Metadata
Key | Value |
---|---|
engine | transformers |
prompt | instruct |
temp | 0.2 |
top_p | 0.95 |
max_new_tokens | 1024 |
n_completions | 10 |
Solutions
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openBracesCount: Int = 0
for char in parenString {
if char == "(" {
openBracesCount += 1
currentGroup.append(char)
} else if char == ")" {
openBracesCount -= 1
currentGroup.append(char)
if openBracesCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openBracesCount: Int = 0
for char in parenString {
if char == "(" {
openBracesCount += 1
currentGroup.append(char)
} else if char == ")" {
openBracesCount -= 1
currentGroup.append(char)
if openBracesCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openBraces: Int = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openBraces: Int = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup.append(char)
} else if char == ")" {
openBraces -= 1
currentGroup.append(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openBracesCount: Int = 0
for char in parenString {
if char == "(" {
openBracesCount += 1
currentGroup.append(char)
} else if char == ")" {
openBracesCount -= 1
currentGroup.append(char)
if openBracesCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openBracesCount: Int = 0
for char in parenString {
if char == "(" {
openBracesCount += 1
currentGroup.append(char)
} else if char == ")" {
openBracesCount -= 1
currentGroup.append(char)
if openBracesCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
return number - Double(integerPart)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
return number - Double(integerPart)
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
return number - Double(integerPart)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
return number - Double(integerPart)
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - Double(Int(number))
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
let decimalPart = number - Double(integerPart)
return decimalPart
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
return number - Double(integerPart)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
return number - Double(integerPart)
}
```
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
return number - Double(integerPart)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
let integerPart = Int(number)
return number - Double(integerPart)
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
let mad = deviations.reduce(0, +) / Double(deviations.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
let mad = deviations.reduce(0, +) / Double(deviations.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
let mad = deviations.reduce(0, +) / Double(deviations.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
let mad = deviations.reduce(0, +) / Double(deviations.count)
return mad
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
if index > 0 {
result.append(delimeter)
}
result.append(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for (index, number) in numbers.enumerated() {
if index > 0 {
result.append(delimeter)
}
result.append(number)
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for (index, number) in numbers.enumerated() {
if index > 0 {
result.append(delimeter)
}
result.append(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result: [Int] = []
for (index, number) in numbers.enumerated() {
if index > 0 {
result.append(delimeter)
}
result.append(number)
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [numbers[0]]
for i in 1..<numbers.count {
result.append(delimeter)
result.append(numbers[i])
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result: [Int] = []
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result: [Int] = []
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result = [Int]()
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.components(separatedBy: " ")
for group in groups {
var depth = 0
var maxDepth = 0
for char in group {
if char == "(" {
depth += 1
maxDepth = max(depth, maxDepth)
} else if char == ")" {
depth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.components(separatedBy: " ")
for group in groups {
var depth = 0
var maxDepth = 0
for char in group {
if char == "(" {
depth += 1
maxDepth = max(depth, maxDepth)
} else if char == ")" {
depth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.components(separatedBy: " ")
for group in groups {
var maxDepth = 0
var currentDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
maxDepth = max(maxDepth, currentDepth)
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for num in numbers {
sum += num
product *= num
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for num in numbers {
sum += num
product *= num
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
let sum = numbers.reduce(0, +)
let product = numbers.reduce(1, *)
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
let sum = numbers.reduce(0, +)
let product = numbers.reduce(1, *)
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for num in numbers {
sum += num
product *= num
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for num in numbers {
sum += num
product *= num
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for num in numbers {
sum += num
product *= num
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for num in numbers {
sum += num
product *= num
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
let sum = numbers.reduce(0, +)
let product = numbers.reduce(1, *)
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
let sum = numbers.reduce(0, +)
let product = numbers.reduce(1, *)
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var max = numbers[0]
var result: [Int] = [max]
for i in 1..<numbers.count {
max = max > numbers[i] ? max : numbers[i]
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = numbers[0]
var result: [Int] = [max]
for i in 1..<numbers.count {
max = max > numbers[i] ? max : numbers[i]
result.append(max)
}
return result
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxes: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
maxes.append(currentMax)
}
return maxes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxes: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
maxes.append(currentMax)
}
return maxes
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var max = numbers[0]
var result = [Int]()
for i in 0..<numbers.count {
max = max > numbers[i] ? max : numbers[i]
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = numbers[0]
var result = [Int]()
for i in 0..<numbers.count {
max = max > numbers[i] ? max : numbers[i]
result.append(max)
}
return result
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var maxSoFar = numbers[0]
var result = [numbers[0]]
for i in 1..<numbers.count {
maxSoFar = max(maxSoFar, numbers[i])
result.append(maxSoFar)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var maxSoFar = numbers[0]
var result = [numbers[0]]
for i in 1..<numbers.count {
maxSoFar = max(maxSoFar, numbers[i])
result.append(maxSoFar)
}
return result
}
```
// Fatal error: Index out of range
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxElement = Int.min
for number in numbers {
maxElement = max(maxElement, number)
result.append(maxElement)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxElement = Int.min
for number in numbers {
maxElement = max(maxElement, number)
result.append(maxElement)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxElement = Int.min
for number in numbers {
maxElement = max(maxElement, number)
result.append(maxElement)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxElement = Int.min
for number in numbers {
maxElement = max(maxElement, number)
result.append(maxElement)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxSoFar = Int.min
for number in numbers {
maxSoFar = max(maxSoFar, number)
result.append(maxSoFar)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxSoFar = Int.min
for number in numbers {
maxSoFar = max(maxSoFar, number)
result.append(maxSoFar)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxElement = Int.min
for number in numbers {
maxElement = max(maxElement, number)
result.append(maxElement)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var maxElement = Int.min
for number in numbers {
maxElement = max(maxElement, number)
result.append(maxElement)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var currentMax = Int.min
for number in numbers {
currentMax = max(currentMax, number)
result.append(currentMax)
}
return result
}
```
func makePalindrome(string: String) -> String {
let str = Array(string)
var i = 0
var j = str.count - 1
while i < j {
if str[i] == str[j] {
i += 1
j -= 1
} else {
break
}
}
if i >= j {
return string
}
let suffix = String(str[i...j])
let prefix = String(str[0..<i])
return string + String(suffix.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let str = Array(string)
var i = 0
var j = str.count - 1
while i < j {
if str[i] == str[j] {
i += 1
j -= 1
} else {
break
}
}
if i >= j {
return string
}
let suffix = String(str[i...j])
let prefix = String(str[0..<i])
return string + String(suffix.reversed())
}
```
let prefix = String(str[0..<i]) // initialization of immutable value 'prefix' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
var result = string
let reversedString = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
result += reversedString.prefix(string.count - i)
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var result = string
let reversedString = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
result += reversedString.prefix(string.count - i)
break
}
}
return result
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
return string + reversedString.prefix(i)
}
}
return string + reversedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
return string + reversedString.prefix(i)
}
}
return string + reversedString
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
var palindrome = string
let reversed = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
palindrome = string + reversed.prefix(i)
break
}
}
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var palindrome = string
let reversed = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
palindrome = string + reversed.prefix(i)
break
}
}
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
let str = Array(string)
var i = 0
var j = str.count - 1
while i < j {
if str[i] != str[j] {
break
}
i += 1
j -= 1
}
if i >= j {
return string
}
let suffix = String(str[i...j])
let prefix = String(str[0..<i])
return string + String(suffix.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let str = Array(string)
var i = 0
var j = str.count - 1
while i < j {
if str[i] != str[j] {
break
}
i += 1
j -= 1
}
if i >= j {
return string
}
let suffix = String(str[i...j])
let prefix = String(str[0..<i])
return string + String(suffix.reversed())
}
```
let prefix = String(str[0..<i]) // initialization of immutable value 'prefix' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
let n = string.count
var lps = Array(repeating: 0, count: n)
var i = 1
var len = 0
var index = 0
while i < n {
if string[string.index(string.startIndex, offsetBy: i)] == string[string.index(string.startIndex, offsetBy: index + len)] {
len += 1
lps[i] = len
index += 1
i += 1
} else {
if len != 0 {
len = lps[index - 1]
index = 0
} else {
lps[i] = 0
i += 1
}
}
}
let suffix = string.suffix(from: string.index(string.startIndex, offsetBy: lps[n - 1]))
let prefix = string.prefix(upTo: string.index(string.startIndex, offsetBy: n - lps[n - 1]))
let reversedPrefix = String(prefix.reversed())
return String(suffix + reversedPrefix)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let n = string.count
var lps = Array(repeating: 0, count: n)
var i = 1
var len = 0
var index = 0
while i < n {
if string[string.index(string.startIndex, offsetBy: i)] == string[string.index(string.startIndex, offsetBy: index + len)] {
len += 1
lps[i] = len
index += 1
i += 1
} else {
if len != 0 {
len = lps[index - 1]
index = 0
} else {
lps[i] = 0
i += 1
}
}
}
let suffix = string.suffix(from: string.index(string.startIndex, offsetBy: lps[n - 1]))
let prefix = string.prefix(upTo: string.index(string.startIndex, offsetBy: n - lps[n - 1]))
let reversedPrefix = String(prefix.reversed())
return String(suffix + reversedPrefix)
}
```
// Fatal error: Index out of range
func makePalindrome(string: String) -> String {
let str = Array(string)
var i = 0
var j = str.count - 1
while i < j {
if str[i] == str[j] {
i += 1
j -= 1
} else {
break
}
}
if i >= j {
return string
}
let suffix = String(str[i...])
let prefix = String(str[0..<i])
return string + String(suffix.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let str = Array(string)
var i = 0
var j = str.count - 1
while i < j {
if str[i] == str[j] {
i += 1
j -= 1
} else {
break
}
}
if i >= j {
return string
}
let suffix = String(str[i...])
let prefix = String(str[0..<i])
return string + String(suffix.reversed())
}
```
let prefix = String(str[0..<i]) // initialization of immutable value 'prefix' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
var result = string
let reversedString = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
result += reversedString.prefix(i)
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var result = string
let reversedString = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
result += reversedString.prefix(i)
break
}
}
return result
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
return string + reversedString.prefix(i)
}
}
return string + reversedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
for i in 0..<string.count {
let substring = String(string.dropLast(i))
if substring == String(substring.reversed()) {
return string + reversedString.prefix(i)
}
}
return string + reversedString
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
var palindrome = string
for i in 0..<string.count {
if string.hasSuffix(String(reversedString.prefix(i+1))) {
palindrome += String(reversedString.prefix(i+1))
break
}
}
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
var palindrome = string
for i in 0..<string.count {
if string.hasSuffix(String(reversedString.prefix(i+1))) {
palindrome += String(reversedString.prefix(i+1))
break
}
}
return palindrome
}
```
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let index = a.index(a.startIndex, offsetBy: i)
let charA = a[index]
let charB = b[index]
if charA == charB {
result += "0"
} else {
result += "1"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let index = a.index(a.startIndex, offsetBy: i)
let charA = a[index]
let charB = b[index]
if charA == charB {
result += "0"
} else {
result += "1"
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (charA, charB) in zip(a, b) {
let xor = (charA == charB) ? "0" : "1"
result += xor
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (charA, charB) in zip(a, b) {
let xor = (charA == charB) ? "0" : "1"
result += xor
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let index = a.index(a.startIndex, offsetBy: i)
let charA = a[index]
let charB = b[index]
let xorResult = (charA == charB) ? "0" : "1"
result += xorResult
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let index = a.index(a.startIndex, offsetBy: i)
let charA = a[index]
let charB = b[index]
let xorResult = (charA == charB) ? "0" : "1"
result += xorResult
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (charA, charB) in zip(a, b) {
let xorResult = (charA == charB) ? "0" : "1"
result += xorResult
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (charA, charB) in zip(a, b) {
let xorResult = (charA == charB) ? "0" : "1"
result += xorResult
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let index = a.index(a.startIndex, offsetBy: i)
let charA = a[index]
let charB = b[index]
if charA == charB {
result += "0"
} else {
result += "1"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let index = a.index(a.startIndex, offsetBy: i)
let charA = a[index]
let charB = b[index]
if charA == charB {
result += "0"
} else {
result += "1"
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (charA, charB) in zip(a, b) {
let xorResult = (charA == charB) ? "0" : "1"
result += xorResult
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (charA, charB) in zip(a, b) {
let xorResult = (charA == charB) ? "0" : "1"
result += xorResult
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let indexA = a.index(a.startIndex, offsetBy: i)
let indexB = b.index(b.startIndex, offsetBy: i)
let charA = a[indexA]
let charB = b[indexB]
if charA == charB {
result += "0"
} else {
result += "1"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for i in 0..<a.count {
let indexA = a.index(a.startIndex, offsetBy: i)
let indexB = b.index(b.startIndex, offsetBy: i)
let charA = a[indexA]
let charB = b[indexB]
if charA == charB {
result += "0"
} else {
result += "1"
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
let maxLength = max(a.count, b.count)
for i in 0..<maxLength {
let indexA = a.index(a.startIndex, offsetBy: i)
let indexB = b.index(b.startIndex, offsetBy: i)
let charA = a.count > i ? a[indexA] : "0"
let charB = b.count > i ? b[indexB] : "0"
let xorResult = (charA == charB) ? "0" : "1"
result += xorResult
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
let maxLength = max(a.count, b.count)
for i in 0..<maxLength {
let indexA = a.index(a.startIndex, offsetBy: i)
let indexB = b.index(b.startIndex, offsetBy: i)
let charA = a.count > i ? a[indexA] : "0"
let charB = b.count > i ? b[indexB] : "0"
let xorResult = (charA == charB) ? "0" : "1"
result += xorResult
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (charA, charB) in zip(a, b) {
let bitA = Int(String(charA)) ?? 0
let bitB = Int(String(charB)) ?? 0
let xorResult = bitA ^ bitB
result += String(xorResult)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (charA, charB) in zip(a, b) {
let bitA = Int(String(charA)) ?? 0
let bitB = Int(String(charB)) ?? 0
let xorResult = bitA ^ bitB
result += String(xorResult)
}
return result
}
```
func stringXor(a: String, b: String) -> String {
let result = zip(a, b).map { String(Int(String($0.0))! ^ Int(String($0.1))!) }
return result.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
let result = zip(a, b).map { String(Int(String($0.0))! ^ Int(String($0.1))!) }
return result.joined()
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $0.count > $1.count ? $0 : $1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $0.count > $1.count ? $0 : $1 }
}
```
// XCTAssertTrue failed
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $1.count > $0.count ? $1 : $0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $1.count > $0.count ? $1 : $0 }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $1.count > $0.count ? $1 : $0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $1.count > $0.count ? $1 : $0 }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $1.count > $0.count ? $1 : $0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $1.count > $0.count ? $1 : $0 }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $0.count > $1.count ? $0 : $1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.reduce(strings[0]) { $0.count > $1.count ? $0 : $1 }
}
```
// XCTAssertTrue failed
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
var longestString = strings[0]
for string in strings {
if string.count > longestString.count {
longestString = string
}
}
return longestString
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func allPrefixes(string: String) -> [String] {
var result: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
result.append(prefix)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var result: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
result.append(prefix)
}
return result
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var result: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
result.append(prefix)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var result: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
result.append(prefix)
}
return result
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
let prefix = String(string.prefix(i + 1))
prefixes.append(prefix)
}
return prefixes
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
```
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return (0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
```
func stringSequence(n: Int) -> String {
return Array(0...n).map { String($0) }.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
return Array(0...n).map { String($0) }.joined(separator: " ")
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += String(i)
if i != n {
result += " "
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += String(i)
if i != n {
result += " "
}
}
return result
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return String(result.dropLast())
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctCharacters = Set<Character>()
for character in string.lowercased() {
distinctCharacters.insert(character)
}
return distinctCharacters.count
}
```
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var distinctChars = Set<Character>()
for char in string.lowercased() {
distinctChars.insert(char)
}
return distinctChars.count
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
let index = string.index(string.startIndex, offsetBy: substring.count)
for i in stride(from: 0, to: string.count, by: substring.count) {
if string[i..<index] == substring {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
let index = string.index(string.startIndex, offsetBy: substring.count)
for i in stride(from: 0, to: string.count, by: substring.count) {
if string[i..<index] == substring {
count += 1
}
}
return count
}
```
if string[i..<index] == substring { // cannot convert value of type 'Int' to expected argument type 'String.Index'
func howManyTimes(string: String, substring: String) -> Int {
guard !substring.isEmpty else { return 0 }
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(index, offsetBy: substring.count)] == substring {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
guard !substring.isEmpty else { return 0 }
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(index, offsetBy: substring.count)] == substring {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
```
// Fatal error: String index is out of bounds
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(after: index)] == substring {
count += 1
index = string.index(after: index)
} else {
index = string.index(after: index)
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(after: index)] == substring {
count += 1
index = string.index(after: index)
} else {
index = string.index(after: index)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(after: index)] == substring {
count += 1
index = string.index(after: index)
} else {
index = string.index(after: index)
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(after: index)] == substring {
count += 1
index = string.index(after: index)
} else {
index = string.index(after: index)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
let index = string.index(string.startIndex, offsetBy: substring.count)
for i in stride(from: 0, to: string.count, by: substring.count) {
if string[i..<index] == substring {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
let index = string.index(string.startIndex, offsetBy: substring.count)
for i in stride(from: 0, to: string.count, by: substring.count) {
if string[i..<index] == substring {
count += 1
}
}
return count
}
```
if string[i..<index] == substring { // cannot convert value of type 'Int' to expected argument type 'String.Index'
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(after: index)] == substring {
count += 1
index = string.index(after: index)
} else {
index = string.index(after: index)
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(after: index)] == substring {
count += 1
index = string.index(after: index)
} else {
index = string.index(after: index)
}
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(index, offsetBy: substring.count)] == substring {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(index, offsetBy: substring.count)] == substring {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
```
// Fatal error: String index is out of bounds
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
let stringLength = string.count
let substringLength = substring.count
for i in 0...(stringLength - substringLength) {
let index = string.index(string.startIndex, offsetBy: i)
let range = index..<string.index(index, offsetBy: substringLength)
if string[range] == substring {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
let stringLength = string.count
let substringLength = substring.count
for i in 0...(stringLength - substringLength) {
let index = string.index(string.startIndex, offsetBy: i)
let range = index..<string.index(index, offsetBy: substringLength)
if string[range] == substring {
count += 1
}
}
return count
}
```
// Fatal error: Range requires lowerBound <= upperBound
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(index, offsetBy: substring.count)] == substring {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(index, offsetBy: substring.count)] == substring {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
```
// Fatal error: String index is out of bounds
func howManyTimes(string: String, substring: String) -> Int {
guard !substring.isEmpty else { return 0 }
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(index, offsetBy: substring.count)] == substring {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
guard !substring.isEmpty else { return 0 }
var count = 0
var index = string.startIndex
while index < string.endIndex {
if string[index..<string.index(index, offsetBy: substring.count)] == substring {
count += 1
index = string.index(index, offsetBy: substring.count)
} else {
index = string.index(after: index)
}
}
return count
}
```
// Fatal error: String index is out of bounds
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { String($0) }.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { String($0) }.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { String($0) }.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { String($0) }.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { String($0) }.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { String($0) }.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { String($0) }.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { String($0) }.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let numbersArray = numbers.split(separator: " ").map { String($0) }
let sortedNumbers = numbersArray.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let numbersArray = numbers.split(separator: " ").map { String($0) }
let sortedNumbers = numbersArray.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let numbersArray = numbers.split(separator: " ").map { String($0) }
let sortedNumbers = numbersArray.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let numbersArray = numbers.split(separator: " ").map { String($0) }
let sortedNumbers = numbersArray.sorted { numberals[$0]! < numberals[$1]! }
return sortedNumbers.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })!.key) }.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })!.key) }.joined(separator: " ")
return sortedNumbers
}
```
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })!.key) }.joined(separator: " ") // value of type 'String' has no member 'value'
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })!.key) }.joined(separator: " ") // contextual type for closure argument list expects 1 argument, which cannot be implicitly ignored
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })!.key) }.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })!.key) }.joined(separator: " ")
return sortedNumbers
}
```
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })!.key) }.joined(separator: " ") // value of type 'String' has no member 'value'
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })!.key) }.joined(separator: " ") // contextual type for closure argument list expects 1 argument, which cannot be implicitly ignored
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })?.key ?? "") }.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })?.key ?? "") }.joined(separator: " ")
return sortedNumbers
}
```
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })?.key ?? "") }.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberals = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberals[String($0)] ?? 0 }.sorted().map { String(numberals.first(where: { $0.value == $1 })?.key ?? "") }.joined(separator: " ")
return sortedNumbers
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else { return (0, 0) }
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else { return (0, 0) }
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i + 1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
var minDifference = Double.infinity
var result: (Double, Double) = (0, 0)
for i in 0..<sortedNumbers.count - 1 {
let difference = sortedNumbers[i + 1] - sortedNumbers[i]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i], sortedNumbers[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
var minDifference = Double.infinity
var result: (Double, Double) = (0, 0)
for i in 0..<sortedNumbers.count - 1 {
let difference = sortedNumbers[i + 1] - sortedNumbers[i]
if difference < minDifference {
minDifference = difference
result = (sortedNumbers[i], sortedNumbers[i + 1])
}
}
return result
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else { return (0, 0) }
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
guard numbers.count >= 2 else { return (0, 0) }
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count - 1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var smallestDifference = abs(sortedNumbers[0] - sortedNumbers[1])
for i in 0..<sortedNumbers.count - 1 {
let difference = abs(sortedNumbers[i] - sortedNumbers[i + 1])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (sortedNumbers[i], sortedNumbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
let sortedNumbers = numbers.sorted()
var closestPair = (sortedNumbers[0], sortedNumbers[1])
var smallestDifference = abs(sortedNumbers[0] - sortedNumbers[1])
for i in 0..<sortedNumbers.count - 1 {
let difference = abs(sortedNumbers[i] - sortedNumbers[i + 1])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (sortedNumbers[i], sortedNumbers[i + 1])
}
}
return closestPair
}
```
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var closestPair = (numbers[0], numbers[1])
var smallestDifference = abs(numbers[0] - numbers[1])
for i in 0..<numbers.count-1 {
for j in i+1..<numbers.count {
let difference = abs(numbers[i] - numbers[j])
if difference < smallestDifference {
smallestDifference = difference
closestPair = (min(numbers[i], numbers[j]), max(numbers[i], numbers[j]))
}
}
}
return closestPair
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minNum = numbers.min()!
let maxNum = numbers.max()!
return numbers.map { ($0 - minNum) / (maxNum - minNum) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minNum = numbers.min()!
let maxNum = numbers.max()!
return numbers.map { ($0 - minNum) / (maxNum - minNum) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minNum = numbers.min()!
let maxNum = numbers.max()!
return numbers.map { ($0 - minNum) / (maxNum - minNum) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let minNum = numbers.min()!
let maxNum = numbers.max()!
