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'
func solve(s: String) -> String {
if s.containsLetters {
return s.map { character in
if character.isLetter {
return character.isLowercase ? character.uppercased() : character.lowercased()
} else {
return character
}
}.joined()
} else {
return s.reversed()
}
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c" [/INST] ```swift
func solve(s: String) -> String {
if s.containsLetters {
return s.map { character in
if character.isLetter {
return character.isLowercase ? character.uppercased() : character.lowercased()
} else {
return character
}
}.joined()
} else {
return s.reversed()
}
}
```
if s.containsLetters { // value of type 'String' has no member 'containsLetters'
return character // cannot convert value of type 'String.Element' (aka 'Character') to closure result type 'String'
return s.reversed() // no 'reversed' candidates produce the expected contextual result type 'String'
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.md5()
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.md5()
return hash.map { String(format: "%02x", $0) }.joined()
}
```
let hash = data.md5() // value of type 'Data' has no member 'md5'
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.md5()
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.md5()
return hash.map { String(format: "%02x", $0) }.joined()
}
```
let hash = data.md5() // value of type 'Data' has no member 'md5'
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.md5()
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.md5()
return hash.map { String(format: "%02x", $0) }.joined()
}
```
let hash = data.md5() // value of type 'Data' has no member 'md5'
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)
let hash = data?.md5()
return hash?.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)
let hash = data?.md5()
return hash?.map { String(format: "%02x", $0) }.joined()
}
```
let hash = data?.md5() // value of type 'Data' has no member 'md5'
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.md5()
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.md5()
return hash.map { String(format: "%02x", $0) }.joined()
}
```
let hash = data.md5() // value of type 'Data' has no member 'md5'
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = []
for i in 0..<data.count {
hash.append(bytes[i])
}
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
if text.isEmpty {
return nil
}
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = []
for i in 0..<data.count {
hash.append(bytes[i])
}
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
// XCTAssertTrue failed
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" [/INST] ```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash: [UInt8] = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).compactMap { Int(String($0)) }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).compactMap { Int(String($0)) }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).compactMap { Int(String($0)) }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).compactMap { Int(String($0)) }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).compactMap { Int(String($0)) }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).compactMap { Int(String($0)) }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result.sorted()
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).map { Int(String($0))! }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).map { Int(String($0))! }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result
}
```
// XCTAssertTrue failed
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
if i % 2 == 0 {
result.append(i)
}
}
return result
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).compactMap { Int(String($0)) }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result.sorted()
}
[INST] Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int] [/INST] ```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
var result: [Int] = []
for i in a...b {
let digits = String(i).compactMap { Int(String($0)) }
result.append(contentsOf: digits.filter { $0 % 2 == 0 })
}
return result.sorted()
}
```
// XCTAssertTrue failed