return numbers.map { ($0 - minNum) / (maxNum - minNum) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0.0
let max = numbers.max() ?? 1.0
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0.0
let max = numbers.max() ?? 1.0
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0.0
let max = numbers.max() ?? 1.0
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min() ?? 0.0
let max = numbers.max() ?? 1.0
return numbers.map { ($0 - min) / (max - min) }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
var result: [Int] = []
for value in values {
if let intValue = value as? Int {
result.append(intValue)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
var result: [Int] = []
for value in values {
if let intValue = value as? Int {
result.append(intValue)
}
}
return result
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
var result: [Int] = []
for value in values {
if let intValue = value as? Int {
result.append(intValue)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
var result: [Int] = []
for value in values {
if let intValue = value as? Int {
result.append(intValue)
}
}
return result
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func largestDivisor(n: Int) -> Int {
var largestDivisor = 1
for i in 1..<n {
if n % i == 0 {
largestDivisor = i
}
}
return largestDivisor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var largestDivisor = 1
for i in 1..<n {
if n % i == 0 {
largestDivisor = i
}
}
return largestDivisor
}
```
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 1..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 1..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n-1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n-1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var largestDivisor = 1
for i in 1..<n {
if n % i == 0 {
largestDivisor = i
}
}
return largestDivisor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var largestDivisor = 1
for i in 1..<n {
if n % i == 0 {
largestDivisor = i
}
}
return largestDivisor
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return n
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return n
}
```
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 1..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var largest = 1
for i in 1..<n {
if n % i == 0 {
largest = i
}
}
return largest
}
```
func factorize(n: Int) -> [Int] {
var factors: [Int] = []
var number = n
var divisor = 2
while divisor <= number {
while number % divisor == 0 {
factors.append(divisor)
number /= divisor
}
divisor += 1
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors: [Int] = []
var number = n
var divisor = 2
while divisor <= number {
while number % divisor == 0 {
factors.append(divisor)
number /= divisor
}
divisor += 1
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var num = n
var factors = [Int]()
var i = 2
while i <= num {
while num % i == 0 {
factors.append(i)
num /= i
}
i += 1
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var num = n
var factors = [Int]()
var i = 2
while i <= num {
while num % i == 0 {
factors.append(i)
num /= i
}
i += 1
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var num = n
var factors = [Int]()
for i in 2...num {
while num % i == 0 {
factors.append(i)
num /= i
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var num = n
var factors = [Int]()
for i in 2...num {
while num % i == 0 {
factors.append(i)
num /= i
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors: [Int] = []
var number = n
var divisor = 2
while divisor <= number {
while number % divisor == 0 {
factors.append(divisor)
number /= divisor
}
divisor += 1
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors: [Int] = []
var number = n
var divisor = 2
while divisor <= number {
while number % divisor == 0 {
factors.append(divisor)
number /= divisor
}
divisor += 1
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var num = n
var factors = [Int]()
var i = 2
while i <= num {
if num % i == 0 {
factors.append(i)
num = num / i
} else {
i += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var num = n
var factors = [Int]()
var i = 2
while i <= num {
if num % i == 0 {
factors.append(i)
num = num / i
} else {
i += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var num = n
var factors = [Int]()
var i = 2
while i <= num {
while num % i == 0 {
factors.append(i)
num /= i
}
i += 1
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var num = n
var factors = [Int]()
var i = 2
while i <= num {
while num % i == 0 {
factors.append(i)
num /= i
}
i += 1
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors: [Int] = []
var num = n
var i = 2
while i <= num {
while num % i == 0 {
factors.append(i)
num /= i
}
i += 1
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors: [Int] = []
var num = n
var i = 2
while i <= num {
while num % i == 0 {
factors.append(i)
num /= i
}
i += 1
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var num = n
var factors: [Int] = []
var i = 2
while i <= num {
if num % i == 0 {
factors.append(i)
num /= i
} else {
i += 1
}
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var num = n
var factors: [Int] = []
var i = 2
while i <= num {
if num % i == 0 {
factors.append(i)
num /= i
} else {
i += 1
}
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while divisor <= number {
while number % divisor == 0 {
factors.append(divisor)
number /= divisor
}
divisor += 1
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while divisor <= number {
while number % divisor == 0 {
factors.append(divisor)
number /= divisor
}
divisor += 1
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var num = n
var i = 2
while i * i <= num {
while num % i == 0 {
factors.append(i)
num /= i
}
i += 1
}
if num > 1 {
factors.append(num)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var num = n
var i = 2
while i * i <= num {
while num % i == 0 {
factors.append(i)
num /= i
}
i += 1
}
if num > 1 {
factors.append(num)
}
return factors
}
```
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if !seen.contains(number) {
seen.insert(number)
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
for number in numbers {
if !result.contains(number) {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var dict = [Int: Int]()
for num in numbers {
if dict[num] == nil {
dict[num] = 1
result.append(num)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var dict = [Int: Int]()
for num in numbers {
if dict[num] == nil {
dict[num] = 1
result.append(num)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var uniqueNumbers: [Int] = []
for number in numbers {
if !uniqueNumbers.contains(number) {
uniqueNumbers.append(number)
}
}
return uniqueNumbers
}
```
// XCTAssertTrue failed
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
```
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
return string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
}.joined()
}
```
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased()) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
return string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
}.joined()
}
```
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased()) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
return string.map { Character($0.isUppercase ? $0.lowercased() : $0.uppercased()) }.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map { Character($0.isUppercase ? $0.lowercased() : $0.uppercased()) }.reduce("", +)
}
```
return string.map { Character($0.isUppercase ? $0.lowercased() : $0.uppercased()) }.reduce("", +) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
```
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
return string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased())
}.joined()
}
```
$0.isLowercase ? Character($0.uppercased()) : Character($0.lowercased()) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
```
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
```
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) // cannot convert value of type 'Character' to closure result type 'String'
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += String(char.lowercased())
} else if char.isLowercase {
result += String(char.uppercased())
} else {
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += String(char.lowercased())
} else if char.isLowercase {
result += String(char.uppercased())
} else {
result += String(char)
}
}
return result
}
```
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map {
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased())
}.joined()
}
```
$0.isUppercase ? Character($0.lowercased()) : Character($0.uppercased()) // cannot convert value of type 'Character' to closure result type 'String'
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined(separator: "")
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
for i in 2..<n {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func sortThird(l: [Int]) -> [Int] {
var result = l
let thirdIndices = l.enumerated().filter { $0.offset % 3 == 0 }.map { $0.element }
let sortedThirdIndices = thirdIndices.sorted()
for (index, value) in thirdIndices.enumerated() {
result[value] = sortedThirdIndices[index]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
let thirdIndices = l.enumerated().filter { $0.offset % 3 == 0 }.map { $0.element }
let sortedThirdIndices = thirdIndices.sorted()
for (index, value) in thirdIndices.enumerated() {
result[value] = sortedThirdIndices[index]
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = l
let indices = l.indices.filter { $0 % 3 == 0 }
let values = l.filter { $0 % 3 == 0 }
let sortedValues = values.sorted()
for (index, value) in zip(indices, sortedValues) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
let indices = l.indices.filter { $0 % 3 == 0 }
let values = l.filter { $0 % 3 == 0 }
let sortedValues = values.sorted()
for (index, value) in zip(indices, sortedValues) {
result[index] = value
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let thirdValues = thirdIndices.map { l[$0] }
let sortedThirdValues = thirdValues.sorted()
for (index, value) in zip(thirdIndices, sortedThirdValues) {
l[index] = value
}
return l
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
let thirdIndices = l.indices.filter { $0 % 3 == 0 }
let thirdValues = thirdIndices.map { l[$0] }
let sortedThirdValues = thirdValues.sorted()
for (index, value) in zip(thirdIndices, sortedThirdValues) {
l[index] = value
}
return l
}
```
func sortThird(l: [Int]) -> [Int] {
var l = l
let indices = l.indices.filter { $0 % 3 == 0 }
let values = indices.map { l[$0] }
let sortedValues = values.sorted()
for (index, value) in zip(indices, sortedValues) {
l[index] = value
}
return l
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var l = l
let indices = l.indices.filter { $0 % 3 == 0 }
let values = indices.map { l[$0] }
let sortedValues = values.sorted()
for (index, value) in zip(indices, sortedValues) {
l[index] = value
}
return l
}
```
func sortThird(l: [Int]) -> [Int] {
var result = l
let indices = l.indices.filter { $0 % 3 == 0 }
let sortedValues = l.filter { $0 % 3 == 0 }.sorted()
for (index, value) in zip(indices, sortedValues) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
let indices = l.indices.filter { $0 % 3 == 0 }
let sortedValues = l.filter { $0 % 3 == 0 }.sorted()
for (index, value) in zip(indices, sortedValues) {
result[index] = value
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = l
let indices = l.indices.filter { $0 % 3 == 0 }
let sortedValues = l.filter { $0 % 3 == 0 }.sorted()
for (index, value) in zip(indices, sortedValues) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
let indices = l.indices.filter { $0 % 3 == 0 }
let sortedValues = l.filter { $0 % 3 == 0 }.sorted()
for (index, value) in zip(indices, sortedValues) {
result[index] = value
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = l
let thirdIndices = l.enumerated().filter { $0.offset % 3 == 0 }.map { $0.element }
let sortedThirdIndices = thirdIndices.sorted()
for (index, value) in thirdIndices.enumerated() {
result[value] = sortedThirdIndices[index]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
let thirdIndices = l.enumerated().filter { $0.offset % 3 == 0 }.map { $0.element }
let sortedThirdIndices = thirdIndices.sorted()
for (index, value) in thirdIndices.enumerated() {
result[value] = sortedThirdIndices[index]
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = l
let thirdIndices = l.enumerated().filter { $0.offset % 3 == 0 }.map { $0.element }
let sortedThirdIndices = thirdIndices.sorted()
for (index, value) in thirdIndices.enumerated() {
result[value] = sortedThirdIndices[index]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
let thirdIndices = l.enumerated().filter { $0.offset % 3 == 0 }.map { $0.element }
let sortedThirdIndices = thirdIndices.sorted()
for (index, value) in thirdIndices.enumerated() {
result[value] = sortedThirdIndices[index]
}
return result
}
```
// XCTAssertTrue failed
func sortThird(l: [Int]) -> [Int] {
var result = l
let indices = l.indices.filter { $0 % 3 == 0 }
let values = indices.map { l[$0] }
let sortedValues = values.sorted()
for (index, value) in zip(indices, sortedValues) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
let indices = l.indices.filter { $0 % 3 == 0 }
let values = indices.map { l[$0] }
let sortedValues = values.sorted()
for (index, value) in zip(indices, sortedValues) {
result[index] = value
}
return result
}
```
func sortThird(l: [Int]) -> [Int] {
var result = l
let thirdIndices = l.enumerated().filter { $0.offset % 3 == 0 }.map { $0.element }
let sortedThirdIndices = thirdIndices.sorted()
for (index, value) in thirdIndices.enumerated() {
result[value] = sortedThirdIndices[index]
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
let thirdIndices = l.enumerated().filter { $0.offset % 3 == 0 }.map { $0.element }
let sortedThirdIndices = thirdIndices.sorted()
for (index, value) in thirdIndices.enumerated() {
result[value] = sortedThirdIndices[index]
}
return result
}
```
// XCTAssertTrue failed
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let string = String(i)
for char in string {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let string = String(i)
for char in string {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
count += str.filter { $0 == "7" }.count
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
count += str.filter { $0 == "7" }.count
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 1) {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 1) {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 1) {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 1) {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 2) {
result.append(l[i])
if evenIndex < evenIndices.count {
result.append(evenIndices[evenIndex])
evenIndex += 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 2) {
result.append(l[i])
if evenIndex < evenIndices.count {
result.append(evenIndices[evenIndex])
evenIndex += 1
}
}
return result
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 2) {
result.append(l[i])
if evenIndex < evenIndices.count {
result.append(evenIndices[evenIndex])
evenIndex += 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 2) {
result.append(l[i])
if evenIndex < evenIndices.count {
result.append(evenIndices[evenIndex])
evenIndex += 1
}
}
return result
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 1) {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in stride(from: 0, to: l.count, by: 1) {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for i in stride(from: 0, to: l.count, by: 2) {
evenIndices.append(l[i])
}
evenIndices.sort()
var result = [Int]()
var evenIndex = 0
for i in 0..<l.count {
if i % 2 == 0 {
result.append(evenIndices[evenIndex])
evenIndex += 1
} else {
result.append(l[i])
}
}
return result
}
```
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
let num = fib[n - 1]
if isPrime(num) {
return num
} else {
return primeFib(n: n + 1)
}
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
let num = fib[n - 1]
if isPrime(num) {
return num
} else {
return primeFib(n: n + 1)
}
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
let num = fib[n - 1]
if isPrime(num) {
return num
} else {
return primeFib(n: n + 1)
}
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
let num = fib[n - 1]
if isPrime(num) {
return num
} else {
return primeFib(n: n + 1)
}
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
var primes = [2]
for i in 3..<fib[n - 1] {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes[n - 1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
var primes = [2]
for i in 3..<fib[n - 1] {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes[n - 1]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeFib(n: Int) -> Int {
var fib = [2, 3]
var i = 2
while fib.count < n {
i += 1
let nextFib = fib[i - 1] + fib[i - 2]
if isPrime(nextFib) {
fib.append(nextFib)
}
}
return fib[n - 1]
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [2, 3]
var i = 2
while fib.count < n {
i += 1
let nextFib = fib[i - 1] + fib[i - 2]
if isPrime(nextFib) {
fib.append(nextFib)
}
}
return fib[n - 1]
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// Fatal error: Index out of range
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
var primes = [2]
var j = 3
while primes.count < n {
var isPrime = true
for prime in primes {
if j % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(j)
}
j += 2
}
var result = 0
for k in 0..<fib.count {
if primes.contains(fib[k]) {
result += 1
}
if result == n {
return fib[k]
}
}
return 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
var primes = [2]
var j = 3
while primes.count < n {
var isPrime = true
for prime in primes {
if j % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(j)
}
j += 2
}
var result = 0
for k in 0..<fib.count {
if primes.contains(fib[k]) {
result += 1
}
if result == n {
return fib[k]
}
}
return 0
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
let num = fib[n - 1]
if isPrime(num) {
return num
} else {
return primeFib(n: n + 1)
}
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
let num = fib[n - 1]
if isPrime(num) {
return num
} else {
return primeFib(n: n + 1)
}
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
var prime = [2]
var j = 3
while prime.count < n {
var isPrime = true
for k in 2..<j {
if j % k == 0 {
isPrime = false
break
}
}
if isPrime {
prime.append(j)
}
j += 2
}
return prime[n - 1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
var prime = [2]
var j = 3
while prime.count < n {
var isPrime = true
for k in 2..<j {
if j % k == 0 {
isPrime = false
break
}
}
if isPrime {
prime.append(j)
}
j += 2
}
return prime[n - 1]
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i-1] + fib[i-2])
i += 1
}
var primes = [2]
var j = 3
while primes.count < n {
var isPrime = true
for k in 2..<j {
if j % k == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(j)
}
j += 2
}
var result = [Int]()
for k in 0..<fib.count {
for l in 0..<primes.count {
if fib[k] == primes[l] {
result.append(fib[k])
}
}
}
return result[n-1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i-1] + fib[i-2])
i += 1
}
var primes = [2]
var j = 3
while primes.count < n {
var isPrime = true
for k in 2..<j {
if j % k == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(j)
}
j += 2
}
var result = [Int]()
for k in 0..<fib.count {
for l in 0..<primes.count {
if fib[k] == primes[l] {
result.append(fib[k])
}
}
}
return result[n-1]
}
```
// Fatal error: Index out of range
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
var primes = [2]
i = 3
while primes.count < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 2
}
var result = 0
for i in 0..<fib.count {
if primes.contains(fib[i]) {
result += 1
}
if result == n {
return fib[i]
}
}
return 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib = [0, 1]
var i = 2
while fib.count < n {
fib.append(fib[i - 1] + fib[i - 2])
i += 1
}
var primes = [2]
i = 3
while primes.count < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 2
}
var result = 0
for i in 0..<fib.count {
if primes.contains(fib[i]) {
result += 1
}
if result == n {
return fib[i]
}
}
return 0
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = fib1 + fib2
var count = 0
var primeFib = 0
while count < n {
fib1 = fib2
fib2 = fib3
fib3 = fib1 + fib2
if isPrime(num: fib3) {
primeFib = fib3
count += 1
}
}
return primeFib
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fib1 = 0
var fib2 = 1
var fib3 = fib1 + fib2
var count = 0
var primeFib = 0
while count < n {
fib1 = fib2
fib2 = fib3
fib3 = fib1 + fib2
if isPrime(num: fib3) {
primeFib = fib3
count += 1
}
}
return primeFib
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var sortedArray = l.sorted()
for i in 0..<sortedArray.count - 2 {
var left = i + 1
var right = sortedArray.count - 1
while left < right {
let sum = sortedArray[i] + sortedArray[left] + sortedArray[right]
if sum == 0 {
return true
} else if sum < 0 {
left += 1
} else {
right -= 1
}
}
}
return false
}
```
var sortedArray = l.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// Fatal error: Range requires lowerBound <= upperBound
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int { return n * n }
```
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int { return n * n }
```
XCTAssertTrue(carRaceCollision(n: 2) == 4) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 3) == 9) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 4) == 16) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 8) == 64) // cannot find 'carRaceCollision' in scope
XCTAssertTrue(carRaceCollision(n: 10) == 100) // cannot find 'carRaceCollision' in scope
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func carRaceCollision(n: Int) -> Int {
return n * n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * n
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
return true
}
}
}
return false
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result == "" ? "0" : result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result == "" ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result == "" ? "0" : result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result == "" ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
result = String(number % base) + result
number /= base
}
return result == "" ? "0" : result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
result = String(number % base) + result
number /= base
}
return result == "" ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
result = String(number % base) + result
number /= base
}
return result == "" ? "0" : result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var number = x
while number > 0 {
result = String(number % base) + result
number /= base
}
return result == "" ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result == "" ? "0" : result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result == "" ? "0" : result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var num = x
while num > 0 {
result = String(num % base) + result
num /= base
}
return result
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a) * Double(h) / 2.0
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
} else {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 4...n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
} else if n == 2 {
return 2
} else if n == 3 {
return 0
} else {
var a = 0
var b = 0
var c = 2
var d = 0
var result = 0
for _ in 4...n {
result = a + b + c + d
a = b
b = c
c = d
d = result
}
return result
}
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib = [0, 0, 2, 0]
if n < 4 {
return fib[n]
}
for i in 4...n {
fib.append(fib[i-1] + fib[i-2] + fib[i-3] + fib[i-4])
}
return fib[n]
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2 - 1] + sorted[count / 2]) / 2.0
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex = count / 2
return Double(sortedArray[midIndex - 1] + sortedArray[midIndex]) / 2
} else {
let midIndex = count / 2
return Double(sortedArray[midIndex])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
let midIndex = count / 2
return Double(sortedArray[midIndex - 1] + sortedArray[midIndex]) / 2
} else {
let midIndex = count / 2
return Double(sortedArray[midIndex])
}
}
```
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sortedArray = l.sorted()
let count = sortedArray.count
if count % 2 == 0 {
return Double(sortedArray[count / 2 - 1] + sortedArray[count / 2]) / 2.0
} else {
return Double(sortedArray[count / 2])
}
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let reversedText = String(text.reversed())
return text == reversedText
}
```
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(Double(n), Double(p))) % p
}
```
// Fatal error: Double value cannot be converted to Int because the result would be greater than Int.max
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return String(text.filter { !vowels.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return String(text.filter { !vowels.contains($0) })
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.filter { !vowels.contains($0) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.filter { !vowels.contains($0) }
return result
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return String(text.filter { !vowels.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return String(text.filter { !vowels.contains($0) })
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return String(text.filter { !vowels.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return String(text.filter { !vowels.contains($0) })
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
var result = ""
for char in text {
if !vowels.contains(char) {
result.append(char)
}
}
return result
}
```
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.filter { !vowels.contains($0) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.filter { !vowels.contains($0) }
return result
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return String(text.filter { !vowels.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return String(text.filter { !vowels.contains($0) })
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.filter { !vowels.contains($0) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.filter { !vowels.contains($0) }
return result
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for i in l {
if i >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
```
func sameChars(s0: String, s1: String) -> Bool {
let set0 = Set(s0)
let set1 = Set(s1)
return set0 == set1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let set0 = Set(s0)
let set1 = Set(s1)
return set0 == set1
}
```
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
```
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
```
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
```
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = String(s0.sorted())
let sortedS1 = String(s1.sorted())
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = String(s0.sorted())
let sortedS1 = String(s1.sorted())
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = String(s0.sorted())
let sortedS1 = String(s1.sorted())
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = String(s0.sorted())
let sortedS1 = String(s1.sorted())
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = String(s0.sorted())
let sortedS1 = String(s1.sorted())
return sortedS0 == sortedS1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let sortedS0 = String(s0.sorted())
let sortedS1 = String(s1.sorted())
return sortedS0 == sortedS1
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
```
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
return Set(s0) == Set(s1)
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
for _ in 2...n {
let temp = a + b
a = b
b = temp
}
return b
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
for _ in 2...n {
let temp = a + b
a = b
b = temp
}
return b
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
for _ in 2...n {
let temp = a + b
a = b
b = temp
}
return b
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
for _ in 2...n {
let temp = a + b
a = b
b = temp
}
return b
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
for _ in 2...n {
let temp = a + b
a = b
b = temp
}
return b
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
for _ in 2...n {
let temp = a + b
a = b
b = temp
}
return b
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
var result = 0
for _ in 2...n {
result = a + b
a = b
b = result
}
return result
}
}
```
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
for _ in 2...n {
let temp = a + b
a = b
b = temp
}
return b
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 0 {
return 0
} else if n == 1 {
return 1
} else {
var a = 0
var b = 1
for _ in 2...n {
let temp = a + b
a = b
b = temp
}
return b
}
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "<" {
count += 1
} else if bracket == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "<" {
count += 1
} else if bracket == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "<" {
count += 1
} else if bracket == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "<" {
count += 1
} else if bracket == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "<" {
count += 1
} else {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "<" {
count += 1
} else {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "<" {
stack.append(bracket)
} else if bracket == ">" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l == l.sorted() || l == l.sorted(by: >)
return isMonotonic
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l == l.sorted() || l == l.sorted(by: >)
return isMonotonic
}
```
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l.elementsEqual(l.sorted()) || l.elementsEqual(l.sorted(by: >))
return isMonotonic
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l.elementsEqual(l.sorted()) || l.elementsEqual(l.sorted(by: >))
return isMonotonic
}
```
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l == l.sorted() || l == l.sorted(by: >)
return isMonotonic
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l == l.sorted() || l == l.sorted(by: >)
return isMonotonic
}
```
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l == l.sorted() || l == l.sorted(by: >)
return isMonotonic
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l == l.sorted() || l == l.sorted(by: >)
return isMonotonic
}
```
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isIncreasing = l.sorted() == l
let isDecreasing = l.sorted(by: >) == l
return isIncreasing || isDecreasing
}
```
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l == l.sorted() || l == l.sorted(by: >)
return isMonotonic
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
let isMonotonic = l == l.sorted() || l == l.sorted(by: >)
return isMonotonic
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var commonElements = [Int]()
for element in l1 {
if l2.contains(element) && !commonElements.contains(element) {
commonElements.append(element)
}
}
return commonElements.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var commonElements = [Int]()
for element in l1 {
if l2.contains(element) && !commonElements.contains(element) {
commonElements.append(element)
}
}
return commonElements.sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let commonElements = set1.intersection(set2)
return Array(commonElements).sorted()
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
for i in 3..<Int(sqrt(Double(num))) {
while num % i == 0 {
largestPrime = i
num /= i
}
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
for i in 3..<Int(sqrt(Double(num))) {
while num % i == 0 {
largestPrime = i
num /= i
}
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
// XCTAssertTrue failed
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
for i in 3..<Int(sqrt(Double(num))) + 1 {
while num % i == 0 {
largestPrime = i
num /= i
}
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
for i in 3..<Int(sqrt(Double(num))) + 1 {
while num % i == 0 {
largestPrime = i
num /= i
}
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largest = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largest = i
num /= i
}
i += 2
}
if num > 2 {
largest = num
}
return largest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largest = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largest = i
num /= i
}
i += 2
}
if num > 2 {
largest = num
}
return largest
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
for i in 3..<Int(sqrt(Double(num))+1) {
while num % i == 0 {
largestPrime = i
num /= i
}
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
for i in 3..<Int(sqrt(Double(num))+1) {
while num % i == 0 {
largestPrime = i
num /= i
}
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var factor = 3
while factor * factor <= num {
while num % factor == 0 {
largestPrime = factor
num /= factor
}
factor += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var factor = 3
while factor * factor <= num {
while num % factor == 0 {
largestPrime = factor
num /= factor
}
factor += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var num = n
var largestPrime = 2
while num % 2 == 0 {
num /= 2
}
var i = 3
while i * i <= num {
while num % i == 0 {
largestPrime = i
num /= i
}
i += 2
}
if num > 2 {
largestPrime = num
}
return largestPrime
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
```
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "(" {
count += 1
} else if bracket == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "(" {
count += 1
} else if bracket == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "(" {
count += 1
} else if bracket == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "(" {
count += 1
} else if bracket == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openCount = 0
var closeCount = 0
for bracket in brackets {
if bracket == "(" {
openCount += 1
} else if bracket == ")" {
closeCount += 1
}
}
return openCount == closeCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var openCount = 0
var closeCount = 0
for bracket in brackets {
if bracket == "(" {
openCount += 1
} else if bracket == ")" {
closeCount += 1
}
}
return openCount == closeCount
}
```
// XCTAssertTrue failed
func correctBracketing(brackets: String) -> Bool {
var openCount = 0
var closeCount = 0
for char in brackets {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
}
return openCount == closeCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var openCount = 0
var closeCount = 0
for char in brackets {
if char == "(" {
openCount += 1
} else if char == ")" {
closeCount += 1
}
}
return openCount == closeCount
}
```
// XCTAssertTrue failed
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "(" {
count += 1
} else if bracket == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "(" {
count += 1
} else if bracket == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for bracket in brackets {
if bracket == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for bracket in brackets {
if bracket == "(" {
stack.append(bracket)
} else if bracket == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result: [Int] = []
for i in 1..<xs.count {
result.append(xs[i] * i)
}
return result
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
```
func fibfib(n: Int) -> Int {
var fibfibArray = [0, 0, 1]
if n < 3 {
return fibfibArray[n]
}
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfibArray = [0, 0, 1]
if n < 3 {
return fibfibArray[n]
}
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
} else {
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
} else if n == 1 {
return 0
} else if n == 2 {
return 1
} else {
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
}
```
func fibfib(n: Int) -> Int {
var fibfib = [Int](repeating: 0, count: n + 1)
if n >= 2 {
fibfib[2] = 1
}
if n >= 3 {
fibfib[3] = 1
}
for i in 4...n {
fibfib[i] = fibfib[i - 1] + fibfib[i - 2] + fibfib[i - 3]
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
var fibfib = [Int](repeating: 0, count: n + 1)
if n >= 2 {
fibfib[2] = 1
}
if n >= 3 {
fibfib[3] = 1
}
for i in 4...n {
fibfib[i] = fibfib[i - 1] + fibfib[i - 2] + fibfib[i - 3]
}
return fibfib[n]
}
```
// Fatal error: Range requires lowerBound <= upperBound
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
```
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
```
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
} else if n == 2 {
return 1
} else {
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 || n == 1 {
return 0
} else if n == 2 {
return 1
} else {
var fibfibArray = [0, 0, 1]
for i in 3...n {
fibfibArray.append(fibfibArray[i-1] + fibfibArray[i-2] + fibfibArray[i-3])
}
return fibfibArray[n]
}
}
```
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var fibfib = [Int](repeating: 0, count: n+1)
fibfib[0] = 0
fibfib[1] = 0
fibfib[2] = 1
for i in 3...n {
fibfib[i] = fibfib[i-1] + fibfib[i-2] + fibfib[i-3]
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var fibfib = [Int](repeating: 0, count: n+1)
fibfib[0] = 0
fibfib[1] = 0
fibfib[2] = 1
for i in 3...n {
fibfib[i] = fibfib[i-1] + fibfib[i-2] + fibfib[i-3]
}
return fibfib[n]
}
```
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var a = 0
var b = 0
var c = 1
var result = 0
for _ in 3...n {
result = a + b + c
a = b
b = c
c = result
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var a = 0
var b = 0
var c = 1
var result = 0
for _ in 3...n {
result = a + b + c
a = b
b = c
c = result
}
return result
}
```
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var fibfib = [Int](repeating: 0, count: n+1)
fibfib[2] = 1
for i in 3...n {
fibfib[i] = fibfib[i-1] + fibfib[i-2] + fibfib[i-3]
}
return fibfib[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 { return 0 }
if n == 1 { return 0 }
if n == 2 { return 1 }
var fibfib = [Int](repeating: 0, count: n+1)
fibfib[2] = 1
for i in 3...n {
fibfib[i] = fibfib[i-1] + fibfib[i-2] + fibfib[i-3]
}
return fibfib[n]
}
```
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" || s.last == "Y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" || s.last == "Y" {
count += 1
}
return count
}
```
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" || s.last == "Y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" || s.last == "Y" {
count += 1
}
return count
}
```
func vowelsCount(s: String) -> Int {
var count = 0
let vowels = "aeiouAEIOU"
for char in s {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" || s.last == "Y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
var count = 0
let vowels = "aeiouAEIOU"
for char in s {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" || s.last == "Y" {
count += 1
}
return count
}
```
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s {
if vowels.contains(char.lowercased()) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s {
if vowels.contains(char.lowercased()) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiou"
var count = 0
for char in s.lowercased() {
if vowels.contains(char) {
count += 1
}
}
if s.last == "y" {
count += 1
}
return count
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
if shift >= len {
return String(str.reversed())
} else {
let start = str.index(str.startIndex, offsetBy: len - shift)
let end = str.index(str.startIndex, offsetBy: len)
let right = String(str[start..<end])
let left = String(str[str.startIndex..<start])
return right + left
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
if shift >= len {
return String(str.reversed())
} else {
let start = str.index(str.startIndex, offsetBy: len - shift)
let end = str.index(str.startIndex, offsetBy: len)
let right = String(str[start..<end])
let left = String(str[str.startIndex..<start])
return right + left
}
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let shift = shift % digits.count
let shiftedDigits = Array(digits.suffix(shift) + digits.dropLast(shift))
return shiftedDigits.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let shift = shift % digits.count
let shiftedDigits = Array(digits.suffix(shift) + digits.dropLast(shift))
return shiftedDigits.joined()
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let count = str.count
let shift = shift % count
if shift == 0 {
return str
} else {
let startIndex = str.index(str.startIndex, offsetBy: count - shift)
let endIndex = str.index(str.startIndex, offsetBy: count)
let rightPart = str[startIndex..<endIndex]
let leftPart = str[str.startIndex..<startIndex]
return String(rightPart + leftPart)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let count = str.count
let shift = shift % count
if shift == 0 {
return str
} else {
let startIndex = str.index(str.startIndex, offsetBy: count - shift)
let endIndex = str.index(str.startIndex, offsetBy: count)
let rightPart = str[startIndex..<endIndex]
let leftPart = str[str.startIndex..<startIndex]
return String(rightPart + leftPart)
}
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let shift = shift % digits.count
let shiftedDigits = Array(digits.suffix(shift) + digits.dropLast(shift))
return shiftedDigits.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x).map { String($0) }
let shift = shift % digits.count
let shiftedDigits = Array(digits.suffix(shift) + digits.dropLast(shift))
return shiftedDigits.joined()
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shift = shift % len
if shift == 0 {
return str
} else {
let start = str.index(str.startIndex, offsetBy: len - shift)
let end = str.index(str.startIndex, offsetBy: len)
let right = String(str[start..<end])
let left = String(str[str.startIndex..<start])
return right + left
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
let shift = shift % len
if shift == 0 {
return str
} else {
let start = str.index(str.startIndex, offsetBy: len - shift)
let end = str.index(str.startIndex, offsetBy: len)
let right = String(str[start..<end])
let left = String(str[str.startIndex..<start])
return right + left
}
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let xStr = String(x)
let xArr = Array(xStr)
let shift = shift % xArr.count
if shift == 0 {
return xStr
} else {
let rightPart = xArr.dropFirst(xArr.count - shift)
let leftPart = xArr.dropLast(xArr.count - shift)
return String(rightPart + leftPart)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let xStr = String(x)
let xArr = Array(xStr)
let shift = shift % xArr.count
if shift == 0 {
return xStr
} else {
let rightPart = xArr.dropFirst(xArr.count - shift)
let leftPart = xArr.dropLast(xArr.count - shift)
return String(rightPart + leftPart)
}
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
if shift >= len {
return String(str.reversed())
}
let start = str.index(str.startIndex, offsetBy: len - shift)
let end = str.index(str.startIndex, offsetBy: len)
let right = String(str[start..<end])
let left = String(str[str.startIndex..<start])
return right + left
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
if shift >= len {
return String(str.reversed())
}
let start = str.index(str.startIndex, offsetBy: len - shift)
let end = str.index(str.startIndex, offsetBy: len)
let right = String(str[start..<end])
let left = String(str[str.startIndex..<start])
return right + left
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let xStr = String(x)
let xArr = Array(xStr)
let shift = shift % xArr.count
if shift == 0 {
return String(xArr)
} else {
let right = xArr.dropFirst(xArr.count - shift)
let left = xArr.dropLast(xArr.count - shift)
return String(right + left)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let xStr = String(x)
let xArr = Array(xStr)
let shift = shift % xArr.count
if shift == 0 {
return String(xArr)
} else {
let right = xArr.dropFirst(xArr.count - shift)
let left = xArr.dropLast(xArr.count - shift)
return String(right + left)
}
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
if shift >= len {
return String(str.reversed())
} else {
let start = str.index(str.startIndex, offsetBy: len - shift)
let end = str.index(str.startIndex, offsetBy: len)
let right = String(str[start..<end])
let left = String(str[str.startIndex..<start])
return right + left
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let len = str.count
if shift >= len {
return String(str.reversed())
} else {
let start = str.index(str.startIndex, offsetBy: len - shift)
let end = str.index(str.startIndex, offsetBy: len)
let right = String(str[start..<end])
let left = String(str[str.startIndex..<start])
return right + left
}
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let count = str.count
let shift = shift % count
if shift == 0 {
return str
} else {
let index = str.index(str.startIndex, offsetBy: count - shift)
let reversed = String(str[index...] + str[..<index])
return reversed
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let str = String(x)
let count = str.count
let shift = shift % count
if shift == 0 {
return str
} else {
let index = str.index(str.startIndex, offsetBy: count - shift)
let reversed = String(str[index...] + str[..<index])
return reversed
}
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
return s.filter { $0.isUppercase }.unicodeScalars.filter { $0.isASCII }.reduce(0) { $0 + Int($1.value) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.filter { $0.isUppercase }.unicodeScalars.filter { $0.isASCII }.reduce(0) { $0 + Int($1.value) }
}
```
func digitSum(s: String) -> Int {
return s.filter { $0.isUppercase }.unicodeScalars.reduce(0) { $0 + Int($1.value) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.filter { $0.isUppercase }.unicodeScalars.reduce(0) { $0 + Int($1.value) }
}
```
func digitSum(s: String) -> Int {
return s.filter { $0.isUppercase }.unicodeScalars.filter { $0.isASCII }.reduce(0) { $0 + Int($1.value) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
return s.filter { $0.isUppercase }.unicodeScalars.filter { $0.isASCII }.reduce(0) { $0 + Int($1.value) }
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
let upperChars = s.filter { $0.isUppercase }
return upperChars.reduce(0) { $0 + Int($1.asciiValue!) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
let upperChars = s.filter { $0.isUppercase }
return upperChars.reduce(0) { $0 + Int($1.asciiValue!) }
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue ?? 0)
}
}
return sum
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].replacingOccurrences(of: "apples", with: "")) ?? 0
let oranges = Int(fruits[1].replacingOccurrences(of: "oranges", with: "")) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].replacingOccurrences(of: "apples", with: "")) ?? 0
let oranges = Int(fruits[1].replacingOccurrences(of: "oranges", with: "")) ?? 0
return n - apples - oranges
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " and ")
let apples = Int(components[0].replacingOccurrences(of: "apples", with: "")) ?? 0
let oranges = Int(components[1].replacingOccurrences(of: "oranges", with: "")) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " and ")
let apples = Int(components[0].replacingOccurrences(of: "apples", with: "")) ?? 0
let oranges = Int(components[1].replacingOccurrences(of: "oranges", with: "")) ?? 0
return n - apples - oranges
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let numbers = s.components(separatedBy: " ").compactMap { Int($0) }
return n - numbers.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let numbers = s.components(separatedBy: " ").compactMap { Int($0) }
return n - numbers.reduce(0, +)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
var arr = s.components(separatedBy: " ")
var apples = 0
var oranges = 0
for i in 0..<arr.count {
if arr[i] == "apples" {
apples = Int(arr[i-1]) ?? 0
} else if arr[i] == "oranges" {
oranges = Int(arr[i-1]) ?? 0
}
}
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
var arr = s.components(separatedBy: " ")
var apples = 0
var oranges = 0
for i in 0..<arr.count {
if arr[i] == "apples" {
apples = Int(arr[i-1]) ?? 0
} else if arr[i] == "oranges" {
oranges = Int(arr[i-1]) ?? 0
}
}
return n - apples - oranges
}
```
var arr = s.components(separatedBy: " ") // variable 'arr' was never mutated; consider changing to 'let' constant
func fruitDistribution(s: String, n: Int) -> Int {
var countApples = 0
var countOranges = 0
let fruits = s.components(separatedBy: " ")
for fruit in fruits {
if fruit.contains("apples") {
countApples = Int(fruit.replacingOccurrences(of: "apples", with: "")) ?? 0
} else if fruit.contains("oranges") {
countOranges = Int(fruit.replacingOccurrences(of: "oranges", with: "")) ?? 0
}
}
return n - countApples - countOranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
var countApples = 0
var countOranges = 0
let fruits = s.components(separatedBy: " ")
for fruit in fruits {
if fruit.contains("apples") {
countApples = Int(fruit.replacingOccurrences(of: "apples", with: "")) ?? 0
} else if fruit.contains("oranges") {
countOranges = Int(fruit.replacingOccurrences(of: "oranges", with: "")) ?? 0
}
}
return n - countApples - countOranges
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " and ")
let apples = Int(components[0].components(separatedBy: " ")[0]) ?? 0
let oranges = Int(components[1].components(separatedBy: " ")[0]) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let components = s.components(separatedBy: " and ")
let apples = Int(components[0].components(separatedBy: " ")[0]) ?? 0
let oranges = Int(components[1].components(separatedBy: " ")[0]) ?? 0
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
let apples = Int(fruits[0]) ?? 0
let oranges = Int(fruits[3]) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " ")
let apples = Int(fruits[0]) ?? 0
let oranges = Int(fruits[3]) ?? 0
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].replacingOccurrences(of: "apples", with: "")) ?? 0
let oranges = Int(fruits[1].replacingOccurrences(of: "oranges", with: "")) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].replacingOccurrences(of: "apples", with: "")) ?? 0
let oranges = Int(fruits[1].replacingOccurrences(of: "oranges", with: "")) ?? 0
return n - apples - oranges
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
var countApples = 0
var countOranges = 0
let fruits = s.components(separatedBy: " ")
for fruit in fruits {
if fruit.contains("apples") {
countApples = Int(fruit.replacingOccurrences(of: "apples", with: "")) ?? 0
} else if fruit.contains("oranges") {
countOranges = Int(fruit.replacingOccurrences(of: "oranges", with: "")) ?? 0
}
}
return n - countApples - countOranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
var countApples = 0
var countOranges = 0
let fruits = s.components(separatedBy: " ")
for fruit in fruits {
if fruit.contains("apples") {
countApples = Int(fruit.replacingOccurrences(of: "apples", with: "")) ?? 0
} else if fruit.contains("oranges") {
countOranges = Int(fruit.replacingOccurrences(of: "oranges", with: "")) ?? 0
}
}
return n - countApples - countOranges
}
```
// XCTAssertTrue failed
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].replacingOccurrences(of: "apples", with: "")) ?? 0
let oranges = Int(fruits[1].replacingOccurrences(of: "oranges", with: "")) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let fruits = s.components(separatedBy: " and ")
let apples = Int(fruits[0].replacingOccurrences(of: "apples", with: "")) ?? 0
let oranges = Int(fruits[1].replacingOccurrences(of: "oranges", with: "")) ?? 0
return n - apples - oranges
}
```
// XCTAssertTrue failed
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
```
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
```
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex != -1 {
result.append(smallestEven)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
if smallestEvenIndex != -1 {
result.append(smallestEven)
result.append(smallestEvenIndex)
}
return result
}
```
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex != -1 {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex != -1 {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex != -1 {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex != -1 {
return [smallestEvenValue, smallestEvenIndex]
} else {
return []
}
}
```
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
```
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
```
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenValue != Int.max {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
```
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
}
if smallestEvenIndex != -1 {
result.append(smallestEven)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEven = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 {
if value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
}
if smallestEvenIndex != -1 {
result.append(smallestEven)
result.append(smallestEvenIndex)
}
return result
}
```
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex != -1 {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var result = [Int]()
var smallestEvenValue = Int.max
var smallestEvenIndex = -1
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
if smallestEvenIndex != -1 {
result.append(smallestEvenValue)
result.append(smallestEvenIndex)
}
return result
}
```
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
var maxNum = -1
for (num, count) in dict {
if num <= count {
maxNum = max(maxNum, num)
}
}
return maxNum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
var maxNum = -1
for (num, count) in dict {
if num <= count {
maxNum = max(maxNum, num)
}
}
return maxNum
}
```
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
var maxNum = -1
for (num, count) in dict {
if num <= count {
maxNum = max(maxNum, num)
}
}
return maxNum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
var maxNum = -1
for (num, count) in dict {
if num <= count {
maxNum = max(maxNum, num)
}
}
return maxNum
}
```
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
let sortedDict = dict.sorted { $0.key < $1.key }
for (key, value) in sortedDict {
if value >= key {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
let sortedDict = dict.sorted { $0.key < $1.key }
for (key, value) in sortedDict {
if value >= key {
return key
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequencyDict = [Int: Int]()
for num in lst {
if let freq = frequencyDict[num] {
frequencyDict[num] = freq + 1
} else {
frequencyDict[num] = 1
}
}
let sortedKeys = frequencyDict.keys.sorted(by: >)
for key in sortedKeys {
if key <= frequencyDict[key]! {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencyDict = [Int: Int]()
for num in lst {
if let freq = frequencyDict[num] {
frequencyDict[num] = freq + 1
} else {
frequencyDict[num] = 1
}
}
let sortedKeys = frequencyDict.keys.sorted(by: >)
for key in sortedKeys {
if key <= frequencyDict[key]! {
return key
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
let sorted = dict.sorted { $0.key > $1.key }
for (key, value) in sorted {
if value >= key {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
let sorted = dict.sorted { $0.key > $1.key }
for (key, value) in sorted {
if value >= key {
return key
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var frequencyDict = [Int: Int]()
for num in lst {
if let freq = frequencyDict[num] {
frequencyDict[num] = freq + 1
} else {
frequencyDict[num] = 1
}
}
let sortedKeys = frequencyDict.keys.sorted(by: >)
for key in sortedKeys {
if key <= frequencyDict[key]! {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequencyDict = [Int: Int]()
for num in lst {
if let freq = frequencyDict[num] {
frequencyDict[num] = freq + 1
} else {
frequencyDict[num] = 1
}
}
let sortedKeys = frequencyDict.keys.sorted(by: >)
for key in sortedKeys {
if key <= frequencyDict[key]! {
return key
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sorted = frequency.sorted { $0.key > $1.key }
for (num, count) in sorted {
if count >= num {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
if let count = frequency[num] {
frequency[num] = count + 1
} else {
frequency[num] = 1
}
}
let sorted = frequency.sorted { $0.key > $1.key }
for (num, count) in sorted {
if count >= num {
return num
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
var maxNum = -1
for (key, value) in dict {
if key <= value && key > maxNum {
maxNum = key
}
}
return maxNum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
var maxNum = -1
for (key, value) in dict {
if key <= value && key > maxNum {
maxNum = key
}
}
return maxNum
}
```
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
let sortedKeys = dict.keys.sorted(by: >)
for key in sortedKeys {
if key <= dict[key]! {
return key
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for num in lst {
if let count = dict[num] {
dict[num] = count + 1
} else {
dict[num] = 1
}
}
let sortedKeys = dict.keys.sorted(by: >)
for key in sortedKeys {
if key <= dict[key]! {
return key
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for i in lst {
if let count = dict[i] {
dict[i] = count + 1
} else {
dict[i] = 1
}
}
var max = -1
for (key, value) in dict {
if key <= value {
max = max > key ? max : key
}
}
return max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var dict = [Int: Int]()
for i in lst {
if let count = dict[i] {
dict[i] = count + 1
} else {
dict[i] = 1
}
}
var max = -1
for (key, value) in dict {
if key <= value {
max = max > key ? max : key
}
}
return max
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var sortedList = lst.sorted()
var minIndex = 0
var maxIndex = sortedList.count - 1
var isMin = true
while minIndex <= maxIndex {
if isMin {
result.append(sortedList[minIndex])
minIndex += 1
} else {
result.append(sortedList[maxIndex])
maxIndex -= 1
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var sortedList = lst.sorted()
var minIndex = 0
var maxIndex = sortedList.count - 1
var isMin = true
while minIndex <= maxIndex {
if isMin {
result.append(sortedList[minIndex])
minIndex += 1
} else {
result.append(sortedList[maxIndex])
maxIndex -= 1
}
isMin = !isMin
}
return result
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var minIndex = 0
var maxIndex = sortedList.count - 1
var isMin = true
while minIndex <= maxIndex {
if isMin {
result.append(sortedList[minIndex])
minIndex += 1
} else {
result.append(sortedList[maxIndex])
maxIndex -= 1
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var minIndex = 0
var maxIndex = sortedList.count - 1
var isMin = true
while minIndex <= maxIndex {
if isMin {
result.append(sortedList[minIndex])
minIndex += 1
} else {
result.append(sortedList[maxIndex])
maxIndex -= 1
}
isMin = !isMin
}
return result
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var isMin = true
while !sortedList.isEmpty {
if isMin {
result.append(sortedList.removeFirst())
} else {
result.append(sortedList.removeLast())
}
isMin = !isMin
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var minIndex = 0
var maxIndex = sortedList.count - 1
var isMin = true
while minIndex <= maxIndex {
if isMin {
result.append(sortedList[minIndex])
minIndex += 1
} else {
result.append(sortedList[maxIndex])
maxIndex -= 1
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result = [Int]()
var sortedList = lst.sorted()
var minIndex = 0
var maxIndex = sortedList.count - 1
var isMin = true
while minIndex <= maxIndex {
if isMin {
result.append(sortedList[minIndex])
minIndex += 1
} else {
result.append(sortedList[maxIndex])
maxIndex -= 1
}
isMin = !isMin
}
return result
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var sortedList = lst.sorted()
var minIndex = 0
var maxIndex = sortedList.count - 1
var isMin = true
while minIndex <= maxIndex {
if isMin {
result.append(sortedList[minIndex])
minIndex += 1
} else {
result.append(sortedList[maxIndex])
maxIndex -= 1
}
isMin = !isMin
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var result: [Int] = []
var sortedList = lst.sorted()
var minIndex = 0
var maxIndex = sortedList.count - 1
var isMin = true
while minIndex <= maxIndex {
if isMin {
result.append(sortedList[minIndex])
minIndex += 1
} else {
result.append(sortedList[maxIndex])
maxIndex -= 1
}
isMin = !isMin
}
return result
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
return (sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))).rounded(toPlaces: 2)
} else {
return -1
}
}
extension Double {
func rounded(toPlaces places:Int) -> Double {
let divisor = pow(10.0, Double(places))
return (self * divisor).rounded() / divisor
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] > sides[2] {
let s = Double(sides[0] + sides[1] + sides[2]) / 2
return (sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))).rounded(toPlaces: 2)
} else {
return -1
}
}
extension Double {
func rounded(toPlaces places:Int) -> Double {
let divisor = pow(10.0, Double(places))
return (self * divisor).rounded() / divisor
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
if sides[0] + sides[1] <= sides[2] {
return -1
}
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isPalindrome = q == q.reversed()
return isPalindrome && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isPalindrome = q == q.reversed()
return isPalindrome && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return sum <= w && isBalanced
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return sum <= w && isBalanced
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var left = 0
var right = arr.count - 1
var changes = 0
while left < right {
if arr[left] != arr[right] {
changes += 1
}
left += 1
right -= 1
}
return changes
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 <= totalChars2 {
return lst1
} else {
return lst2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 <= totalChars2 {
return lst1
} else {
return lst2
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 <= totalChars2 {
return lst1
} else {
return lst2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 <= totalChars2 {
return lst1
} else {
return lst2
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
return totalChars1 <= totalChars2 ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
return totalChars1 <= totalChars2 ? lst1 : lst2
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
if total1 <= total2 {
return lst1
} else {
return lst2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
if total1 <= total2 {
return lst1
} else {
return lst2
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
return total1 <= total2 ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
return total1 <= total2 ? lst1 : lst2
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
return totalChars1 <= totalChars2 ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
return totalChars1 <= totalChars2 ? lst1 : lst2
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
return total1 <= total2 ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
return total1 <= total2 ? lst1 : lst2
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 <= totalChars2 {
return lst1
} else {
return lst2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 <= totalChars2 {
return lst1
} else {
return lst2
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
if total1 < total2 {
return lst1
} else if total1 > total2 {
return lst2
} else {
return lst1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let total1 = lst1.reduce(0) { $0 + $1.count }
let total2 = lst2.reduce(0) { $0 + $1.count }
if total1 < total2 {
return lst1
} else if total1 > total2 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let totalChars1 = lst1.reduce(0) { $0 + $1.count }
let totalChars2 = lst2.reduce(0) { $0 + $1.count }
if totalChars1 < totalChars2 {
return lst1
} else if totalChars1 > totalChars2 {
return lst2
} else {
return lst1
}
}
```
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
count += 1
num /= i
i = 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
count += 1
num /= i
i = 1
}
}
return count == 3
}
```
i = 1 // cannot assign to value: 'i' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
count += 1
num /= i
i -= 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
count += 1
num /= i
i -= 1
}
}
return count == 3
}
```
i -= 1 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var primes = [Int]()
var num = a
for i in 2...num {
if num % i == 0 {
primes.append(i)
num /= i
i -= 1
}
}
if primes.count != 3 {
return false
}
for prime in primes {
var isPrime = true
for i in 2..<prime {
if prime % i == 0 {
isPrime = false
break
}
}
if !isPrime {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var primes = [Int]()
var num = a
for i in 2...num {
if num % i == 0 {
primes.append(i)
num /= i
i -= 1
}
}
if primes.count != 3 {
return false
}
for prime in primes {
var isPrime = true
for i in 2..<prime {
if prime % i == 0 {
isPrime = false
break
}
}
if !isPrime {
return false
}
}
return true
}
```
i -= 1 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
count += 1
num /= i
i = 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
count += 1
num /= i
i = 1
}
}
return count == 3
}
```
i = 1 // cannot assign to value: 'i' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2...num {
if num % i == 0 {
count += 1
num /= i
i -= 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2...num {
if num % i == 0 {
count += 1
num /= i
i -= 1
}
}
return count == 3
}
```
i -= 1 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
count += 1
num /= i
i -= 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
count += 1
num /= i
i -= 1
}
}
return count == 3
}
```
i -= 1 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var isPrime = false
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
isPrime = true
num = num / i
count += 1
} else {
isPrime = false
}
if isPrime == false {
count = 0
}
if count == 3 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var isPrime = false
var count = 0
var num = a
for i in 2..<num {
if num % i == 0 {
isPrime = true
num = num / i
count += 1
} else {
isPrime = false
}
if isPrime == false {
count = 0
}
if count == 3 {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2...num {
while num % i == 0 {
num /= i
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2...num {
while num % i == 0 {
num /= i
count += 1
}
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2...num {
while num % i == 0 {
count += 1
num /= i
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2...num {
while num % i == 0 {
count += 1
num /= i
}
}
return count == 3
}
```
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2...num {
if num % i == 0 {
count += 1
num /= i
i -= 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var count = 0
var num = a
for i in 2...num {
if num % i == 0 {
count += 1
num /= i
i -= 1
}
}
return count == 3
}
```
i -= 1 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
var power = n
while power <= x {
if power == x {
return true
}
power *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
var result = 1
while result <= x {
if result == x {
return true
}
result *= n
}
return false
}
```
func iscube(a: Int) -> Bool {
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
if a == 0 { return true }
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 { return true }
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
if a < 0 {
return iscube(a: -a)
}
if a == 0 {
return true
}
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a < 0 {
return iscube(a: -a)
}
if a == 0 {
return true
}
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
if a < 0 {
return iscube(a: -a)
}
let root = Int(pow(Double(a), 1.0 / 3.0))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a < 0 {
return iscube(a: -a)
}
let root = Int(pow(Double(a), 1.0 / 3.0))
return root * root * root == a
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
if a == 0 { return true }
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 { return true }
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
if a == 0 { return true }
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 { return true }
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
if a == 0 { return true }
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 { return true }
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let root = Int(pow(Double(a), 1.0/3.0))
return root * root * root == a
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func iscube(a: Int) -> Bool {
if a < 0 {
return iscube(a: -a)
}
if a == 0 {
return true
}
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a < 0 {
return iscube(a: -a)
}
if a == 0 {
return true
}
let root = Int(sqrt(Double(a)))
return root * root * root == a
}
```
// XCTAssertTrue failed
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let hexDigits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"]
let primes = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if hexDigits.contains(String(char)) && primes.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexDigits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"]
let primes = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if hexDigits.contains(String(char)) && primes.contains(String(char)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if primes.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if primes.contains(String(char)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let hexDigits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"]
let primeHexDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeHexDigits.contains(String(digit)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexDigits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"]
let primeHexDigits = ["2", "3", "5", "7", "B", "D"]
var count = 0
for digit in num {
if primeHexDigits.contains(String(digit)) {
count += 1
}
}
return count
}
```
let hexDigits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"] // initialization of immutable value 'hexDigits' was never used; consider replacing with assignment to '_' or removing it
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.filter { primes.contains(String($0)) }.count
}
```
func hexKey(num: String) -> Int {
var count = 0
let primes = ["2", "3", "5", "7", "B", "D"]
for digit in num {
if primes.contains(String(digit)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var count = 0
let primes = ["2", "3", "5", "7", "B", "D"]
for digit in num {
if primes.contains(String(digit)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
let primes = ["2", "3", "5", "7", "B", "D"]
for digit in num {
if primes.contains(String(digit)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var count = 0
let primes = ["2", "3", "5", "7", "B", "D"]
for digit in num {
if primes.contains(String(digit)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
let hexDigits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"]
let primes = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if hexDigits.contains(String(char)) && primes.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let hexDigits = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F"]
let primes = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if hexDigits.contains(String(char)) && primes.contains(String(char)) {
count += 1
}
}
return count
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db" + binary + "db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db" + binary + "db"
}
```
func decimalToBinary(decimal: Int) -> String {
return "db" + String(decimal, radix: 2) + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
return "db" + String(decimal, radix: 2) + "db"
}
```
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
let index1 = s.index(s.startIndex, offsetBy: i)
let index2 = s.index(s.startIndex, offsetBy: i+1)
let index3 = s.index(s.startIndex, offsetBy: i+2)
if s[index1] == s[index2] || s[index1] == s[index3] || s[index2] == s[index3] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
let index1 = s.index(s.startIndex, offsetBy: i)
let index2 = s.index(s.startIndex, offsetBy: i+1)
let index3 = s.index(s.startIndex, offsetBy: i+2)
if s[index1] == s[index2] || s[index1] == s[index3] || s[index2] == s[index3] {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 { return false }
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count-2 {
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] {
return false
}
}
return true
}
```
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
if s[i] == s[i+1] || s[i] == s[i+2] || s[i+1] == s[i+2] { // 'subscript(_:)' is unavailable: cannot subscript String with an Int, use a String.Index instead.
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7...4.0:
letterGrades.append("A")
case 3.3...3.7:
letterGrades.append("A-")
case 3.0...3.3:
letterGrades.append("B+")
case 2.7...3.0:
letterGrades.append("B")
case 2.3...2.7:
letterGrades.append("B-")
case 2.0...2.3:
letterGrades.append("C+")
case 1.7...2.0:
letterGrades.append("C")
case 1.3...1.7:
letterGrades.append("C-")
case 1.0...1.3:
letterGrades.append("D+")
case 0.7...1.0:
letterGrades.append("D")
case 0.0...0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7...4.0:
letterGrades.append("A")
case 3.3...3.7:
letterGrades.append("A-")
case 3.0...3.3:
letterGrades.append("B+")
case 2.7...3.0:
letterGrades.append("B")
case 2.3...2.7:
letterGrades.append("B-")
case 2.0...2.3:
letterGrades.append("C+")
case 1.7...2.0:
letterGrades.append("C")
case 1.3...1.7:
letterGrades.append("C-")
case 1.0...1.3:
letterGrades.append("D+")
case 0.7...1.0:
letterGrades.append("D")
case 0.0...0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
switch grade {
case 4.0:
letterGrades.append("A+")
case 3.7..<4.0:
letterGrades.append("A")
case 3.3..<3.7:
letterGrades.append("A-")
case 3.0..<3.3:
letterGrades.append("B+")
case 2.7..<3.0:
letterGrades.append("B")
case 2.3..<2.7:
letterGrades.append("B-")
case 2.0..<2.3:
letterGrades.append("C+")
case 1.7..<2.0:
letterGrades.append("C")
case 1.3..<1.7:
letterGrades.append("C-")
case 1.0..<1.3:
letterGrades.append("D+")
case 0.7..<1.0:
letterGrades.append("D")
case 0.0..<0.7:
letterGrades.append("D-")
default:
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...9 {
if i == 1 {
count += 9 * Int(pow(10.0, Double(n - 1)))
} else {
count += 2 * Int(pow(10.0, Double(n - 1)))
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
var count = 0
for i in 1...9 {
if i == 1 {
count += 9 * Int(pow(10.0, Double(n - 1)))
} else {
count += 2 * Int(pow(10.0, Double(n - 1)))
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n)))
let nonOneStart = Int(pow(9.0, Double(n - 1)))
return total - nonOneStart * 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n)))
let nonOneStart = Int(pow(9.0, Double(n - 1)))
return total - nonOneStart * 2
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
}
let total = Int(pow(10.0, Double(n)))
let startsOne = Int(pow(9.0, Double(n - 1)))
let endsOne = total - startsOne
return startsOne + endsOne
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
}
let total = Int(pow(10.0, Double(n)))
let startsOne = Int(pow(9.0, Double(n - 1)))
let endsOne = total - startsOne
return startsOne + endsOne
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n)))
let nonOneStart = Int(pow(9.0, Double(n - 1)))
return total - nonOneStart * 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n)))
let nonOneStart = Int(pow(9.0, Double(n - 1)))
return total - nonOneStart * 2
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
}
let total = Int(pow(10.0, Double(n)))
let startsOne = Int(pow(9.0, Double(n - 1)))
let endsOne = total - startsOne
return startsOne + endsOne
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 2
}
let total = Int(pow(10.0, Double(n)))
let startsOne = Int(pow(9.0, Double(n - 1)))
let endsOne = total - startsOne
return startsOne + endsOne
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let starts = Int(pow(9.0, Double(n - 1)))
let ends = Int(pow(9.0, Double(n - 1)))
return total - starts - ends
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let starts = Int(pow(9.0, Double(n - 1)))
let ends = Int(pow(9.0, Double(n - 1)))
return total - starts - ends
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let startOne = Int(pow(9.0, Double(n - 1)))
let endOne = Int(pow(9.0, Double(n - 1)))
return total - startOne - endOne
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let startOne = Int(pow(9.0, Double(n - 1)))
let endOne = Int(pow(9.0, Double(n - 1)))
return total - startOne - endOne
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let startsOne = Int(pow(9.0, Double(n - 1)))
let endsOne = Int(pow(9.0, Double(n - 1)))
return total - startsOne - endsOne + 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let startsOne = Int(pow(9.0, Double(n - 1)))
let endsOne = Int(pow(9.0, Double(n - 1)))
return total - startsOne - endsOne + 1
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let starts = Int(pow(9.0, Double(n - 1)))
let ends = Int(pow(9.0, Double(n - 1)))
return total - starts - ends + 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let starts = Int(pow(9.0, Double(n - 1)))
let ends = Int(pow(9.0, Double(n - 1)))
return total - starts - ends + 2
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let starts = Int(pow(9.0, Double(n - 1)))
let ends = Int(pow(9.0, Double(n - 1)))
return total - starts - ends
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 { return 2 }
let total = Int(pow(10.0, Double(n))) - 2
let starts = Int(pow(9.0, Double(n - 1)))
let ends = Int(pow(9.0, Double(n - 1)))
return total - starts - ends
}
```
// XCTAssertTrue failed
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var num = N
var result = ""
while num > 0 {
result = String(num % 2) + result
num = num / 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var num = N
var result = ""
while num > 0 {
result = String(num % 2) + result
num = num / 2
}
return result
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
return String(N, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
return String(N, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var num = N
while num > 0 {
binary = String(num % 2) + binary
num /= 2
}
return binary
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var num = N
while num > 0 {
binary = String(num % 2) + binary
num /= 2
}
return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 2
num /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var num = N
while num > 0 {
binary = String(num % 2) + binary
num = num / 2
}
return binary
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var num = N
while num > 0 {
binary = String(num % 2) + binary
num = num / 2
}
return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var num = N
while num > 0 {
binary = String(num % 2) + binary
num /= 2
}
return binary
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var binary = ""
var num = N
while num > 0 {
binary = String(num % 2) + binary
num /= 2
}
return binary
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 10
num /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 10
num /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 2
n /= 2
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 10
num /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 10
num /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
return lst.enumerated().filter { $0.offset % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
return lst.enumerated().filter { $0.offset % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +)
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for i in stride(from: 1, to: lst.count, by: 2) {
if lst[i] % 2 == 0 {
sum += lst[i]
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
return lst.enumerated().filter { $0.offset % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
return lst.enumerated().filter { $0.offset % 2 != 0 && $0.element % 2 == 0 }.map { $0.element }.reduce(0, +)
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
let orderedWords = words.map { String($0.sorted()) }
return orderedWords.joined(separator: " ")
}
```
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = String(word.sorted())
result += sortedWord + " "
}
return String(result.dropLast())
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, column) in row.enumerated() {
if column == x {
result.append((rowIndex, columnIndex))
}
}
}
result.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, column) in row.enumerated() {
if column == x {
result.append((rowIndex, columnIndex))
}
}
}
result.sort { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (colIndex, col) in row.enumerated() {
if col == x {
result.append((rowIndex, colIndex))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (colIndex, col) in row.enumerated() {
if col == x {
result.append((rowIndex, colIndex))
}
}
}
result.sort { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, num) in row.enumerated() {
if num == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, num) in row.enumerated() {
if num == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, column) in row.enumerated() {
if column == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, column) in row.enumerated() {
if column == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (row, array) in lst.enumerated() {
for (column, value) in array.enumerated() {
if value == x {
result.append((row, column))
}
}
}
result.sort { $0.0 < $1.0 }
for i in 0..<result.count {
for j in i+1..<result.count {
if result[i].0 == result[j].0 {
if result[i].1 < result[j].1 {
let temp = result[i]
result[i] = result[j]
result[j] = temp
}
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (row, array) in lst.enumerated() {
for (column, value) in array.enumerated() {
if value == x {
result.append((row, column))
}
}
}
result.sort { $0.0 < $1.0 }
for i in 0..<result.count {
for j in i+1..<result.count {
if result[i].0 == result[j].0 {
if result[i].1 < result[j].1 {
let temp = result[i]
result[i] = result[j]
result[j] = temp
}
}
}
}
return result
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, column) in row.enumerated() {
if column == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result = [(Int, Int)]()
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, column) in row.enumerated() {
if column == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func sortArray(array: [Int]) -> [Int] {
var newArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
newArray.sort(by: >)
} else {
newArray.sort(by: <)
}
return newArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var newArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
newArray.sort(by: >)
} else {
newArray.sort(by: <)
}
return newArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort(by: <)
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort(by: <)
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var newArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
newArray.sort(by: >)
} else {
newArray.sort(by: <)
}
return newArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var newArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
newArray.sort(by: >)
} else {
newArray.sort(by: <)
}
return newArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort(by: <)
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort(by: <)
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var newArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
newArray.sort(by: >)
} else {
newArray.sort(by: <)
}
return newArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var newArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
newArray.sort(by: >)
} else {
newArray.sort(by: <)
}
return newArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort(by: <)
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort(by: <)
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort(by: <)
}
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var sortedArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
sortedArray.sort(by: >)
} else {
sortedArray.sort(by: <)
}
return sortedArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var newArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
newArray.sort(by: >)
} else {
newArray.sort(by: <)
}
return newArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var newArray = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
newArray.sort(by: >)
} else {
newArray.sort(by: <)
}
return newArray
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
result.sort(by: >)
} else {
result.sort(by: <)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
result.sort(by: >)
} else {
result.sort(by: <)
}
return result
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
result.sort(by: >)
} else {
result.sort(by: <)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
var result = array
let sum = array.first! + array.last!
if sum % 2 == 0 {
result.sort(by: >)
} else {
result.sort(by: <)
}
return result
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
encryptedString += String(newChar)
} else {
encryptedString += String(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
encryptedString += String(newChar)
} else {
encryptedString += String(char)
}
}
return encryptedString
}
```
if let index = alphabet.firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
encryptedString += String(newChar)
} else {
encryptedString += String(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
encryptedString += String(newChar)
} else {
encryptedString += String(char)
}
}
return encryptedString
}
```
if let index = alphabet.firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var result = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
result += newChar
} else {
result += char
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var result = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
result += newChar
} else {
result += char
}
}
return result
}
```
if let index = alphabet.firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
result += char // cannot convert value of type 'Character' to expected argument type 'String'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
encryptedString += String(newChar)
} else {
encryptedString += String(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
encryptedString += String(newChar)
} else {
encryptedString += String(char)
}
}
return encryptedString
}
```
if let index = alphabet.firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 16, limitedBy: alphabet.endIndex) ?? alphabet.startIndex
let newChar = alphabet[newIndex]
encryptedString += newChar
} else {
encryptedString += char
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 16, limitedBy: alphabet.endIndex) ?? alphabet.startIndex
let newChar = alphabet[newIndex]
encryptedString += newChar
} else {
encryptedString += char
}
}
return encryptedString
}
```
if let index = alphabet.firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
encryptedString += char // cannot convert value of type 'Character' to expected argument type 'String'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = String(alphabet.dropFirst(4) + alphabet.prefix(4))
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let shiftedIndex = shiftedAlphabet.index(shiftedAlphabet.startIndex, offsetBy: alphabet.distance(from: alphabet.startIndex, to: index))
encryptedString.append(shiftedAlphabet[shiftedIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = String(alphabet.dropFirst(4) + alphabet.prefix(4))
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let shiftedIndex = shiftedAlphabet.index(shiftedAlphabet.startIndex, offsetBy: alphabet.distance(from: alphabet.startIndex, to: index))
encryptedString.append(shiftedAlphabet[shiftedIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = String(alphabet.dropFirst(4) + alphabet.prefix(4))
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let shiftedIndex = shiftedAlphabet.index(shiftedAlphabet.startIndex, offsetBy: alphabet.distance(from: alphabet.startIndex, to: index))
let shiftedChar = shiftedAlphabet[shiftedIndex]
encryptedString += shiftedChar.isUppercase ? String(shiftedChar).uppercased() : String(shiftedChar).lowercased()
} else {
encryptedString += char
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = String(alphabet.dropFirst(4) + alphabet.prefix(4))
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let shiftedIndex = shiftedAlphabet.index(shiftedAlphabet.startIndex, offsetBy: alphabet.distance(from: alphabet.startIndex, to: index))
let shiftedChar = shiftedAlphabet[shiftedIndex]
encryptedString += shiftedChar.isUppercase ? String(shiftedChar).uppercased() : String(shiftedChar).lowercased()
} else {
encryptedString += char
}
}
return encryptedString
}
```
if let index = alphabet.firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
encryptedString += char // cannot convert value of type 'Character' to expected argument type 'String'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
encryptedString += String(newChar)
} else {
encryptedString += String(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let newIndex = alphabet.index(index, offsetBy: 4)
let newChar = alphabet[newIndex]
encryptedString += String(newChar)
} else {
encryptedString += String(char)
}
}
return encryptedString
}
```
if let index = alphabet.firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = String(alphabet.dropFirst(4) + alphabet.prefix(4))
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let shiftedIndex = shiftedAlphabet.index(shiftedAlphabet.startIndex, offsetBy: alphabet.distance(from: alphabet.startIndex, to: index))
let shiftedChar = shiftedAlphabet[shiftedIndex]
encryptedString += shiftedChar.isUppercase ? String(shiftedChar).uppercased() : String(shiftedChar).lowercased()
} else {
encryptedString += char
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = String(alphabet.dropFirst(4) + alphabet.prefix(4))
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char.lowercased()) {
let shiftedIndex = shiftedAlphabet.index(shiftedAlphabet.startIndex, offsetBy: alphabet.distance(from: alphabet.startIndex, to: index))
let shiftedChar = shiftedAlphabet[shiftedIndex]
encryptedString += shiftedChar.isUppercase ? String(shiftedChar).uppercased() : String(shiftedChar).lowercased()
} else {
encryptedString += char
}
}
return encryptedString
}
```
if let index = alphabet.firstIndex(of: char.lowercased()) { // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
encryptedString += char // cannot convert value of type 'Character' to expected argument type 'String'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = String(alphabet.dropFirst(4) + alphabet.prefix(4))
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let shiftedIndex = shiftedAlphabet.index(shiftedAlphabet.startIndex, offsetBy: alphabet.distance(from: alphabet.startIndex, to: index))
encryptedString.append(shiftedAlphabet[shiftedIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = String(alphabet.dropFirst(4) + alphabet.prefix(4))
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let shiftedIndex = shiftedAlphabet.index(shiftedAlphabet.startIndex, offsetBy: alphabet.distance(from: alphabet.startIndex, to: index))
encryptedString.append(shiftedAlphabet[shiftedIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
```
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest: Int?
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest ?? Int.max {
secondSmallest = num
}
}
return secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest: Int?
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest ?? Int.max {
secondSmallest = num
}
}
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard !lst.isEmpty else { return nil }
var smallest = Int.max
var secondSmallest: Int?
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < smallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard !lst.isEmpty else { return nil }
var smallest = Int.max
var secondSmallest: Int?
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < smallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard !lst.isEmpty else { return nil }
let sortedList = Array(Set(lst)).sorted()
guard sortedList.count > 1 else { return nil }
return sortedList[1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard !lst.isEmpty else { return nil }
let sortedList = Array(Set(lst)).sorted()
guard sortedList.count > 1 else { return nil }
return sortedList[1]
}
```
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
```
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest: Int?
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest ?? Int.max {
secondSmallest = num
}
}
return secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
var smallest = Int.max
var secondSmallest: Int?
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest ?? Int.max {
secondSmallest = num
}
}
return secondSmallest
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
```
func nextSmallest(lst: [Int]) -> Int? {
guard !lst.isEmpty else { return nil }
var sortedList = lst.sorted()
guard let smallest = sortedList.first, let secondSmallest = sortedList.dropFirst().first, smallest != secondSmallest else { return nil }
return secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard !lst.isEmpty else { return nil }
var sortedList = lst.sorted()
guard let smallest = sortedList.first, let secondSmallest = sortedList.dropFirst().first, smallest != secondSmallest else { return nil }
return secondSmallest
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
func nextSmallest(lst: [Int]) -> Int? {
guard !lst.isEmpty else { return nil }
var sortedList = lst.sorted()
var smallest = sortedList[0]
var secondSmallest: Int?
for num in sortedList {
if num > smallest {
secondSmallest = num
break
}
}
return secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard !lst.isEmpty else { return nil }
var sortedList = lst.sorted()
var smallest = sortedList[0]
var secondSmallest: Int?
for num in sortedList {
if num > smallest {
secondSmallest = num
break
}
}
return secondSmallest
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
var smallest = sortedList[0] // variable 'smallest' was never mutated; consider changing to 'let' constant
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var smallest = Int.max
var secondSmallest = Int.max
for num in lst {
if num < smallest {
secondSmallest = smallest
smallest = num
} else if num < secondSmallest && num != smallest {
secondSmallest = num
}
}
return secondSmallest == Int.max ? nil : secondSmallest
}
```
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".", whereSeparator: { $0.isPunctuation })
let boredoms = sentences.filter { $0.hasPrefix("I") }
return boredoms.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".", whereSeparator: { $0.isPunctuation })
let boredoms = sentences.filter { $0.hasPrefix("I") }
return boredoms.count
}
```
let sentences = S.split(separator: ".", whereSeparator: { $0.isPunctuation }) // extra argument 'separator' in call
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".", whereSeparator: { $0.isLetter })
let boredoms = sentences.filter { $0.hasPrefix("I") }
return boredoms.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.split(separator: ".", whereSeparator: { $0.isLetter })
let boredoms = sentences.filter { $0.hasPrefix("I") }
return boredoms.count
}
```
let sentences = S.split(separator: ".", whereSeparator: { $0.isLetter }) // extra argument 'separator' in call
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var count = 0
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if words.count > 0 && words[0] == "I" {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var count = 0
for sentence in sentences {
let words = sentence.components(separatedBy: " ")
if words.count > 0 && words[0] == "I" {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var count = 0
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var count = 0
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var count = 0
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var count = 0
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var count = 0
for sentence in sentences {
let trimmedSentence = sentence.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedSentence.hasPrefix("I") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: [".", "?", "!"])
var count = 0
for sentence in sentences {
let trimmedSentence = sentence.trimmingCharacters(in: .whitespacesAndNewlines)
if trimmedSentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.trimmingCharacters(in: .whitespaces).lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let intX = Int(x)
let intY = Int(y)
let intZ = Int(z)
if intX == nil || intY == nil || intZ == nil {
return false
}
let sum = intX! + intY! + intZ!
return intX == sum - intY! - intZ! || intY == sum - intX! - intZ! || intZ == sum - intX! - intY!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let intX = Int(x)
let intY = Int(y)
let intZ = Int(z)
if intX == nil || intY == nil || intZ == nil {
return false
}
let sum = intX! + intY! + intZ!
return intX == sum - intY! - intZ! || intY == sum - intX! - intZ! || intZ == sum - intX! - intY!
}
```
if intX == nil || intY == nil || intZ == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if intX == nil || intY == nil || intZ == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
if intX == nil || intY == nil || intZ == nil { // comparing non-optional value of type 'Int' to 'nil' always returns false
let sum = intX! + intY! + intZ! // cannot force unwrap value of non-optional type 'Int'
let sum = intX! + intY! + intZ! // cannot force unwrap value of non-optional type 'Int'
let sum = intX! + intY! + intZ! // cannot force unwrap value of non-optional type 'Int'
return intX == sum - intY! - intZ! || intY == sum - intX! - intZ! || intZ == sum - intX! - intY! // cannot force unwrap value of non-optional type 'Int'
return intX == sum - intY! - intZ! || intY == sum - intX! - intZ! || intZ == sum - intX! - intY! // cannot force unwrap value of non-optional type 'Int'
return intX == sum - intY! - intZ! || intY == sum - intX! - intZ! || intZ == sum - intX! - intY! // cannot force unwrap value of non-optional type 'Int'
return intX == sum - intY! - intZ! || intY == sum - intX! - intZ! || intZ == sum - intX! - intY! // cannot force unwrap value of non-optional type 'Int'
return intX == sum - intY! - intZ! || intY == sum - intX! - intZ! || intZ == sum - intX! - intY! // cannot force unwrap value of non-optional type 'Int'
return intX == sum - intY! - intZ! || intY == sum - intX! - intZ! || intZ == sum - intX! - intY! // cannot force unwrap value of non-optional type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x)))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x)))
}
```
return (Int(sum) == sum) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x))) // cannot convert value of type 'Double' to expected argument type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum && (x == sum - y - z || y == sum - x - z || z == sum - x - y))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum && (x == sum - y - z || y == sum - x - z || z == sum - x - y))
}
```
return (Int(sum) == sum && (x == sum - y - z || y == sum - x - z || z == sum - x - y)) // cannot convert value of type 'Double' to expected argument type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum && (x == sum - y - z || y == sum - x - z || z == sum - x - y))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum && (x == sum - y - z || y == sum - x - z || z == sum - x - y))
}
```
return (Int(sum) == sum && (x == sum - y - z || y == sum - x - z || z == sum - x - y)) // cannot convert value of type 'Double' to expected argument type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x)))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x)))
}
```
return (Int(sum) == sum) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x))) // cannot convert value of type 'Double' to expected argument type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if sum.truncatingRemainder(dividingBy: 1) == 0 && (x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0) {
return (x == sum - x - y) || (y == sum - x - y) || (z == sum - x - y)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if sum.truncatingRemainder(dividingBy: 1) == 0 && (x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0) {
return (x == sum - x - y) || (y == sum - x - y) || (z == sum - x - y)
}
return false
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum) && ((Int(x) == x) && (Int(y) == y) && (Int(z) == z)) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x)))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (Int(sum) == sum) && ((Int(x) == x) && (Int(y) == y) && (Int(z) == z)) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x)))
}
```
return (Int(sum) == sum) && ((Int(x) == x) && (Int(y) == y) && (Int(z) == z)) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x))) // cannot convert value of type 'Double' to expected argument type 'Int'
return (Int(sum) == sum) && ((Int(x) == x) && (Int(y) == y) && (Int(z) == z)) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x))) // cannot convert value of type 'Double' to expected argument type 'Int'
return (Int(sum) == sum) && ((Int(x) == x) && (Int(y) == y) && (Int(z) == z)) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x))) // cannot convert value of type 'Double' to expected argument type 'Int'
return (Int(sum) == sum) && ((Int(x) == x) && (Int(y) == y) && (Int(z) == z)) && ((Int(x) + Int(y) == Int(z)) || (Int(x) + Int(z) == Int(y)) || (Int(y) + Int(z) == Int(x))) // cannot convert value of type 'Double' to expected argument type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == Int(x) && y == Int(y) && z == Int(z) && (x + y == z || x + z == y || y + z == x))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == Int(x) && y == Int(y) && z == Int(z) && (x + y == z || x + z == y || y + z == x))
}
```
return (x == Int(x) && y == Int(y) && z == Int(z) && (x + y == z || x + z == y || y + z == x)) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == Int(x) && y == Int(y) && z == Int(z) && (x + y == z || x + z == y || y + z == x)) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == Int(x) && y == Int(y) && z == Int(z) && (x + y == z || x + z == y || y + z == x)) // cannot convert value of type 'Double' to expected argument type 'Int'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if sum.truncatingRemainder(dividingBy: 1) == 0 && x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
return (x == sum - x || y == sum - y || z == sum - z)
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
if sum.truncatingRemainder(dividingBy: 1) == 0 && x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
return (x == sum - x || y == sum - y || z == sum - z)
} else {
return false
}
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == Int(x) && y == Int(y) && z == Int(z) && (x == Int(sum - x - y) || y == Int(sum - x - y) || z == Int(sum - x - y)))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
let sum = x + y + z
return (x == Int(x) && y == Int(y) && z == Int(z) && (x == Int(sum - x - y) || y == Int(sum - x - y) || z == Int(sum - x - y)))
}
```
return (x == Int(x) && y == Int(y) && z == Int(z) && (x == Int(sum - x - y) || y == Int(sum - x - y) || z == Int(sum - x - y))) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == Int(x) && y == Int(y) && z == Int(z) && (x == Int(sum - x - y) || y == Int(sum - x - y) || z == Int(sum - x - y))) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == Int(x) && y == Int(y) && z == Int(z) && (x == Int(sum - x - y) || y == Int(sum - x - y) || z == Int(sum - x - y))) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == Int(x) && y == Int(y) && z == Int(z) && (x == Int(sum - x - y) || y == Int(sum - x - y) || z == Int(sum - x - y))) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == Int(x) && y == Int(y) && z == Int(z) && (x == Int(sum - x - y) || y == Int(sum - x - y) || z == Int(sum - x - y))) // cannot convert value of type 'Double' to expected argument type 'Int'
return (x == Int(x) && y == Int(y) && z == Int(z) && (x == Int(sum - x - y) || y == Int(sum - x - y) || z == Int(sum - x - y))) // cannot convert value of type 'Double' to expected argument type 'Int'
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
if char.isUppercase {
if vowels.contains(char.lowercased()) {
let index = vowels.firstIndex(of: char.lowercased())!
let encodedChar = vowels[index.advanced(by: 2)].uppercased()
encodedMessage.append(encodedChar)
} else {
let encodedChar = String(char).lowercased()
encodedMessage.append(encodedChar)
}
} else {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let encodedChar = vowels[index.advanced(by: 2)]
encodedMessage.append(encodedChar)
} else {
let encodedChar = String(char).uppercased()
encodedMessage.append(encodedChar)
}
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
if char.isUppercase {
if vowels.contains(char.lowercased()) {
let index = vowels.firstIndex(of: char.lowercased())!
let encodedChar = vowels[index.advanced(by: 2)].uppercased()
encodedMessage.append(encodedChar)
} else {
let encodedChar = String(char).lowercased()
encodedMessage.append(encodedChar)
}
} else {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let encodedChar = vowels[index.advanced(by: 2)]
encodedMessage.append(encodedChar)
} else {
let encodedChar = String(char).uppercased()
encodedMessage.append(encodedChar)
}
}
}
return encodedMessage
}
```
let index = vowels.firstIndex(of: char.lowercased())! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
let encodedChar = vowels[index.advanced(by: 2)] // value of type 'String.Index' has no member 'advanced'
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
if char.isUppercase {
if vowels.contains(char.lowercased()) {
let index = vowels.firstIndex(of: char.lowercased())!
let newChar = vowels[index.advanced(by: 2)]
encodedMessage += String(newChar).uppercased()
} else {
encodedMessage += String(char).lowercased()
}
} else {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newChar = vowels[index.advanced(by: 2)]
encodedMessage += String(newChar)
} else {
encodedMessage += String(char).uppercased()
}
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
if char.isUppercase {
if vowels.contains(char.lowercased()) {
let index = vowels.firstIndex(of: char.lowercased())!
let newChar = vowels[index.advanced(by: 2)]
encodedMessage += String(newChar).uppercased()
} else {
encodedMessage += String(char).lowercased()
}
} else {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newChar = vowels[index.advanced(by: 2)]
encodedMessage += String(newChar)
} else {
encodedMessage += String(char).uppercased()
}
}
}
return encodedMessage
}
```
let index = vowels.firstIndex(of: char.lowercased())! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
let newChar = vowels[index.advanced(by: 2)] // value of type 'String.Index' has no member 'advanced'
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isUppercase {
if char.isVowel {
let vowelIndex = "AEIOU".firstIndex(of: char)!
let nextVowel = "AEIOU"[vowelIndex.advanced(by: 2)]
encodedMessage += String(nextVowel).uppercased()
} else {
encodedMessage += String(char).lowercased()
}
} else {
if char.isVowel {
let vowelIndex = "aeiou".firstIndex(of: char)!
let nextVowel = "aeiou"[vowelIndex.advanced(by: 2)]
encodedMessage += String(nextVowel).lowercased()
} else {
encodedMessage += String(char).uppercased()
}
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isUppercase {
if char.isVowel {
let vowelIndex = "AEIOU".firstIndex(of: char)!
let nextVowel = "AEIOU"[vowelIndex.advanced(by: 2)]
encodedMessage += String(nextVowel).uppercased()
} else {
encodedMessage += String(char).lowercased()
}
} else {
if char.isVowel {
let vowelIndex = "aeiou".firstIndex(of: char)!
let nextVowel = "aeiou"[vowelIndex.advanced(by: 2)]
encodedMessage += String(nextVowel).lowercased()
} else {
encodedMessage += String(char).uppercased()
}
}
}
return encodedMessage
}
```
if char.isVowel { // value of type 'Character' has no member 'isVowel'
let nextVowel = "AEIOU"[vowelIndex.advanced(by: 2)] // value of type 'String.Index' has no member 'advanced'
if char.isVowel { // value of type 'Character' has no member 'isVowel'
let nextVowel = "aeiou"[vowelIndex.advanced(by: 2)] // value of type 'String.Index' has no member 'advanced'
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
if char.isUppercase {
if vowels.contains(char.lowercased()) {
let index = vowels.firstIndex(of: char.lowercased())!
let newChar = vowels[index.advanced(by: 2)]
encodedMessage += String(newChar).uppercased()
} else {
encodedMessage += String(char).lowercased()
}
} else {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newChar = vowels[index.advanced(by: 2)]
encodedMessage += String(newChar)
} else {
encodedMessage += String(char).uppercased()
}
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
if char.isUppercase {
if vowels.contains(char.lowercased()) {
let index = vowels.firstIndex(of: char.lowercased())!
let newChar = vowels[index.advanced(by: 2)]
encodedMessage += String(newChar).uppercased()
} else {
encodedMessage += String(char).lowercased()
}
} else {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newChar = vowels[index.advanced(by: 2)]
encodedMessage += String(newChar)
} else {
encodedMessage += String(char).uppercased()
}
}
}
return encodedMessage
}
```
let index = vowels.firstIndex(of: char.lowercased())! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
let newChar = vowels[index.advanced(by: 2)] // value of type 'String.Index' has no member 'advanced'
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
var encodedMessage = ""
for char in message {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newIndex = vowels.index(index, offsetBy: 2)
let newChar = vowels[newIndex]
encodedMessage.append(newChar)
} else if char.isUppercase {
let lowerChar = Character(char.lowercased())
let encodedChar = Character(lowerChar.lowercased())
encodedMessage.append(encodedChar)
} else {
let upperChar = Character(char.uppercased())
let encodedChar = Character(upperChar.uppercased())
encodedMessage.append(encodedChar)
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
var encodedMessage = ""
for char in message {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newIndex = vowels.index(index, offsetBy: 2)
let newChar = vowels[newIndex]
encodedMessage.append(newChar)
} else if char.isUppercase {
let lowerChar = Character(char.lowercased())
let encodedChar = Character(lowerChar.lowercased())
encodedMessage.append(encodedChar)
} else {
let upperChar = Character(char.uppercased())
let encodedChar = Character(upperChar.uppercased())
encodedMessage.append(encodedChar)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
let vowels = "aeiou"
for char in message {
let lowerChar = char.lowercased()
if vowels.contains(lowerChar) {
let index = vowels.firstIndex(of: lowerChar)!
let encodedChar = vowels[index.advanced(by: 2)]
encodedMessage += encodedChar.isUppercase ? String(encodedChar).uppercased() : String(encodedChar).lowercased()
} else {
encodedMessage += char.isUppercase ? String(char).lowercased() : String(char).uppercased()
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
let vowels = "aeiou"
for char in message {
let lowerChar = char.lowercased()
if vowels.contains(lowerChar) {
let index = vowels.firstIndex(of: lowerChar)!
let encodedChar = vowels[index.advanced(by: 2)]
encodedMessage += encodedChar.isUppercase ? String(encodedChar).uppercased() : String(encodedChar).lowercased()
} else {
encodedMessage += char.isUppercase ? String(char).lowercased() : String(char).uppercased()
}
}
return encodedMessage
}
```
let index = vowels.firstIndex(of: lowerChar)! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encode(message: String) -> String {
var encodedMessage = ""
let vowels = "aeiou"
for char in message {
let lowerChar = char.lowercased()
if vowels.contains(lowerChar) {
let index = vowels.firstIndex(of: lowerChar)!
let encodedChar = vowels[index.advanced(by: 2)]
encodedMessage += encodedChar.isUppercase ? String(encodedChar).lowercased() : String(encodedChar).uppercased()
} else {
encodedMessage += char.isUppercase ? String(char).lowercased() : String(char).uppercased()
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
let vowels = "aeiou"
for char in message {
let lowerChar = char.lowercased()
if vowels.contains(lowerChar) {
let index = vowels.firstIndex(of: lowerChar)!
let encodedChar = vowels[index.advanced(by: 2)]
encodedMessage += encodedChar.isUppercase ? String(encodedChar).lowercased() : String(encodedChar).uppercased()
} else {
encodedMessage += char.isUppercase ? String(char).lowercased() : String(char).uppercased()
}
}
return encodedMessage
}
```
let index = vowels.firstIndex(of: lowerChar)! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
let lowerChar = char.lowercased()
if vowels.contains(lowerChar) {
let index = vowels.firstIndex(of: lowerChar)!
let newChar = vowels[index.advanced(by: 2)]
if char.isUppercase {
encodedMessage += newChar.uppercased()
} else {
encodedMessage += newChar.lowercased()
}
} else {
if char.isUppercase {
encodedMessage += char.lowercased()
} else {
encodedMessage += char.uppercased()
}
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiou"
var encodedMessage = ""
for char in message {
let lowerChar = char.lowercased()
if vowels.contains(lowerChar) {
let index = vowels.firstIndex(of: lowerChar)!
let newChar = vowels[index.advanced(by: 2)]
if char.isUppercase {
encodedMessage += newChar.uppercased()
} else {
encodedMessage += newChar.lowercased()
}
} else {
if char.isUppercase {
encodedMessage += char.lowercased()
} else {
encodedMessage += char.uppercased()
}
}
}
return encodedMessage
}
```
let index = vowels.firstIndex(of: lowerChar)! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
let asciiValue = Int(char.asciiValue ?? 0)
if asciiValue >= 65 && asciiValue <= 90 {
if char == "A" || char == "E" || char == "I" || char == "O" || char == "U" {
encodedMessage += String(UnicodeScalar(asciiValue! + 2))
} else {
encodedMessage += String(UnicodeScalar(asciiValue! + 32))
}
} else if asciiValue >= 97 && asciiValue <= 122 {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" {
encodedMessage += String(UnicodeScalar(asciiValue! + 2))
} else {
encodedMessage += String(UnicodeScalar(asciiValue! - 32))
}
} else {
encodedMessage += String(char)
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
let asciiValue = Int(char.asciiValue ?? 0)
if asciiValue >= 65 && asciiValue <= 90 {
if char == "A" || char == "E" || char == "I" || char == "O" || char == "U" {
encodedMessage += String(UnicodeScalar(asciiValue! + 2))
} else {
encodedMessage += String(UnicodeScalar(asciiValue! + 32))
}
} else if asciiValue >= 97 && asciiValue <= 122 {
if char == "a" || char == "e" || char == "i" || char == "o" || char == "u" {
encodedMessage += String(UnicodeScalar(asciiValue! + 2))
} else {
encodedMessage += String(UnicodeScalar(asciiValue! - 32))
}
} else {
encodedMessage += String(char)
}
}
return encodedMessage
}
```
encodedMessage += String(UnicodeScalar(asciiValue! + 2)) // value of optional type 'UnicodeScalar?' (aka 'Optional<Unicode.Scalar>') must be unwrapped to a value of type 'UnicodeScalar' (aka 'Unicode.Scalar')
encodedMessage += String(UnicodeScalar(asciiValue! + 2)) // cannot force unwrap value of non-optional type 'Int'
encodedMessage += String(UnicodeScalar(asciiValue! + 32)) // value of optional type 'UnicodeScalar?' (aka 'Optional<Unicode.Scalar>') must be unwrapped to a value of type 'UnicodeScalar' (aka 'Unicode.Scalar')
encodedMessage += String(UnicodeScalar(asciiValue! + 32)) // cannot force unwrap value of non-optional type 'Int'
encodedMessage += String(UnicodeScalar(asciiValue! + 2)) // cannot force unwrap value of non-optional type 'Int'
encodedMessage += String(UnicodeScalar(asciiValue! + 2)) // value of optional type 'UnicodeScalar?' (aka 'Optional<Unicode.Scalar>') must be unwrapped to a value of type 'UnicodeScalar' (aka 'Unicode.Scalar')
encodedMessage += String(UnicodeScalar(asciiValue! - 32)) // cannot force unwrap value of non-optional type 'Int'
encodedMessage += String(UnicodeScalar(asciiValue! - 32)) // value of optional type 'UnicodeScalar?' (aka 'Optional<Unicode.Scalar>') must be unwrapped to a value of type 'UnicodeScalar' (aka 'Unicode.Scalar')
func encode(message: String) -> String {
let vowels: [Character] = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
var encodedMessage = ""
for char in message {
if char.isLetter {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newChar = vowels[index + 2]
encodedMessage += newChar.isLowercase ? String(newChar).uppercased() : String(newChar).lowercased()
} else {
encodedMessage += char.isLowercase ? String(char).uppercased() : String(char).lowercased()
}
} else {
encodedMessage += String(char)
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels: [Character] = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
var encodedMessage = ""
for char in message {
if char.isLetter {
if vowels.contains(char) {
let index = vowels.firstIndex(of: char)!
let newChar = vowels[index + 2]
encodedMessage += newChar.isLowercase ? String(newChar).uppercased() : String(newChar).lowercased()
} else {
encodedMessage += char.isLowercase ? String(char).uppercased() : String(char).lowercased()
}
} else {
encodedMessage += String(char)
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var n = num
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var n = num
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
for digit in String(maxPrime) {
if let digit = Int(String(digit)) {
sum += digit
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
for digit in String(maxPrime) {
if let digit = Int(String(digit)) {
sum += digit
}
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
return sumOfDigits(maxPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
return sumOfDigits(maxPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var n = num
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var n = num
while n > 0 {
sum += n % 10
n /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
for digit in String(maxPrime) {
if let digit = Int(String(digit)) {
sum += digit
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
for digit in String(maxPrime) {
if let digit = Int(String(digit)) {
sum += digit
}
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
for digit in String(maxPrime) {
if let digit = Int(String(digit)) {
sum += digit
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
var sum = 0
for digit in String(maxPrime) {
if let digit = Int(String(digit)) {
sum += digit
}
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
return sumOfDigits(maxPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var maxPrime = 0
for num in lst {
if isPrime(num) && num > maxPrime {
maxPrime = num
}
}
return sumOfDigits(maxPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
if num <= 1 {
return false
}
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
var i = 2
while i < n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
i += 1
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if isPrime(num: i) {
primes.append(i)
}
}
return primes
}
func isPrime(num: Int) -> Bool {
guard num > 1 else { return false }
for i in 2..<num {
if num % i == 0 {
return false
}
}
return true
}
```
func multiply(a: Int, b: Int) -> Int {
let unitA = abs(a % 10)
let unitB = abs(b % 10)
return unitA * unitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitA = abs(a % 10)
let unitB = abs(b % 10)
return unitA * unitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a) % 10
let unitDigitB = abs(b) % 10
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a) % 10
let unitDigitB = abs(b) % 10
return unitDigitA * unitDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a % 10)
let unitDigitB = abs(b % 10)
return unitDigitA * unitDigitB
}
```
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a) % 10
let unitDigitB = abs(b) % 10
return unitDigitA * unitDigitB
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let unitDigitA = abs(a) % 10
let unitDigitB = abs(b) % 10
return unitDigitA * unitDigitB
}
```
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index].uppercased()) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index].uppercased()) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index].uppercased()) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index].uppercased()) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for (i, char) in s.enumerated() {
if i % 2 == 0 && vowels.contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for (i, char) in s.enumerated() {
if i % 2 == 0 && vowels.contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
let char = s[index]
if char == "A" || char == "E" || char == "I" || char == "O" || char == "U" {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
let char = s[index]
if char == "A" || char == "E" || char == "I" || char == "O" || char == "U" {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index]) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index]) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index]) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index]) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && c == "A" || c == "E" || c == "I" || c == "O" || c == "U" {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, c) in s.enumerated() {
if i % 2 == 0 && c == "A" || c == "E" || c == "I" || c == "O" || c == "U" {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
let char = s[index]
if char == "A" || char == "E" || char == "I" || char == "O" || char == "U" {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
let char = s[index]
if char == "A" || char == "E" || char == "I" || char == "O" || char == "U" {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() {
if i % 2 == 0 && char.isUppercase && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (i, char) in s.enumerated() {
if i % 2 == 0 && char.isUppercase && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index]) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
let vowels = "AEIOU"
var count = 0
for i in stride(from: 0, to: s.count, by: 2) {
let index = s.index(s.startIndex, offsetBy: i)
if vowels.contains(s[index]) {
count += 1
}
}
return count
}
```
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0.0
let roundedValue = round(doubleValue)
let intValue = Int(roundedValue)
return intValue
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0.0
let roundedValue = round(doubleValue)
let intValue = Int(roundedValue)
return intValue
}
```
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0.0
let roundedValue = round(doubleValue)
let intValue = Int(roundedValue)
return intValue
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0.0
let roundedValue = round(doubleValue)
let intValue = Int(roundedValue)
return intValue
}
```
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0.0
let flooredValue = floor(doubleValue)
let ceilValue = ceil(doubleValue)
if doubleValue - flooredValue == ceilValue - doubleValue {
return doubleValue > 0 ? Int(ceilValue) : Int(flooredValue)
} else if doubleValue - flooredValue < ceilValue - doubleValue {
return Int(flooredValue)
} else {
return Int(ceilValue)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0.0
let flooredValue = floor(doubleValue)
let ceilValue = ceil(doubleValue)
if doubleValue - flooredValue == ceilValue - doubleValue {
return doubleValue > 0 ? Int(ceilValue) : Int(flooredValue)
} else if doubleValue - flooredValue < ceilValue - doubleValue {
return Int(flooredValue)
} else {
return Int(ceilValue)
}
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
let rounded = round(number)
let floored = floor(number)
let ceiled = ceil(number)
if abs(rounded - number) < abs(floored - number) && abs(rounded - number) < abs(ceiled - number) {
return Int(rounded)
} else if abs(floored - number) < abs(rounded - number) && abs(floored - number) < abs(ceiled - number) {
return Int(floored)
} else {
return Int(ceiled)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
let rounded = round(number)
let floored = floor(number)
let ceiled = ceil(number)
if abs(rounded - number) < abs(floored - number) && abs(rounded - number) < abs(ceiled - number) {
return Int(rounded)
} else if abs(floored - number) < abs(rounded - number) && abs(floored - number) < abs(ceiled - number) {
return Int(floored)
} else {
return Int(ceiled)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let doubleValue = Double(value)!
let flooredValue = floor(doubleValue)
let ceiledValue = ceil(doubleValue)
if abs(doubleValue - flooredValue) < abs(doubleValue - ceiledValue) {
return Int(flooredValue)
} else {
return Int(ceiledValue)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value)!
let flooredValue = floor(doubleValue)
let ceiledValue = ceil(doubleValue)
if abs(doubleValue - flooredValue) < abs(doubleValue - ceiledValue) {
return Int(flooredValue)
} else {
return Int(ceiledValue)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let rounded = round(number)
let floored = floor(number)
let ceiled = ceil(number)
if abs(rounded - number) < abs(floored - number) && abs(rounded - number) < abs(ceiled - number) {
return Int(rounded)
} else if abs(floored - number) < abs(ceiled - number) {
return Int(floored)
} else {
return Int(ceiled)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let rounded = round(number)
let floored = floor(number)
let ceiled = ceil(number)
if abs(rounded - number) < abs(floored - number) && abs(rounded - number) < abs(ceiled - number) {
return Int(rounded)
} else if abs(floored - number) < abs(ceiled - number) {
return Int(floored)
} else {
return Int(ceiled)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0.0
let flooredValue = floor(doubleValue)
let ceiledValue = ceil(doubleValue)
let flooredDifference = abs(doubleValue - flooredValue)
let ceiledDifference = abs(doubleValue - ceiledValue)
return flooredDifference < ceiledDifference ? Int(flooredValue) : Int(ceiledValue)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0.0
let flooredValue = floor(doubleValue)
let ceiledValue = ceil(doubleValue)
let flooredDifference = abs(doubleValue - flooredValue)
let ceiledDifference = abs(doubleValue - ceiledValue)
return flooredDifference < ceiledDifference ? Int(flooredValue) : Int(ceiledValue)
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
let rounded = round(number)
let floored = floor(number)
let ceiled = ceil(number)
if abs(rounded - number) < abs(floored - number) && abs(rounded - number) < abs(ceiled - number) {
return Int(rounded)
} else if abs(floored - number) < abs(rounded - number) && abs(floored - number) < abs(ceiled - number) {
return Int(floored)
} else {
return Int(ceiled)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
let rounded = round(number)
let floored = floor(number)
let ceiled = ceil(number)
if abs(rounded - number) < abs(floored - number) && abs(rounded - number) < abs(ceiled - number) {
return Int(rounded)
} else if abs(floored - number) < abs(rounded - number) && abs(floored - number) < abs(ceiled - number) {
return Int(floored)
} else {
return Int(ceiled)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let rounded = round(number)
let floored = floor(number)
let ceiled = ceil(number)
if abs(rounded - number) < abs(floored - number) && abs(rounded - number) < abs(ceiled - number) {
return Int(rounded)
} else if abs(floored - number) < abs(rounded - number) && abs(floored - number) < abs(ceiled - number) {
return Int(floored)
} else {
return Int(ceiled)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let rounded = round(number)
let floored = floor(number)
let ceiled = ceil(number)
if abs(rounded - number) < abs(floored - number) && abs(rounded - number) < abs(ceiled - number) {
return Int(rounded)
} else if abs(floored - number) < abs(rounded - number) && abs(floored - number) < abs(ceiled - number) {
return Int(floored)
} else {
return Int(ceiled)
}
}
```
// XCTAssertTrue failed
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0
let intValue = Int(doubleValue)
let decimalPart = doubleValue - Double(intValue)
if decimalPart >= 0.5 {
return intValue + 1
} else if decimalPart <= -0.5 {
return intValue - 1
} else {
return intValue
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let doubleValue = Double(value) ?? 0
let intValue = Int(doubleValue)
let decimalPart = doubleValue - Double(intValue)
if decimalPart >= 0.5 {
return intValue + 1
} else if decimalPart <= -0.5 {
return intValue - 1
} else {
return intValue
}
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones += n % 2 == 0 ? 2 : 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for _ in 1...n {
result.append(stones)
stones += n % 2 == 0 ? 2 : 1
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for i in 1...n {
result.append(stones)
if n % 2 == 0 {
stones += 2
} else {
stones += 2
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for i in 1...n {
result.append(stones)
if n % 2 == 0 {
stones += 2
} else {
stones += 2
}
}
return result
}
```
for i in 1...n { // immutable value 'i' was never used; consider replacing with '_' or removing it
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
if n % 2 == 0 {
currentLevel += 2
} else {
currentLevel += 2
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
if n % 2 == 0 {
currentLevel += 2
} else {
currentLevel += 2
}
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var stones = n
for i in 1...n {
result.append(stones)
stones += i % 2 == 0 ? 2 : 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var stones = n
for i in 1...n {
result.append(stones)
stones += i % 2 == 0 ? 2 : 1
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
currentLevel += (n % 2 == 0) ? 2 : 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
currentLevel += (n % 2 == 0) ? 2 : 1
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
if n % 2 == 0 {
currentLevel += 2
} else {
currentLevel += 2
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
if n % 2 == 0 {
currentLevel += 2
} else {
currentLevel += 2
}
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
if n % 2 == 0 {
currentLevel += 2
} else {
currentLevel += 2
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result: [Int] = []
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
if n % 2 == 0 {
currentLevel += 2
} else {
currentLevel += 2
}
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
if n % 2 == 0 {
currentLevel += 2
} else {
currentLevel += 2
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var currentLevel = n
for _ in 1...n {
result.append(currentLevel)
if n % 2 == 0 {
currentLevel += 2
} else {
currentLevel += 2
}
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for i in 1...n {
result.append(stones)
if n % 2 == 0 {
stones += 2
} else {
stones += 2
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for i in 1...n {
result.append(stones)
if n % 2 == 0 {
stones += 2
} else {
stones += 2
}
}
return result
}
```
for i in 1...n { // immutable value 'i' was never used; consider replacing with '_' or removing it
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for i in 1...n {
result.append(stones)
if n % 2 == 0 {
stones += 2
} else {
stones += 2
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var stones = n
for i in 1...n {
result.append(stones)
if n % 2 == 0 {
stones += 2
} else {
stones += 2
}
}
return result
}
```
for i in 1...n { // immutable value 'i' was never used; consider replacing with '_' or removing it
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "])
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "])
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "]).filter { !$0.isEmpty }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "]).filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ").map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ").map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "]).filter { !$0.isEmpty }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "]).filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ").map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ").map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "]).filter { !$0.isEmpty }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "]).filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "]).filter { !$0.isEmpty }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "]).filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "])
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: [",", " "])
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: [",", " "])
return words.filter { !$0.isEmpty }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
let words = s.components(separatedBy: [",", " "])
return words.filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ").map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: ", ").map { $0.trimmingCharacters(in: .whitespacesAndNewlines) }
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
return y - 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
return y - 1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
var result = -1
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
var num = x
while num <= y {
if num % 2 == 0 {
return num
}
num += 1
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
var num = x
while num <= y {
if num % 2 == 0 {
return num
}
num += 1
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
if x > y {
return result
}
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
var result = -1
if x > y {
return result
}
for i in x...y {
if i % 2 == 0 {
result = i
break
}
}
return result
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
if x == y {
return -1
}
return x + 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
if x == y {
return -1
}
return x + 1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
} else {
return x + 1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
} else {
return x + 1
}
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
return y - 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
return y - 1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.isEmpty ? -1 : evenNumbers.max() ?? -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.isEmpty ? -1 : evenNumbers.max() ?? -1
}
```
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
} else {
return x + 1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
} else {
return x + 1
}
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
return y - 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
return y - 1
}
```
// XCTAssertTrue failed
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String("0b\(String(roundedAvg, radix: 2))"))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String("0b\(String(roundedAvg, radix: 2))"))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (Double(n) + Double(m)) / 2
let roundedAvg = Int(round(avg))
return .success(String(roundedAvg, radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (Double(n) + Double(m)) / 2
let roundedAvg = Int(round(avg))
return .success(String(roundedAvg, radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (Double(n) + Double(m)) / 2.0
let roundedAvg = Int(round(avg))
let binary = String(roundedAvg, radix: 2)
return .success("0b" + binary)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (Double(n) + Double(m)) / 2.0
let roundedAvg = Int(round(avg))
let binary = String(roundedAvg, radix: 2)
return .success("0b" + binary)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = round(Double(n + m) / 2)
return .success(String(Int(avg), radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = round(Double(n + m) / 2)
return .success(String(Int(avg), radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String(Int(roundedAvg), radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String(Int(roundedAvg), radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String(Int(roundedAvg), radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String(Int(roundedAvg), radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String("0b" + String(roundedAvg, radix: 2)))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else {
return .failure(-1)
}
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String("0b" + String(roundedAvg, radix: 2)))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let rounded = Int(round(avg))
return .success(String(Int(rounded), radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let rounded = Int(round(avg))
return .success(String(Int(rounded), radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String(Int(roundedAvg), radix: 2))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let roundedAvg = Int(round(avg))
return .success(String(Int(roundedAvg), radix: 2))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = Double(n + m) / 2
let rounded = Int(round(avg))
return .success(String("0b" + String(rounded, radix: 2)))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = Double(n + m) / 2
let rounded = Int(round(avg))
return .success(String("0b" + String(rounded, radix: 2)))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
var isUnique = true
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
var isUnique = true
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
var isUnique = true
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
var isUnique = true
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var isUnique = true
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var isUnique = true
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if !hasEvenDigit {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if !hasEvenDigit {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if !hasEvenDigit {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if !hasEvenDigit {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for i in x {
var isUnique = true
let digits = String(i).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(i)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for i in x {
var isUnique = true
let digits = String(i).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(i)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for i in x {
var isUnique = true
let digits = String(i).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(i)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for i in x {
var isUnique = true
let digits = String(i).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(i)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var isUnique = true
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var isUnique = true
let digits = String(num).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if !hasEvenDigit {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for num in x {
var hasEvenDigit = false
var temp = num
while temp > 0 {
let digit = temp % 10
if digit % 2 == 0 {
hasEvenDigit = true
break
}
temp /= 10
}
if !hasEvenDigit {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for i in x {
var isUnique = true
let digits = String(i).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(i)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for i in x {
var isUnique = true
let digits = String(i).compactMap { Int(String($0)) }
for digit in digits {
if digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(i)
}
}
return result.sorted()
}
```
func byLength(arr: [Int]) -> [String] {
var result: [String] = []
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
for num in arr {
if num >= 1 && num <= 9 {
result.append(names[num - 1])
}
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
var result: [String] = []
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
for num in arr {
if num >= 1 && num <= 9 {
result.append(names[num - 1])
}
}
return result.reversed()
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let digitNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filteredArr = arr.filter { $0 > 0 && $0 < 10 }
let sortedArr = filteredArr.sorted()
let reversedArr = sortedArr.reversed()
let result = reversedArr.map { digitNames[$0 - 1] }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let digitNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filteredArr = arr.filter { $0 > 0 && $0 < 10 }
let sortedArr = filteredArr.sorted()
let reversedArr = sortedArr.reversed()
let result = reversedArr.map { digitNames[$0 - 1] }
return result
}
```
func byLength(arr: [Int]) -> [String] {
let digits = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }.sorted().reversed().map { digits[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let digits = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }.sorted().reversed().map { digits[$0 - 1] }
}
```
func byLength(arr: [Int]) -> [String] {
let digits = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filteredArr = arr.filter { $0 > 0 && $0 < 10 }
let sortedArr = filteredArr.sorted()
let reversedArr = sortedArr.reversed()
let result = reversedArr.map { digits[$0 - 1] }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let digits = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filteredArr = arr.filter { $0 > 0 && $0 < 10 }
let sortedArr = filteredArr.sorted()
let reversedArr = sortedArr.reversed()
let result = reversedArr.map { digits[$0 - 1] }
return result
}
```
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { $0 >= 1 && $0 <= 9 }.sorted(by: >)
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return sortedArr.map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let sortedArr = arr.filter { $0 >= 1 && $0 <= 9 }.sorted(by: >)
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return sortedArr.map { names[$0 - 1] }
}
```
func byLength(arr: [Int]) -> [String] {
let numbers = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let sorted = filtered.sorted()
let reversed = sorted.reversed()
let result = reversed.map { numbers[$0 - 1] }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let sorted = filtered.sorted()
let reversed = sorted.reversed()
let result = reversed.map { numbers[$0 - 1] }
return result
}
```
func byLength(arr: [Int]) -> [String] {
let digitNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filteredArr = arr.filter { $0 > 0 && $0 < 10 }
let sortedArr = filteredArr.sorted()
let reversedArr = sortedArr.reversed()
let resultArr = reversedArr.map { digitNames[$0 - 1] }
return resultArr
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let digitNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filteredArr = arr.filter { $0 > 0 && $0 < 10 }
let sortedArr = filteredArr.sorted()
let reversedArr = sortedArr.reversed()
let resultArr = reversedArr.map { digitNames[$0 - 1] }
return resultArr
}
```
func byLength(arr: [Int]) -> [String] {
let numbers = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { $0 > 0 && $0 < 10 }
let sorted = filtered.sorted()
let reversed = sorted.reversed()
let result = reversed.map { numbers[$0 - 1] }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let numbers = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { $0 > 0 && $0 < 10 }
let sorted = filtered.sorted()
let reversed = sorted.reversed()
let result = reversed.map { numbers[$0 - 1] }
return result
}
```
func byLength(arr: [Int]) -> [String] {
let digitNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filteredArr = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedArr = filteredArr.sorted()
let reversedArr = sortedArr.reversed()
let result = reversedArr.map { digitNames[$0 - 1] }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let digitNames = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filteredArr = arr.filter { $0 >= 1 && $0 <= 9 }
let sortedArr = filteredArr.sorted()
let reversedArr = sortedArr.reversed()
let result = reversedArr.map { digitNames[$0 - 1] }
return result
}
```
func byLength(arr: [Int]) -> [String] {
let digits = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 >= 1 && $0 <= 9 }.sorted().reversed().map { digits[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let digits = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 >= 1 && $0 <= 9 }.sorted().reversed().map { digits[$0 - 1] }
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
var factorial = 1
for j in 1...i {
factorial *= j
}
result.append(factorial)
} else {
var sum = 0
for j in 1...i {
sum += j
}
result.append(sum)
}
}
return result
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n == 0 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
return (1 + n) * n / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
if n == 0 {
return 1
} else {
return n * factorial(n - 1)
}
}
func sumOfNumbers(_ n: Int) -> Int {
return (1 + n) * n / 2
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sumOfNumbers(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sumOfNumbers(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sumOfNumbers(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sumOfNumbers(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sumOfNumbers(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sumOfNumbers(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumTo(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
return (1...n).reduce(1, *)
}
func sumTo(_ n: Int) -> Int {
return (1...n).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumTo(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
return (1...n).reduce(1, *)
}
func sumTo(_ n: Int) -> Int {
return (1...n).reduce(0, +)
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sumOfNumbers(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sumOfNumbers(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sumOfNumbers(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
let reversedStr = String(str.reversed())
if str == reversedStr {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
let reversedStr = String(str.reversed())
if str == reversedStr {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
let reversedStr = String(str.reversed())
if str == reversedStr {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
let reversedStr = String(str.reversed())
if str == reversedStr {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
if String(i).reversed() == String(i) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
if String(i).reversed() == String(i) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
if String(i).reversed() == String(i) { // cannot convert value of type 'ReversedCollection<String>' to expected argument type 'String'
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
var absNum = abs(num)
while absNum > 0 {
sum += absNum % 10
absNum /= 10
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(0..<shift)
reverse(shift..<count)
}
func rotated(by shift: Int) -> Array {
var arr = self
arr.rotate(by: shift)
return arr
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(0..<shift)
reverse(shift..<count)
}
func rotated(by shift: Int) -> Array {
var arr = self
arr.rotate(by: shift)
return arr
}
}
```
reverse(0..<shift) // argument passed to call that takes no arguments
reverse(shift..<count) // argument passed to call that takes no arguments
func moveOneBall(arr: [Int]) -> Bool {
if arr.count == 0 {
return true
}
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(upTo: shift)
reverse(from: shift)
}
func reverse(upTo index: Int) {
guard index < count else { return }
var left = startIndex
var right = index
while left < right {
swapAt(left, right)
left += 1
right -= 1
}
}
func reverse(from index: Int) {
guard index < count else { return }
var left = index
var right = endIndex - 1
while left < right {
swapAt(left, right)
left += 1
right -= 1
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.count == 0 {
return true
}
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(upTo: shift)
reverse(from: shift)
}
func reverse(upTo index: Int) {
guard index < count else { return }
var left = startIndex
var right = index
while left < right {
swapAt(left, right)
left += 1
right -= 1
}
}
func reverse(from index: Int) {
guard index < count else { return }
var left = index
var right = endIndex - 1
while left < right {
swapAt(left, right)
left += 1
right -= 1
}
}
}
```
swapAt(left, right) // cannot use mutating member on immutable value: 'self' is immutable
swapAt(left, right) // cannot use mutating member on immutable value: 'self' is immutable
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(0..<shift)
reverse(shift..<count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(0..<shift)
reverse(shift..<count)
}
}
```
reverse(0..<shift) // argument passed to call that takes no arguments
reverse(shift..<count) // argument passed to call that takes no arguments
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(upTo: shift)
reverse(from: shift)
}
func reverse(upTo index: Int) {
var index = index
while index > 0 {
swapAt(index - 1, index)
index -= 1
}
}
func reverse(from index: Int) {
var index = index
let endIndex = count - 1
while index < endIndex {
swapAt(index, index + 1)
index += 1
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(upTo: shift)
reverse(from: shift)
}
func reverse(upTo index: Int) {
var index = index
while index > 0 {
swapAt(index - 1, index)
index -= 1
}
}
func reverse(from index: Int) {
var index = index
let endIndex = count - 1
while index < endIndex {
swapAt(index, index + 1)
index += 1
}
}
}
```
swapAt(index - 1, index) // cannot use mutating member on immutable value: 'self' is immutable
swapAt(index, index + 1) // cannot use mutating member on immutable value: 'self' is immutable
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
let sortedArr = arr.sorted()
var rotatedArr = arr
for _ in 0..<arr.count {
rotatedArr.rotate()
if rotatedArr == sortedArr {
return true
}
}
return false
}
extension Array {
mutating func rotate() {
let lastElement = self.removeLast()
self.insert(lastElement, at: 0)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
let sortedArr = arr.sorted()
var rotatedArr = arr
for _ in 0..<arr.count {
rotatedArr.rotate()
if rotatedArr == sortedArr {
return true
}
}
return false
}
extension Array {
mutating func rotate() {
let lastElement = self.removeLast()
self.insert(lastElement, at: 0)
}
}
```
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr = Array(shiftedArr.dropFirst()) + [shiftedArr.first!]
if shiftedArr == sortedArr { return true }
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var shiftedArr = arr
for _ in 0..<arr.count {
shiftedArr = Array(shiftedArr.dropFirst()) + [shiftedArr.first!]
if shiftedArr == sortedArr { return true }
}
return false
}
```
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate()
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate() {
let lastElement = self.removeLast()
self.insert(lastElement, at: 0)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate()
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate() {
let lastElement = self.removeLast()
self.insert(lastElement, at: 0)
}
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.count == 0 {
return true
}
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(upTo: shift - 1)
reverse(from: shift)
}
func rotated(by shift: Int) -> Array {
var result = self
result.rotate(by: shift)
return result
}
mutating func reverse(upTo index: Int) {
guard index >= 0 else { return }
var index = index
while index > 0 {
swapAt(0, index)
index -= 1
}
}
mutating func reverse(from index: Int) {
var index = index
let endIndex = count - 1
while index < endIndex {
swapAt(index, endIndex)
index += 1
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.count == 0 {
return true
}
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate(by: 1)
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate(by shift: Int) {
let shift = shift % count
reverse()
reverse(upTo: shift - 1)
reverse(from: shift)
}
func rotated(by shift: Int) -> Array {
var result = self
result.rotate(by: shift)
return result
}
mutating func reverse(upTo index: Int) {
guard index >= 0 else { return }
var index = index
while index > 0 {
swapAt(0, index)
index -= 1
}
}
mutating func reverse(from index: Int) {
var index = index
let endIndex = count - 1
while index < endIndex {
swapAt(index, endIndex)
index += 1
}
}
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate()
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate() {
let lastElement = self.removeLast()
self.insert(lastElement, at: 0)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty { return true }
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate()
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate() {
let lastElement = self.removeLast()
self.insert(lastElement, at: 0)
}
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else {
return true
}
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate()
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate() {
if !isEmpty {
let lastElement = removeLast()
insert(lastElement, at: 0)
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard !arr.isEmpty else {
return true
}
let sortedArr = arr.sorted()
var rotatedArr = arr
rotatedArr.rotate()
return rotatedArr == sortedArr
}
extension Array {
mutating func rotate() {
if !isEmpty {
let lastElement = removeLast()
insert(lastElement, at: 0)
}
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
if lst2.contains(where: { $0 % 2 == 0 }) {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
let temp = lst1[i]
lst1[i] = lst2[index]
lst2[index] = temp
count += 1
}
} else {
return "NO"
}
}
}
return count > 0 ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
if lst2.contains(where: { $0 % 2 == 0 }) {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
let temp = lst1[i]
lst1[i] = lst2[index]
lst2[index] = temp
count += 1
}
} else {
return "NO"
}
}
}
return count > 0 ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
lst1[i] = lst2[index]
lst2.remove(at: index)
count += 1
} else {
return "NO"
}
}
}
return count > 0 ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
lst1[i] = lst2[index]
lst2.remove(at: index)
count += 1
} else {
return "NO"
}
}
}
return count > 0 ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2.remove(at: j)
count += 1
break
}
}
}
}
if count == lst1.filter({ $0 % 2 != 0 }).count {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2.remove(at: j)
count += 1
break
}
}
}
}
if count == lst1.filter({ $0 % 2 != 0 }).count {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
if lst2.contains(where: { $0 % 2 == 0 }) {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
let temp = lst1[i]
lst1[i] = lst2[index]
lst2[index] = temp
count += 1
}
} else {
return "NO"
}
}
}
return count > 0 ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
if lst2.contains(where: { $0 % 2 == 0 }) {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
let temp = lst1[i]
lst1[i] = lst2[index]
lst2[index] = temp
count += 1
}
} else {
return "NO"
}
}
}
return count > 0 ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in lst1 {
if i % 2 != 0 {
if lst2.contains(where: { $0 % 2 == 0 }) {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
let temp = lst1.firstIndex(of: i)
lst1[temp!] = lst2[index]
lst2.remove(at: index)
count += 1
}
} else {
return "NO"
}
}
}
if count > 0 {
return "YES"
} else {
return "YES"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in lst1 {
if i % 2 != 0 {
if lst2.contains(where: { $0 % 2 == 0 }) {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
let temp = lst1.firstIndex(of: i)
lst1[temp!] = lst2[index]
lst2.remove(at: index)
count += 1
}
} else {
return "NO"
}
}
}
if count > 0 {
return "YES"
} else {
return "YES"
}
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2.remove(at: j)
count += 1
break
}
}
}
}
return count == lst1.filter { $0 % 2 != 0 }.count ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2.remove(at: j)
count += 1
break
}
}
}
}
return count == lst1.filter { $0 % 2 != 0 }.count ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2.remove(at: j)
count += 1
break
}
}
}
}
return count == 0 ? "NO" : "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2.remove(at: j)
count += 1
break
}
}
}
}
return count == 0 ? "NO" : "YES"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
lst1[i] = lst2[index]
lst2.remove(at: index)
count += 1
} else {
return "NO"
}
}
}
return count > 0 ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
if let index = lst2.firstIndex(where: { $0 % 2 == 0 }) {
lst1[i] = lst2[index]
lst2.remove(at: index)
count += 1
} else {
return "NO"
}
}
}
return count > 0 ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
let oddCount1 = lst1.filter { $0 % 2 != 0 }.count
let evenCount2 = lst2.filter { $0 % 2 == 0 }.count
return oddCount1 <= evenCount2 ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
let oddCount1 = lst1.filter { $0 % 2 != 0 }.count
let evenCount2 = lst2.filter { $0 % 2 == 0 }.count
return oddCount1 <= evenCount2 ? "YES" : "NO"
}
```
func exchange(lst1: [Int], lst2: [Int]) -> String {
let lst1Even = lst1.filter { $0 % 2 == 0 }
let lst2Odd = lst2.filter { $0 % 2 != 0 }
return (lst1Even.count + lst2Odd.count >= lst1.count) ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
let lst1Even = lst1.filter { $0 % 2 == 0 }
let lst2Odd = lst2.filter { $0 % 2 != 0 }
return (lst1Even.count + lst2Odd.count >= lst1.count) ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var result: [String : Int] = [:]
let words = test.split(separator: " ")
for word in words {
if let count = result[word] {
result[word] = count + 1
} else {
result[word] = 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var result: [String : Int] = [:]
let words = test.split(separator: " ")
for word in words {
if let count = result[word] {
result[word] = count + 1
} else {
result[word] = 1
}
}
return result
}
```
if let count = result[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
result[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
result[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
let count = words.filter { $0 == word }.count
dict[word] = count
}
return dict
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
let count = words.filter { $0 == word }.count
dict[word] = count
}
return dict
}
```
dict[word] = count // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.components(separatedBy: " ")
var maxCount = 0
for word in words {
if let count = dict[word] {
dict[word] = count + 1
if count + 1 > maxCount {
maxCount = count + 1
}
} else {
dict[word] = 1
if 1 > maxCount {
maxCount = 1
}
}
}
var result = [String : Int]()
for (key, value) in dict {
if value == maxCount {
result[key] = value
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.components(separatedBy: " ")
var maxCount = 0
for word in words {
if let count = dict[word] {
dict[word] = count + 1
if count + 1 > maxCount {
maxCount = count + 1
}
} else {
dict[word] = 1
if 1 > maxCount {
maxCount = 1
}
}
}
var result = [String : Int]()
for (key, value) in dict {
if value == maxCount {
result[key] = value
}
}
return result
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
let letter = String(word)
if let count = dict[letter] {
dict[letter] = count + 1
} else {
dict[letter] = 1
}
}
let maxCount = dict.values.max() ?? 0
let result = dict.filter { $0.value == maxCount }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
let letter = String(word)
if let count = dict[letter] {
dict[letter] = count + 1
} else {
dict[letter] = 1
}
}
let maxCount = dict.values.max() ?? 0
let result = dict.filter { $0.value == maxCount }
return result
}
```
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
return dict
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
return dict
}
```
if let count = dict[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
return dict
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
return dict
}
```
if let count = dict[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
return dict
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
return dict
}
```
if let count = dict[word] { // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = count + 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
dict[word] = 1 // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
var maxCount = 0
for (key, value) in dict {
if value > maxCount {
maxCount = value
}
}
var result = [String : Int]()
for (key, value) in dict {
if value == maxCount {
result[key] = value
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
var maxCount = 0
for (key, value) in dict {
if value > maxCount {
maxCount = value
}
}
var result = [String : Int]()
for (key, value) in dict {
if value == maxCount {
result[key] = value
}
}
return result
}
```
for (key, value) in dict { // immutable value 'key' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
return dict
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
return dict
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
var maxCount = 0
for (key, value) in dict {
if value > maxCount {
maxCount = value
}
}
var result = [String : Int]()
for (key, value) in dict {
if value == maxCount {
result[key] = value
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if let count = dict[word] {
dict[word] = count + 1
} else {
dict[word] = 1
}
}
var maxCount = 0
for (key, value) in dict {
if value > maxCount {
maxCount = value
}
}
var result = [String : Int]()
for (key, value) in dict {
if value == maxCount {
result[key] = value
}
}
return result
}
```
for (key, value) in dict { // immutable value 'key' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func reverseDelete(s: String, c: String) -> (String, Bool) {
let filtered = s.filter { !c.contains($0) }
let reversed = String(filtered.reversed())
return (filtered, filtered == reversed)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let filtered = s.filter { !c.contains($0) }
let reversed = String(filtered.reversed())
return (filtered, filtered == reversed)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let filtered = s.filter { !c.contains($0) }
let reversed = String(filtered.reversed())
return (filtered, filtered == reversed)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let filtered = s.filter { !c.contains($0) }
let reversed = String(filtered.reversed())
return (filtered, filtered == reversed)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let filtered = s.filter { !c.contains($0) }
let reversed = String(filtered.reversed())
return (filtered, filtered == reversed)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let filtered = s.filter { !c.contains($0) }
let reversed = String(filtered.reversed())
return (filtered, filtered == reversed)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = String(s.filter { !c.contains($0) })
return (result, result == String(result.reversed()))
}
```
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for i in 0..<lst.count {
let count = lst[i].filter { Int(String($0))! % 2 != 0 }.count
result.append("the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput.")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for i in 0..<lst.count {
let count = lst[i].filter { Int(String($0))! % 2 != 0 }.count
result.append("the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput.")
}
return result
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map { (str) -> String in
let oddCount = str.filter { Int(String($0))! % 2 != 0 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { (str) -> String in
let oddCount = str.filter { Int(String($0))! % 2 != 0 }.count
return "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
}
}
```
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
```
for (index, string) in lst.enumerated() { // immutable value 'index' was never used; consider replacing with '_' or removing it
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
```
for (index, string) in lst.enumerated() { // immutable value 'index' was never used; consider replacing with '_' or removing it
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
```
for (index, string) in lst.enumerated() { // immutable value 'index' was never used; consider replacing with '_' or removing it
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
result.append("the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput.")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
result.append("the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput.")
}
return result
}
```
for (index, string) in lst.enumerated() { // immutable value 'index' was never used; consider replacing with '_' or removing it
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
```
for (index, string) in lst.enumerated() { // immutable value 'index' was never used; consider replacing with '_' or removing it
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for i in 0..<lst.count {
let count = lst[i].filter { Int(String($0))! % 2 != 0 }.count
let str = "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
result.append(str)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for i in 0..<lst.count {
let count = lst[i].filter { Int(String($0))! % 2 != 0 }.count
let str = "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
result.append(str)
}
return result
}
```
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
```
for (index, string) in lst.enumerated() { // immutable value 'index' was never used; consider replacing with '_' or removing it
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for (index, string) in lst.enumerated() {
let oddCount = string.filter { Int(String($0))! % 2 != 0 }.count
let output = "the number of odd elements \(oddCount)n the str\(oddCount)ng \(oddCount) of the \(oddCount)nput."
result.append(output)
}
return result
}
```
for (index, string) in lst.enumerated() { // immutable value 'index' was never used; consider replacing with '_' or removing it
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum == Int.max ? nums.min() ?? 0 : minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum == Int.max ? nums.min() ?? 0 : minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum == Int.max ? nums.min() ?? 0 : minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum == Int.max ? nums.min() ?? 0 : minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum == Int.max ? nums.min() ?? 0 : minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum == Int.max ? nums.min() ?? 0 : minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum == Int.max ? nums.min() ?? 0 : minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum == Int.max ? nums.min() ?? 0 : minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var count = 0
for cell in row {
if cell == 1 {
count += 1
}
}
result += (count + capacity - 1) / capacity
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var count = 0
for cell in row {
if cell == 1 {
count += 1
}
}
result += (count + capacity - 1) / capacity
}
return result
}
```
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var total = 0
for row in grid {
var count = 0
for water in row {
if water == 1 {
count += 1
}
}
total += count / capacity
}
return total
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var total = 0
for row in grid {
var count = 0
for water in row {
if water == 1 {
count += 1
}
}
total += count / capacity
}
return total
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
result += row.reduce(0, +) / capacity
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
result += row.reduce(0, +) / capacity
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var count = 0
for cell in row {
if cell == 1 {
count += 1
}
}
result += count / capacity
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var count = 0
for cell in row {
if cell == 1 {
count += 1
}
}
result += count / capacity
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
for water in row {
if water == 1 {
count += 1
}
}
}
return count / capacity
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
for water in row {
if water == 1 {
count += 1
}
}
}
return count / capacity
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var water = 0
for unit in row {
water += unit
}
count += water / capacity
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
var water = 0
for unit in row {
water += unit
}
count += water / capacity
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var count = 0
for water in row {
if water == 1 {
count += 1
}
}
result += count / capacity
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var result = 0
for row in grid {
var count = 0
for water in row {
if water == 1 {
count += 1
}
}
result += count / capacity
}
return result
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
for water in row {
if water == 1 {
count += 1
}
}
}
return count / capacity
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
for water in row {
if water == 1 {
count += 1
}
}
}
return count / capacity
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
for water in row {
if water == 1 {
count += capacity
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for row in grid {
for water in row {
if water == 1 {
count += capacity
}
}
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
count += (grid[i][j] / capacity)
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
for i in 0..<grid.count {
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
count += (grid[i][j] / capacity)
}
}
}
return count
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let count1 = String($0, radix: 2).filter { $0 == "1" }.count
let count2 = String($1, radix: 2).filter { $0 == "1" }.count
if count1 == count2 {
return $0 < $1
}
return count1 < count2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let count1 = String($0, radix: 2).filter { $0 == "1" }.count
let count2 = String($1, radix: 2).filter { $0 == "1" }.count
if count1 == count2 {
return $0 < $1
}
return count1 < count2
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = String(a, radix: 2).filter { $0 == "1" }.count
let bOnes = String(b, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = String(a, radix: 2).filter { $0 == "1" }.count
let bOnes = String(b, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let a = String($0, radix: 2)
let b = String($1, radix: 2)
let aOnes = a.filter { $0 == "1" }.count
let bOnes = b.filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
} else {
return aOnes < bOnes
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let a = String($0, radix: 2)
let b = String($1, radix: 2)
let aOnes = a.filter { $0 == "1" }.count
let bOnes = b.filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
} else {
return aOnes < bOnes
}
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let count1 = String($0, radix: 2).filter { $0 == "1" }.count
let count2 = String($1, radix: 2).filter { $0 == "1" }.count
return count1 < count2 || (count1 == count2 && $0 < $1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let count1 = String($0, radix: 2).filter { $0 == "1" }.count
let count2 = String($1, radix: 2).filter { $0 == "1" }.count
return count1 < count2 || (count1 == count2 && $0 < $1)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = String(a, radix: 2).filter { $0 == "1" }.count
let bOnes = String(b, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = String(a, radix: 2).filter { $0 == "1" }.count
let bOnes = String(b, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let a = String($0, radix: 2)
let b = String($1, radix: 2)
let aOnes = a.filter { $0 == "1" }.count
let bOnes = b.filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
} else {
return aOnes < bOnes
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let a = String($0, radix: 2)
let b = String($1, radix: 2)
let aOnes = a.filter { $0 == "1" }.count
let bOnes = b.filter { $0 == "1" }.count
if aOnes == bOnes {
return $0 < $1
} else {
return aOnes < bOnes
}
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let a = String($0, radix: 2)
let b = String($1, radix: 2)
let aOnes = a.filter { $0 == "1" }.count
let bOnes = b.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && $0 < $1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let a = String($0, radix: 2)
let b = String($1, radix: 2)
let aOnes = a.filter { $0 == "1" }.count
let bOnes = b.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && $0 < $1)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let count1 = String($0, radix: 2).filter { $0 == "1" }.count
let count2 = String($1, radix: 2).filter { $0 == "1" }.count
if count1 == count2 {
return $0 < $1
} else {
return count1 < count2
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let count1 = String($0, radix: 2).filter { $0 == "1" }.count
let count2 = String($1, radix: 2).filter { $0 == "1" }.count
if count1 == count2 {
return $0 < $1
} else {
return count1 < count2
}
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
if aOnes == bOnes {
return a < b
} else {
return aOnes < bOnes
}
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = String(a, radix: 2).filter { $0 == "1" }.count
let bOnes = String(b, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = String(a, radix: 2).filter { $0 == "1" }.count
let bOnes = String(b, radix: 2).filter { $0 == "1" }.count
if aOnes == bOnes {
return a < b
}
return aOnes < bOnes
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var count = 0
for char in word.lowercased() {
if !vowels.contains(char) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var count = 0
for char in word.lowercased() {
if !vowels.contains(char) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
var result = [String]()
var word = ""
var consonants = 0
for char in s {
if char == " " {
if consonants == n {
result.append(word)
}
consonants = 0
word = ""
} else {
if !vowels.contains(char) {
consonants += 1
}
word += String(char)
}
}
if consonants == n {
result.append(word)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
var result = [String]()
var word = ""
var consonants = 0
for char in s {
if char == " " {
if consonants == n {
result.append(word)
}
consonants = 0
word = ""
} else {
if !vowels.contains(char) {
consonants += 1
}
word += String(char)
}
}
if consonants == n {
result.append(word)
}
return result
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let vowels = ["a", "e", "i", "o", "u"]
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(String(char)) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = ["a", "e", "i", "o", "u"]
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(String(char)) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !vowels.contains($0.lowercased()) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
let consonants = word.filter { !vowels.contains($0.lowercased()) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = ["a", "e", "i", "o", "u"]
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(String(char)) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = ["a", "e", "i", "o", "u"]
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(String(char)) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var count = 0
for letter in word.lowercased() {
if !vowels.contains(letter) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var count = 0
for letter in word.lowercased() {
if !vowels.contains(letter) {
count += 1
}
}
if count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = ["a", "e", "i", "o", "u"]
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { !vowels.contains(String($0).lowercased()) }
if consonants.count == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = ["a", "e", "i", "o", "u"]
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
let consonants = word.filter { !vowels.contains(String($0).lowercased()) }
if consonants.count == n {
result.append(word)
}
}
return result
}
```
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let vowels = "aeiou"
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var consonantCount = 0
for char in word.lowercased() {
if !vowels.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArray = Array(word)
var closestVowel = ""
for i in 1..<wordArray.count-1 {
if !vowels.contains(wordArray[i]) {
if vowels.contains(wordArray[i-1]) && vowels.contains(wordArray[i+1]) {
closestVowel = String(wordArray[i])
break
}
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArray = Array(word)
var closestVowel = ""
for i in 1..<wordArray.count-1 {
if !vowels.contains(wordArray[i]) {
if vowels.contains(wordArray[i-1]) && vowels.contains(wordArray[i+1]) {
closestVowel = String(wordArray[i])
break
}
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let wordArr = Array(word)
var result = ""
for i in stride(from: word.count - 1, through: 1, by: -1) {
if vowels.contains(wordArr[i]) && !vowels.contains(wordArr[i - 1]) && !vowels.contains(wordArr[i + 1]) {
result = String(wordArr[i])
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let wordArr = Array(word)
var result = ""
for i in stride(from: word.count - 1, through: 1, by: -1) {
if vowels.contains(wordArr[i]) && !vowels.contains(wordArr[i - 1]) && !vowels.contains(wordArr[i + 1]) {
result = String(wordArr[i])
break
}
}
return result
}
```
// Fatal error: Index out of range
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var vowelArr = [String]()
for i in 1..<wordArr.count-1 {
if vowels.contains(wordArr[i]) {
vowelArr.append(String(wordArr[i]))
}
}
if vowelArr.count == 0 {
return ""
} else {
return vowelArr.last ?? ""
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var vowelArr = [String]()
for i in 1..<wordArr.count-1 {
if vowels.contains(wordArr[i]) {
vowelArr.append(String(wordArr[i]))
}
}
if vowelArr.count == 0 {
return ""
} else {
return vowelArr.last ?? ""
}
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let wordArr = Array(word)
var result = ""
for i in 1..<wordArr.count-1 {
if !vowels.contains(wordArr[i]) {
if vowels.contains(wordArr[i-1]) && vowels.contains(wordArr[i+1]) {
result = String(wordArr[i])
break
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let wordArr = Array(word)
var result = ""
for i in 1..<wordArr.count-1 {
if !vowels.contains(wordArr[i]) {
if vowels.contains(wordArr[i-1]) && vowels.contains(wordArr[i+1]) {
result = String(wordArr[i])
break
}
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArray = Array(word)
var closestVowel = ""
var vowelFound = false
for i in stride(from: word.count - 1, through: 1, by: -1) {
let char = wordArray[i]
if vowels.contains(char) {
if !vowelFound {
vowelFound = true
closestVowel = String(char)
} else {
return closestVowel
}
} else if vowelFound {
return closestVowel
}
}
return ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArray = Array(word)
var closestVowel = ""
var vowelFound = false
for i in stride(from: word.count - 1, through: 1, by: -1) {
let char = wordArray[i]
if vowels.contains(char) {
if !vowelFound {
vowelFound = true
closestVowel = String(char)
} else {
return closestVowel
}
} else if vowelFound {
return closestVowel
}
}
return ""
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var result = ""
for i in stride(from: word.count - 2, through: 1, by: -1) {
if vowels.contains(wordArr[i]) && !vowels.contains(wordArr[i-1]) && !vowels.contains(wordArr[i+1]) {
result = String(wordArr[i])
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var result = ""
for i in stride(from: word.count - 2, through: 1, by: -1) {
if vowels.contains(wordArr[i]) && !vowels.contains(wordArr[i-1]) && !vowels.contains(wordArr[i+1]) {
result = String(wordArr[i])
break
}
}
return result
}
```
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var vowelArr = [String]()
for i in 1..<wordArr.count-1 {
if vowels.contains(wordArr[i]) {
vowelArr.append(String(wordArr[i]))
}
}
if vowelArr.count == 0 {
return ""
}
var closestVowel = ""
var minDistance = Int.max
for vowel in vowelArr {
let index = word.lastIndex(of: Character(vowel))!
let distance = word.distance(from: word.index(index, offsetBy: 1), to: word.endIndex)
if distance < minDistance {
minDistance = distance
closestVowel = vowel
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var vowelArr = [String]()
for i in 1..<wordArr.count-1 {
if vowels.contains(wordArr[i]) {
vowelArr.append(String(wordArr[i]))
}
}
if vowelArr.count == 0 {
return ""
}
var closestVowel = ""
var minDistance = Int.max
for vowel in vowelArr {
let index = word.lastIndex(of: Character(vowel))!
let distance = word.distance(from: word.index(index, offsetBy: 1), to: word.endIndex)
if distance < minDistance {
minDistance = distance
closestVowel = vowel
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var result = ""
for i in stride(from: word.count - 1, through: 1, by: -1) {
if vowels.contains(wordArr[i]) && !vowels.contains(wordArr[i - 1]) && !vowels.contains(wordArr[i + 1]) {
result = String(wordArr[i])
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var result = ""
for i in stride(from: word.count - 1, through: 1, by: -1) {
if vowels.contains(wordArr[i]) && !vowels.contains(wordArr[i - 1]) && !vowels.contains(wordArr[i + 1]) {
result = String(wordArr[i])
break
}
}
return result
}
```
// Fatal error: Index out of range
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var result = ""
for i in 1..<wordArr.count-1 {
if !vowels.contains(wordArr[i]) {
if vowels.contains(wordArr[i-1]) && vowels.contains(wordArr[i+1]) {
result = String(wordArr[i])
break
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var result = ""
for i in 1..<wordArr.count-1 {
if !vowels.contains(wordArr[i]) {
if vowels.contains(wordArr[i-1]) && vowels.contains(wordArr[i+1]) {
result = String(wordArr[i])
break
}
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var result = ""
for i in 1..<wordArr.count-1 {
if vowels.contains(wordArr[i]) && !vowels.contains(wordArr[i-1]) && !vowels.contains(wordArr[i+1]) {
result = String(wordArr[i])
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "AEIOUaeiou"
let wordArr = Array(word)
var result = ""
for i in 1..<wordArr.count-1 {
if vowels.contains(wordArr[i]) && !vowels.contains(wordArr[i-1]) && !vowels.contains(wordArr[i+1]) {
result = String(wordArr[i])
break
}
}
return result
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var leftCount = 0
var rightCount = 0
for str in lst {
for char in str {
if char == "(" {
leftCount += 1
} else {
rightCount += 1
}
}
}
if leftCount == rightCount {
return "Yes"
} else {
return "No"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var leftCount = 0
var rightCount = 0
for str in lst {
for char in str {
if char == "(" {
leftCount += 1
} else {
rightCount += 1
}
}
}
if leftCount == rightCount {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for str in lst {
for char in str {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
return count == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for str in lst {
for char in str {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for s in lst {
for c in s {
if c == "(" {
open += 1
} else {
close += 1
}
}
}
if open == close {
return "Yes"
} else {
return "No"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for s in lst {
for c in s {
if c == "(" {
open += 1
} else {
close += 1
}
}
}
if open == close {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
if openCount == closeCount {
return "Yes"
} else {
return "No"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
if openCount == closeCount {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for str in lst {
for char in str {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
return count == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for str in lst {
for char in str {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
if openCount == closeCount {
return "Yes"
} else {
return "No"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
if openCount == closeCount {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for str in lst {
for char in str {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
return count == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for str in lst {
for char in str {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var count = 0
for str in lst {
for char in str {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
return count == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var count = 0
for str in lst {
for char in str {
if char == "(" {
count += 1
} else {
count -= 1
}
if count < 0 {
return "No"
}
}
}
return count == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
if openCount == closeCount {
return "Yes"
} else {
return "No"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var openCount = 0
var closeCount = 0
for str in lst {
for char in str {
if char == "(" {
openCount += 1
} else {
closeCount += 1
}
}
}
if openCount == closeCount {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for i in 0..<lst.count {
for j in lst[i] {
if j == "(" {
open += 1
} else {
close += 1
}
}
}
if open == close {
return "Yes"
} else {
return "No"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for i in 0..<lst.count {
for j in lst[i] {
if j == "(" {
open += 1
} else {
close += 1
}
}
}
if open == close {
return "Yes"
} else {
return "No"
}
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
let sortedArr = arr.sorted(by: >)
return Array(sortedArr.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
let sortedArr = arr.sorted(by: >)
return Array(sortedArr.prefix(k))
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
var result = [Int]()
for i in 0..<k {
result.append(sortedArr[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArr = arr.sorted(by: >)
var result = [Int]()
for i in 0..<k {
result.append(sortedArr[i])
}
return result
}
```
var sortedArr = arr.sorted(by: >) // variable 'sortedArr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = arr.sorted(by: >)
return Array(result.prefix(k))
}
```
var result = arr.sorted(by: >) // variable 'result' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for i in 0..<lst.count {
if i % 2 == 0 && lst[i] % 2 != 0 {
sum += lst[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 10 {
sum += element
} else if element < 100 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 10 {
sum += element
} else if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 10 {
sum += element
} else if element < 100 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let element = arr[i]
if element < 10 {
sum += element
} else if element < 100 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 10 {
sum += num
} else if num < 100 {
sum += num
}
}
return sum
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : num * 3 + 1
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
num = num % 2 == 0 ? num / 2 : num * 3 + 1
}
collatz.append(1)
return collatz.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = current * 3 + 1
}
collatz.append(current)
}
return collatz.filter { $0 % 2 != 0 }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [n]
var current = n
while current != 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = current * 3 + 1
}
collatz.append(current)
}
return collatz.filter { $0 % 2 != 0 }.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 != 0 {
collatzSequence.append(currentNumber)
}
currentNumber = currentNumber % 2 == 0 ? currentNumber / 2 : currentNumber * 3 + 1
}
collatzSequence.append(1)
return collatzSequence.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 != 0 {
collatzSequence.append(currentNumber)
}
currentNumber = currentNumber % 2 == 0 ? currentNumber / 2 : currentNumber * 3 + 1
}
collatzSequence.append(1)
return collatzSequence.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [n]
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber = currentNumber / 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [n]
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 == 0 {
currentNumber = currentNumber / 2
} else {
currentNumber = 3 * currentNumber + 1
}
collatzSequence.append(currentNumber)
}
return collatzSequence.filter { $0 % 2 != 0 }.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
if num % 2 == 0 {
num = num / 2
} else {
num = 3 * num + 1
}
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 != 0 {
collatz.append(num)
}
if num % 2 == 0 {
num = num / 2
} else {
num = 3 * num + 1
}
}
collatz.append(1)
return collatz.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 == 0 {
num = num / 2
} else {
collatz.append(num)
num = 3 * num + 1
}
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 == 0 {
num = num / 2
} else {
collatz.append(num)
num = 3 * num + 1
}
}
collatz.append(1)
return collatz.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var current = n
while current != 1 {
if current % 2 != 0 {
collatz.append(current)
}
current = current % 2 == 0 ? current / 2 : current * 3 + 1
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var current = n
while current != 1 {
if current % 2 != 0 {
collatz.append(current)
}
current = current % 2 == 0 ? current / 2 : current * 3 + 1
}
collatz.append(1)
return collatz.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 != 0 {
collatzSequence.append(currentNumber)
}
currentNumber = currentNumber % 2 == 0 ? currentNumber / 2 : currentNumber * 3 + 1
}
collatzSequence.append(1)
return collatzSequence.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatzSequence = [Int]()
var currentNumber = n
while currentNumber != 1 {
if currentNumber % 2 != 0 {
collatzSequence.append(currentNumber)
}
currentNumber = currentNumber % 2 == 0 ? currentNumber / 2 : currentNumber * 3 + 1
}
collatzSequence.append(1)
return collatzSequence.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var arr = [Int]()
var num = n
while num != 1 {
if num % 2 == 1 {
arr.append(num)
}
if num % 2 == 0 {
num = num / 2
} else {
num = 3 * num + 1
}
}
arr.append(1)
return arr.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var arr = [Int]()
var num = n
while num != 1 {
if num % 2 == 1 {
arr.append(num)
}
if num % 2 == 0 {
num = num / 2
} else {
num = 3 * num + 1
}
}
arr.append(1)
return arr.sorted()
}
```
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var current = n
while current != 1 {
if current % 2 != 0 {
collatz.append(current)
}
current = current % 2 == 0 ? current / 2 : current * 3 + 1
}
collatz.append(1)
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var current = n
while current != 1 {
if current % 2 != 0 {
collatz.append(current)
}
current = current % 2 == 0 ? current / 2 : current * 3 + 1
}
collatz.append(1)
return collatz.sorted()
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.calendar.dateComponents([.month, .day, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.calendar.dateComponents([.month, .day, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
return true
}
return false
}
```
let year = components.year ?? 0 // initialization of immutable value 'year' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
if let _ = dateFormatter.date(from: date) {
let components = Calendar.current.dateComponents([.day, .month, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
if year < 1 {
return false
}
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
if let _ = dateFormatter.date(from: date) {
let components = Calendar.current.dateComponents([.day, .month, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
if year < 1 {
return false
}
return true
} else {
return false
}
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
if let _ = dateFormatter.date(from: date) {
let components = Calendar.current.dateComponents([.month, .day, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
if let _ = dateFormatter.date(from: date) {
let components = Calendar.current.dateComponents([.month, .day, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
return true
}
return false
}
```
let year = components.year ?? 0 // initialization of immutable value 'year' was never used; consider replacing with assignment to '_' or removing it
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.calendar.dateComponents([.month, .day, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
if let _ = dateFormatter.date(from: date) {
let components = dateFormatter.calendar.dateComponents([.month, .day, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
return true
} else {
return false
}
}
```
let year = components.year ?? 0 // initialization of immutable value 'year' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
if let _ = dateFormatter.date(from: date) {
let components = Calendar.current.dateComponents([.month, .day, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
if year < 1 {
return false
}
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
if let _ = dateFormatter.date(from: date) {
let components = Calendar.current.dateComponents([.month, .day, .year], from: dateFormatter.date(from: date)!)
let month = components.month ?? 0
let day = components.day ?? 0
let year = components.year ?? 0
if month < 1 || month > 12 {
return false
}
if day < 1 || day > 31 {
return false
}
if month == 2 {
if day > 29 {
return false
}
} else if month == 4 || month == 6 || month == 9 || month == 11 {
if day > 30 {
return false
}
}
if year < 1 {
return false
}
return true
} else {
return false
}
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
dateFormatter.locale = Locale(identifier: "en_US_POSIX")
dateFormatter.timeZone = TimeZone(secondsFromGMT: 0)
dateFormatter.calendar = Calendar(identifier: .gregorian)
dateFormatter.isLenient = false
return dateFormatter.date(from: date) != nil
}
```
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.components(separatedBy: .whitespaces)
if words.count > 1 {
return .success(words)
}
let commas = txt.components(separatedBy: ",")
if commas.count > 1 {
return .success(commas)
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrder = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }.count
return .failure(oddOrder)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.components(separatedBy: .whitespaces)
if words.count > 1 {
return .success(words)
}
let commas = txt.components(separatedBy: ",")
if commas.count > 1 {
return .success(commas)
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrder = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }.count
return .failure(oddOrder)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let _ = txt.range(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let _ = txt.range(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderLowercaseLetters.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let _ = txt.range(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let _ = txt.range(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderLowercaseLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowerCaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowerCaseLetters.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowerCaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowerCaseLetters.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderLowercaseLetters.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderLowercaseLetters.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowercaseLetters.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowercaseLetters.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let _ = txt.range(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
}
if let _ = txt.range(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowercaseLetters.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let _ = txt.range(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
}
if let _ = txt.range(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowercaseLetters.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let _ = txt.range(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let _ = txt.range(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowercaseLetters.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if let _ = txt.range(of: " ") {
return .success(txt.split(separator: " ").map(String.init))
} else if let _ = txt.range(of: ",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowercaseLetters.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrdered = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrdered.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrdered = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrdered.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrdered = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrdered.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrdered = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrdered.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowercaseLetters.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
let words = txt.split(separator: " ")
if words.count > 1 {
return .success(words.map { String($0) })
}
let commas = txt.split(separator: ",")
if commas.count > 1 {
return .success(commas.map { String($0) })
}
let lowerCaseLetters = txt.filter { $0.isLowercase }
let oddOrderedLowercaseLetters = lowerCaseLetters.filter { $0.asciiValue! - 97 < 13 }
return .failure(oddOrderedLowercaseLetters.count)
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
if lst[i] == last {
if i != lst.count - 1 && lst[i] == lst[i+1] {
return false
}
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
if lst[i] == last {
if i != lst.count - 1 && lst[i] == lst[i+1] {
return false
}
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
var duplicates = 0
for i in 1..<lst.count {
if lst[i] < previous {
return false
} else if lst[i] == previous {
duplicates += 1
}
previous = lst[i]
}
return duplicates < 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var previous = lst[0]
var duplicates = 0
for i in 1..<lst.count {
if lst[i] < previous {
return false
} else if lst[i] == previous {
duplicates += 1
}
previous = lst[i]
}
return duplicates < 2
}
```
// XCTAssertTrue failed
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 0
for i in 1..<lst.count {
if lst[i] < last {
return false
} else if lst[i] == last {
count += 1
}
last = lst[i]
}
return count < 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 0
for i in 1..<lst.count {
if lst[i] < last {
return false
} else if lst[i] == last {
count += 1
}
last = lst[i]
}
return count < 2
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
if lst[i] == last {
if i < lst.count - 1 && lst[i + 1] == last {
return false
}
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
if lst[i] == last {
if i < lst.count - 1 && lst[i + 1] == last {
return false
}
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var duplicates = Set<Int>()
for i in 1..<lst.count {
if lst[i] < last {
return false
}
if lst[i] == last {
duplicates.insert(lst[i])
}
last = lst[i]
}
return duplicates.count < 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var duplicates = Set<Int>()
for i in 1..<lst.count {
if lst[i] < last {
return false
}
if lst[i] == last {
duplicates.insert(lst[i])
}
last = lst[i]
}
return duplicates.count < 2
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] < last {
return false
} else if lst[i] == last {
count += 1
if count > 1 {
return false
}
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] < last {
return false
} else if lst[i] == last {
count += 1
if count > 1 {
return false
}
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
if lst[i] == last {
if i < lst.count - 1 && lst[i + 1] == last {
return false
}
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
guard lst.count > 1 else { return true }
var last = lst[0]
for i in 1..<lst.count {
if lst[i] < last {
return false
}
if lst[i] == last {
if i < lst.count - 1 && lst[i + 1] == last {
return false
}
}
last = lst[i]
}
return true
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 0 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "NO"
}
if length == 3 {
return "YES"
}
if length % 2 == 0 {
return "NO"
}
var isPrime = true
for i in 3..<Int(sqrt(Double(length))) + 1 {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 0 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "NO"
}
if length == 3 {
return "YES"
}
if length % 2 == 0 {
return "NO"
}
var isPrime = true
for i in 3..<Int(sqrt(Double(length))) + 1 {
if length % i == 0 {
isPrime = false
break
}
}
return isPrime ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
let length = intersection.1 - intersection.0
if length < 0 {
return "NO"
}
if length == 1 || length == 0 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
let length = intersection.1 - intersection.0
if length < 0 {
return "NO"
}
if length == 1 || length == 0 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 0 {
return "NO"
}
if length == 1 || length == 0 {
return "NO"
}
for i in 2...Int(sqrt(Double(length))) {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 0 {
return "NO"
}
if length == 1 || length == 0 {
return "NO"
}
for i in 2...Int(sqrt(Double(length))) {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 0 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "NO"
}
if length == 3 {
return "YES"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start
if length < 0 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "NO"
}
if length == 3 {
return "YES"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length < 2 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length <= 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let product = arr.reduce(1) { $0 * $1 }
let sign = product > 0 ? 1 : (product < 0 ? -1 : 0)
return abs(product) * sign
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let product = arr.reduce(1) { $0 * $1 }
let sign = product > 0 ? 1 : (product < 0 ? -1 : 0)
return abs(product) * sign
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
if num > 0 {
product *= 1
} else if num < 0 {
product *= -1
} else {
product *= 0
}
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
if num > 0 {
product *= 1
} else if num < 0 {
product *= -1
} else {
product *= 0
}
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var result = 1
var sign = 1
for num in arr {
if num == 0 {
return 0
}
sign *= num > 0 ? 1 : -1
result *= abs(num)
}
return result * sign
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var result = 1
var sign = 1
for num in arr {
if num == 0 {
return 0
}
sign *= num > 0 ? 1 : -1
result *= abs(num)
}
return result * sign
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 > 0 ? 1 : $0 < 0 ? -1 : 0 }
let product = signs.reduce(1, *)
let magnitudes = arr.map { abs($0) }
let sum = magnitudes.reduce(0, +)
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 > 0 ? 1 : $0 < 0 ? -1 : 0 }
let product = signs.reduce(1, *)
let magnitudes = arr.map { abs($0) }
let sum = magnitudes.reduce(0, +)
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let magnitudes = arr.map { abs($0) }
let signs = arr.map { $0 > 0 ? 1 : $0 < 0 ? -1 : 0 }
let productOfMagnitudes = magnitudes.reduce(1, *)
let productOfSigns = signs.reduce(1, *)
return productOfMagnitudes * productOfSigns
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let magnitudes = arr.map { abs($0) }
let signs = arr.map { $0 > 0 ? 1 : $0 < 0 ? -1 : 0 }
let productOfMagnitudes = magnitudes.reduce(1, *)
let productOfSigns = signs.reduce(1, *)
return productOfMagnitudes * productOfSigns
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 < 0 ? -1 : $0 > 0 ? 1 : 0 }
let product = signs.reduce(1, *)
let magnitudes = arr.map { abs($0) }
let sum = magnitudes.reduce(0, +)
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 < 0 ? -1 : $0 > 0 ? 1 : 0 }
let product = signs.reduce(1, *)
let magnitudes = arr.map { abs($0) }
let sum = magnitudes.reduce(0, +)
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.signum()
sum += abs(num)
}
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
product *= num.signum()
sum += abs(num)
}
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let sign = arr.reduce(1) { $0 * ($1 > 0 ? 1 : $1 < 0 ? -1 : 0) }
let magnitude = arr.reduce(0) { $0 + abs($1) }
return sign * magnitude
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let sign = arr.reduce(1) { $0 * ($1 > 0 ? 1 : $1 < 0 ? -1 : 0) }
let magnitude = arr.reduce(0) { $0 + abs($1) }
return sign * magnitude
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 > 0 ? 1 : $0 < 0 ? -1 : 0 }
let product = signs.reduce(1, *)
let magnitudes = arr.map { abs($0) }
let sum = magnitudes.reduce(0, +)
return product * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let signs = arr.map { $0 > 0 ? 1 : $0 < 0 ? -1 : 0 }
let product = signs.reduce(1, *)
let magnitudes = arr.map { abs($0) }
let sum = magnitudes.reduce(0, +)
return product * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let product = arr.reduce(1, { $0 * $1 })
let sign = product > 0 ? 1 : (product < 0 ? -1 : 0)
return abs(product) * sign
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let product = arr.reduce(1, { $0 * $1 })
let sign = product > 0 ? 1 : (product < 0 ? -1 : 0)
return abs(product) * sign
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
let n = grid.count
let directions = [[0, 1], [0, -1], [1, 0], [-1, 0]]
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var queue = [[Int]]()
queue.append([0, 0, 1])
visited[0][0] = true
while !queue.isEmpty {
let current = queue.removeFirst()
let x = current[0]
let y = current[1]
let steps = current[2]
if steps == k {
if minPath.isEmpty || current[3...].lexicographicallyPrecedes(minPath) {
minPath = current[3...]
}
continue
}
for direction in directions {
let newX = x + direction[0]
let newY = y + direction[1]
if newX >= 0 && newX < n && newY >= 0 && newY < n && !visited[newX][newY] {
visited[newX][newY] = true
queue.append([newX, newY, steps + 1, grid[newX][newY]])
}
}
}
result = minPath.map { grid[$0 / n][$0 % n] }
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
let n = grid.count
let directions = [[0, 1], [0, -1], [1, 0], [-1, 0]]
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var queue = [[Int]]()
queue.append([0, 0, 1])
visited[0][0] = true
while !queue.isEmpty {
let current = queue.removeFirst()
let x = current[0]
let y = current[1]
let steps = current[2]
if steps == k {
if minPath.isEmpty || current[3...].lexicographicallyPrecedes(minPath) {
minPath = current[3...]
}
continue
}
for direction in directions {
let newX = x + direction[0]
let newY = y + direction[1]
if newX >= 0 && newX < n && newY >= 0 && newY < n && !visited[newX][newY] {
visited[newX][newY] = true
queue.append([newX, newY, steps + 1, grid[newX][newY]])
}
}
}
result = minPath.map { grid[$0 / n][$0 % n] }
return result
}
```
minPath = current[3...] // cannot assign value of type 'Array<Int>.SubSequence' (aka 'ArraySlice<Int>') to type '[Int]'
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
let n = grid.count
let totalCells = n * n
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var queue = [[Int]]()
for i in 0..<n {
for j in 0..<n {
if grid[i][j] == 1 {
queue.append([i, j])
visited[i][j] = true
}
}
}
while !queue.isEmpty {
let size = queue.count
for _ in 0..<size {
let current = queue.removeFirst()
let x = current[0]
let y = current[1]
result.append(grid[x][y])
if result.count == k {
minPath = result
return minPath
}
let neighbors = getNeighbors(grid: grid, x: x, y: y, visited: &visited)
for neighbor in neighbors {
queue.append(neighbor)
}
}
}
return minPath
}
func getNeighbors(grid: [[Int]], x: Int, y: Int, visited: inout [[Bool]]) -> [[Int]] {
let n = grid.count
var neighbors = [[Int]]()
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
for direction in directions {
let newX = x + direction.0
let newY = y + direction.1
if newX >= 0 && newX < n && newY >= 0 && newY < n && !visited[newX][newY] {
neighbors.append([newX, newY])
visited[newX][newY] = true
}
}
return neighbors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
let n = grid.count
let totalCells = n * n
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var queue = [[Int]]()
for i in 0..<n {
for j in 0..<n {
if grid[i][j] == 1 {
queue.append([i, j])
visited[i][j] = true
}
}
}
while !queue.isEmpty {
let size = queue.count
for _ in 0..<size {
let current = queue.removeFirst()
let x = current[0]
let y = current[1]
result.append(grid[x][y])
if result.count == k {
minPath = result
return minPath
}
let neighbors = getNeighbors(grid: grid, x: x, y: y, visited: &visited)
for neighbor in neighbors {
queue.append(neighbor)
}
}
}
return minPath
}
func getNeighbors(grid: [[Int]], x: Int, y: Int, visited: inout [[Bool]]) -> [[Int]] {
let n = grid.count
var neighbors = [[Int]]()
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
for direction in directions {
let newX = x + direction.0
let newY = y + direction.1
if newX >= 0 && newX < n && newY >= 0 && newY < n && !visited[newX][newY] {
neighbors.append([newX, newY])
visited[newX][newY] = true
}
}
return neighbors
}
```
let totalCells = n * n // initialization of immutable value 'totalCells' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int]()
var minPathLength = Int.max
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var queue = [(Int, Int, [Int], Int)]() // (row, col, path, pathLength)
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, [grid[i][j]], 1))
visited[i][j] = true
}
}
while !queue.isEmpty {
let (row, col, path, pathLength) = queue.removeFirst()
if pathLength == k {
if path.count < minPathLength {
minPath = path
minPathLength = path.count
}
continue
}
for (i, j) in [(row-1, col), (row+1, col), (row, col-1), (row, col+1)] {
if i >= 0 && i < n && j >= 0 && j < n && !visited[i][j] {
visited[i][j] = true
queue.append((i, j, path + [grid[i][j]], pathLength + 1))
}
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int]()
var minPathLength = Int.max
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var queue = [(Int, Int, [Int], Int)]() // (row, col, path, pathLength)
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, [grid[i][j]], 1))
visited[i][j] = true
}
}
while !queue.isEmpty {
let (row, col, path, pathLength) = queue.removeFirst()
if pathLength == k {
if path.count < minPathLength {
minPath = path
minPathLength = path.count
}
continue
}
for (i, j) in [(row-1, col), (row+1, col), (row, col-1), (row, col+1)] {
if i >= 0 && i < n && j >= 0 && j < n && !visited[i][j] {
visited[i][j] = true
queue.append((i, j, path + [grid[i][j]], pathLength + 1))
}
}
}
return minPath
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var result = [Int]()
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var minPath = Int.max
var minPathValues = [Int]()
var queue = [(Int, Int, [Int], Int)]() // (row, col, path, pathLength)
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, [grid[i][j]], 1))
visited[i][j] = true
}
}
while !queue.isEmpty {
let (row, col, path, pathLength) = queue.removeFirst()
if pathLength == k {
if path.count < minPath {
minPath = path.count
minPathValues = path
}
} else {
for (i, j) in [(row-1, col), (row+1, col), (row, col-1), (row, col+1)] {
if i >= 0 && i < n && j >= 0 && j < n && !visited[i][j] {
visited[i][j] = true
queue.append((i, j, path + [grid[i][j]], pathLength + 1))
}
}
}
}
return minPathValues
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var result = [Int]()
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var minPath = Int.max
var minPathValues = [Int]()
var queue = [(Int, Int, [Int], Int)]() // (row, col, path, pathLength)
for i in 0..<n {
for j in 0..<n {
queue.append((i, j, [grid[i][j]], 1))
visited[i][j] = true
}
}
while !queue.isEmpty {
let (row, col, path, pathLength) = queue.removeFirst()
if pathLength == k {
if path.count < minPath {
minPath = path.count
minPathValues = path
}
} else {
for (i, j) in [(row-1, col), (row+1, col), (row, col-1), (row, col+1)] {
if i >= 0 && i < n && j >= 0 && j < n && !visited[i][j] {
visited[i][j] = true
queue.append((i, j, path + [grid[i][j]], pathLength + 1))
}
}
}
}
return minPathValues
}
```
var result = [Int]() // initialization of variable 'result' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
func dfs(_ x: Int, _ y: Int, _ path: [Int]) {
if path.count == k {
if minPath.isEmpty || path.lexicographicallyPrecedes(minPath) {
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid.count && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]])
visited[nx][ny] = false
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
dfs(i, j, [grid[i][j]])
visited[i][j] = false
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
func dfs(_ x: Int, _ y: Int, _ path: [Int]) {
if path.count == k {
if minPath.isEmpty || path.lexicographicallyPrecedes(minPath) {
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < grid.count && ny >= 0 && ny < grid.count && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]])
visited[nx][ny] = false
}
}
}
for i in 0..<grid.count {
for j in 0..<grid.count {
visited[i][j] = true
dfs(i, j, [grid[i][j]])
visited[i][j] = false
}
}
return minPath
}
```
var result = [Int]() // initialization of variable 'result' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var minPathLength = Int.max
let n = grid.count
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
func dfs(_ x: Int, _ y: Int, _ path: [Int], _ length: Int) {
if length == k {
if path.count < minPathLength {
minPathLength = path.count
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]], length + 1)
visited[nx][ny] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
dfs(i, j, [grid[i][j]], 1)
visited[i][j] = false
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var minPathLength = Int.max
let n = grid.count
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
func dfs(_ x: Int, _ y: Int, _ path: [Int], _ length: Int) {
if length == k {
if path.count < minPathLength {
minPathLength = path.count
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]], length + 1)
visited[nx][ny] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
dfs(i, j, [grid[i][j]], 1)
visited[i][j] = false
}
}
return minPath
}
```
var result = [Int]() // initialization of variable 'result' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var minPathLength = Int.max
let n = grid.count
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
func dfs(_ x: Int, _ y: Int, _ path: [Int], _ length: Int) {
if length == k {
if path.count < minPathLength {
minPathLength = path.count
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]], length + 1)
visited[nx][ny] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
dfs(i, j, [grid[i][j]], 1)
visited[i][j] = false
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var minPathLength = Int.max
let n = grid.count
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
func dfs(_ x: Int, _ y: Int, _ path: [Int], _ length: Int) {
if length == k {
if path.count < minPathLength {
minPathLength = path.count
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]], length + 1)
visited[nx][ny] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
dfs(i, j, [grid[i][j]], 1)
visited[i][j] = false
}
}
return minPath
}
```
var result = [Int]() // initialization of variable 'result' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var result = [Int]()
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var minPath = [Int]()
var minPathLength = Int.max
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
func dfs(_ x: Int, _ y: Int, _ path: [Int], _ length: Int) {
if length == k {
if path.count < minPathLength {
minPathLength = path.count
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]], length + 1)
visited[nx][ny] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
dfs(i, j, [grid[i][j]], 1)
visited[i][j] = false
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var result = [Int]()
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var minPath = [Int]()
var minPathLength = Int.max
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
func dfs(_ x: Int, _ y: Int, _ path: [Int], _ length: Int) {
if length == k {
if path.count < minPathLength {
minPathLength = path.count
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]], length + 1)
visited[nx][ny] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
dfs(i, j, [grid[i][j]], 1)
visited[i][j] = false
}
}
return minPath
}
```
var result = [Int]() // initialization of variable 'result' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var minPathLength = Int.max
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
let n = grid.count
func dfs(_ x: Int, _ y: Int, _ path: [Int], _ length: Int) {
if length == k {
if path.count < minPathLength {
minPathLength = path.count
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]], length + 1)
visited[nx][ny] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
dfs(i, j, [grid[i][j]], 1)
visited[i][j] = false
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var minPathLength = Int.max
var visited = Array(repeating: Array(repeating: false, count: grid.count), count: grid.count)
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
let n = grid.count
func dfs(_ x: Int, _ y: Int, _ path: [Int], _ length: Int) {
if length == k {
if path.count < minPathLength {
minPathLength = path.count
minPath = path
}
return
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
dfs(nx, ny, path + [grid[nx][ny]], length + 1)
visited[nx][ny] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
dfs(i, j, [grid[i][j]], 1)
visited[i][j] = false
}
}
return minPath
}
```
var result = [Int]() // initialization of variable 'result' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var minPathLength = Int.max
let n = grid.count
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var queue = [(Int, Int, [Int])]()
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
queue.append((i, j, [grid[i][j]]))
visited[i][j] = false
}
}
while !queue.isEmpty {
let (x, y, path) = queue.removeFirst()
if path.count == k {
if path.count < minPathLength || (path.count == minPathLength && path.lexicographicallyPrecedes(minPath)) {
minPath = path
minPathLength = path.count
}
continue
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
queue.append((nx, ny, path + [grid[nx][ny]]))
visited[nx][ny] = false
}
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var minPath = [Int]()
var minPathLength = Int.max
let n = grid.count
let directions = [(0, 1), (0, -1), (1, 0), (-1, 0)]
var visited = Array(repeating: Array(repeating: false, count: n), count: n)
var queue = [(Int, Int, [Int])]()
for i in 0..<n {
for j in 0..<n {
visited[i][j] = true
queue.append((i, j, [grid[i][j]]))
visited[i][j] = false
}
}
while !queue.isEmpty {
let (x, y, path) = queue.removeFirst()
if path.count == k {
if path.count < minPathLength || (path.count == minPathLength && path.lexicographicallyPrecedes(minPath)) {
minPath = path
minPathLength = path.count
}
continue
}
for (dx, dy) in directions {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < n && !visited[nx][ny] {
visited[nx][ny] = true
queue.append((nx, ny, path + [grid[nx][ny]]))
visited[nx][ny] = false
}
}
}
return minPath
}
```
var result = [Int]() // initialization of variable 'result' was never used; consider replacing with assignment to '_' or removing it
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 { return [1] }
if n == 1 { return [1, 3] }
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 { return [1] }
if n == 1 { return [1, 3] }
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return result
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return result
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return result
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return result
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 { return [1] }
if n == 1 { return [1, 3] }
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 { return [1] }
if n == 1 { return [1, 3] }
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return result
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return result
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [1, 3]
if n == 0 {
return [1]
}
if n == 1 {
return [1, 3]
}
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func digits(n: Int) -> Int {
var result = 1
var num = n
var hasOdd = false
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
result *= digit
hasOdd = true
}
num /= 10
}
return hasOdd ? result : 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
var hasOdd = false
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
result *= digit
hasOdd = true
}
num /= 10
}
return hasOdd ? result : 0
}
```
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
```
func digits(n: Int) -> Int {
var result = 1
var num = n
var hasOddDigit = false
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
result *= digit
hasOddDigit = true
}
num /= 10
}
return hasOddDigit ? result : 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
var hasOddDigit = false
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
result *= digit
hasOddDigit = true
}
num /= 10
}
return hasOddDigit ? result : 0
}
```
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
```
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
```
func digits(n: Int) -> Int {
var result = 1
var num = n
var isOdd = false
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
result *= digit
isOdd = true
}
num /= 10
}
return isOdd ? result : 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
var num = n
var isOdd = false
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
result *= digit
isOdd = true
}
num /= 10
}
return isOdd ? result : 0
}
```
func digits(n: Int) -> Int {
var product = 1
var isAllEven = true
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
isAllEven = false
}
num /= 10
}
return isAllEven ? 0 : product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var isAllEven = true
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
isAllEven = false
}
num /= 10
}
return isAllEven ? 0 : product
}
```
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
```
func digits(n: Int) -> Int {
var product = 1
var isAllEven = true
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
isAllEven = false
}
num /= 10
}
return isAllEven ? 0 : product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var isAllEven = true
var num = n
while num > 0 {
let digit = num % 10
if digit % 2 != 0 {
product *= digit
isAllEven = false
}
num /= 10
}
return isAllEven ? 0 : product
}
```
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
let digits = String(n).compactMap { Int(String($0)) }
let oddDigits = digits.filter { $0 % 2 != 0 }
return oddDigits.isEmpty ? 0 : oddDigits.reduce(1, *)
}
```
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
if !stack.isEmpty {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
if !stack.isEmpty {
return true
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return !stack.isEmpty && stack.count > 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return !stack.isEmpty && stack.count > 1
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
if !stack.isEmpty {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
if !stack.isEmpty {
return true
}
}
}
}
return false
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty && stack.count > 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty && stack.count > 1
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty && stack.count > 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty && stack.count > 1
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty && stack.count > 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty && stack.count > 1
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty && stack.count > 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty && stack.count > 1
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.count > 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
return false
}
}
}
return stack.count > 0
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
stack.append(char)
}
}
}
return stack.count > 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if let last = stack.last, last == "[" {
stack.removeLast()
} else {
stack.append(char)
}
}
}
return stack.count > 1
}
```
// XCTAssertTrue failed
func sumSquares(lst: [Double]) -> Int {
let rounded = lst.map { Int(ceil($0)) }
let squared = rounded.map { $0 * $0 }
return squared.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
let rounded = lst.map { Int(ceil($0)) }
let squared = rounded.map { $0 * $0 }
return squared.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
let roundedArray = lst.map { Int(ceil($0)) }
let squaredArray = roundedArray.map { $0 * $0 }
return squaredArray.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
let roundedArray = lst.map { Int(ceil($0)) }
let squaredArray = roundedArray.map { $0 * $0 }
return squaredArray.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
let roundedArray = lst.map { Int($0.rounded(.up)) }
let squaredArray = roundedArray.map { $0 * $0 }
return squaredArray.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
let roundedArray = lst.map { Int($0.rounded(.up)) }
let squaredArray = roundedArray.map { $0 * $0 }
return squaredArray.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for num in lst {
sum += Int(ceil(num)) * Int(ceil(num))
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for num in lst {
sum += Int(ceil(num)) * Int(ceil(num))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
let rounded = lst.map { Int(ceil($0)) }
let squared = rounded.map { $0 * $0 }
return squared.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
let rounded = lst.map { Int(ceil($0)) }
let squared = rounded.map { $0 * $0 }
return squared.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
let roundedArray = lst.map { Int($0.rounded(.up)) }
let squaredArray = roundedArray.map { $0 * $0 }
return squaredArray.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
let roundedArray = lst.map { Int($0.rounded(.up)) }
let squaredArray = roundedArray.map { $0 * $0 }
return squaredArray.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int($0.rounded(.up)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int($0.rounded(.up)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for num in lst {
sum += Int(ceil(num)) * Int(ceil(num))
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for num in lst {
sum += Int(ceil(num)) * Int(ceil(num))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar {
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar {
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar)! == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar)! == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar {
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar {
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return !lastChar.isLetter || txt.lastIndex(of: " ") == txt.index(before: txt.endIndex)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return !lastChar.isLetter || txt.lastIndex(of: " ") == txt.index(before: txt.endIndex)
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar {
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar {
let isLetter = lastChar.isLetter
let isNotPartOfWord = txt.lastIndex(of: lastChar) == txt.index(before: txt.endIndex)
return isLetter && isNotPartOfWord
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !txt.hasSuffix(" ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard !txt.isEmpty else { return false }
let lastChar = txt.last!
return lastChar.isLetter && !txt.hasSuffix(" ")
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
let lastCharIsLetter = lastChar?.isLetter ?? false
let lastCharIsNotPartOfWord = txt.lastIndex(of: " ") == txt.index(before: txt.endIndex)
return lastCharIsLetter && lastCharIsNotPartOfWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
let lastCharIsLetter = lastChar?.isLetter ?? false
let lastCharIsNotPartOfWord = txt.lastIndex(of: " ") == txt.index(before: txt.endIndex)
return lastCharIsLetter && lastCharIsNotPartOfWord
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i - 1] {
maxIndex = i
} else {
break
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i - 1] {
maxIndex = i
} else {
break
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i-1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i-1] {
maxIndex = i
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] < arr[i-1] {
maxIndex = i-1
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] < arr[i-1] {
maxIndex = i-1
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i - 1] {
maxIndex = i
} else {
break
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i - 1] {
maxIndex = i
} else {
break
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
maxIndex = i - 1
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
maxIndex = i - 1
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i-1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i-1] {
maxIndex = i
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var result = -1
for i in 1..<arr.count {
if arr[i] >= arr[i - 1] {
result = i
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var result = -1
for i in 1..<arr.count {
if arr[i] >= arr[i - 1] {
result = i
}
}
return result
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i-1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] >= arr[i-1] {
maxIndex = i
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
maxIndex = i - 1
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] < arr[i - 1] {
maxIndex = i - 1
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
if num > largest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
if num < smallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
if num > largest {
largestNegative = num
}
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
if num < smallest {
smallestPositive = num
}
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
largestNegative = max(largest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
smallestPositive = min(smallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
largestNegative = max(largest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
smallestPositive = min(smallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
largestNegative = max(largest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
smallestPositive = min(smallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
largestNegative = max(largest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
smallestPositive = min(smallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
largestNegative = max(currentLargest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
smallestPositive = min(currentSmallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
largestNegative = max(currentLargest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
smallestPositive = min(currentSmallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
largestNegative = max(currentLargest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
smallestPositive = min(currentSmallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
largestNegative = max(currentLargest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
smallestPositive = min(currentSmallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
largestNegative = max(currentLargest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
smallestPositive = min(currentSmallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let currentLargest = largestNegative {
largestNegative = max(currentLargest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let currentSmallest = smallestPositive {
smallestPositive = min(currentSmallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
largestNegative = max(largest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
smallestPositive = min(smallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
largestNegative = max(largest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
smallestPositive = min(smallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
largestNegative = max(largest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
smallestPositive = min(smallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for num in lst {
if num < 0 {
if let largest = largestNegative {
largestNegative = max(largest, num)
} else {
largestNegative = num
}
} else if num > 0 {
if let smallest = smallestPositive {
smallestPositive = min(smallest, num)
} else {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : (a == b ? nil : b)
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : (a == b ? nil : b)
case let (.stringValue(a), .stringValue(b)):
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : (Double(a.replacingOccurrences(of: ",", with: "."))! == Double(b.replacingOccurrences(of: ",", with: "."))! ? nil : b)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : (a == b ? nil : b)
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : (a == b ? nil : b)
case let (.stringValue(a), .stringValue(b)):
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : (Double(a.replacingOccurrences(of: ",", with: "."))! == Double(b.replacingOccurrences(of: ",", with: "."))! ? nil : b)
default:
return nil
}
}
```
return a > b ? a : (a == b ? nil : b) // cannot convert return expression of type 'Int?' to return type 'Value?'
return a > b ? a : (a == b ? nil : b) // cannot convert return expression of type 'Double?' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : (Double(a.replacingOccurrences(of: ",", with: "."))! == Double(b.replacingOccurrences(of: ",", with: "."))! ? nil : b) // cannot convert return expression of type 'String?' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : (a == b ? nil : b)
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : (a == b ? nil : b)
case let (.stringValue(a), .stringValue(b)):
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : (Double(a.replacingOccurrences(of: ",", with: "."))! == Double(b.replacingOccurrences(of: ",", with: "."))! ? nil : b)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : (a == b ? nil : b)
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : (a == b ? nil : b)
case let (.stringValue(a), .stringValue(b)):
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : (Double(a.replacingOccurrences(of: ",", with: "."))! == Double(b.replacingOccurrences(of: ",", with: "."))! ? nil : b)
default:
return nil
}
}
```
return a > b ? a : (a == b ? nil : b) // cannot convert return expression of type 'Int?' to return type 'Value?'
return a > b ? a : (a == b ? nil : b) // cannot convert return expression of type 'Double?' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: "."))! > Double(b.replacingOccurrences(of: ",", with: "."))! ? a : (Double(a.replacingOccurrences(of: ",", with: "."))! == Double(b.replacingOccurrences(of: ",", with: "."))! ? nil : b) // cannot convert return expression of type 'String?' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : (a == b ? nil : b)
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : (a == b ? nil : b)
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : (Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 == Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? nil : b)
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : (a == b ? nil : b)
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : (a == b ? nil : b)
case (.stringValue(let a), .stringValue(let b)):
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : (Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 == Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? nil : b)
default:
return nil
}
}
```
return a > b ? a : (a == b ? nil : b) // cannot convert return expression of type 'Int?' to return type 'Value?'
return a > b ? a : (a == b ? nil : b) // cannot convert return expression of type 'Double?' to return type 'Value?'
return Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 > Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? a : (Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0 == Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0 ? nil : b) // cannot convert return expression of type 'String?' to return type 'Value?'
func isEqualToSumEven(n: Int) -> Bool {
return n % 8 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 8 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 2 == 0 && n >= 8
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 2 == 0 && n >= 8
}
```
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 2 == 0 && n >= 8
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 2 == 0 && n >= 8
}
```
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 2 == 0 && n >= 8
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 2 == 0 && n >= 8
}
```
func specialFactorial(n: Int) -> Int {
if n == 0 {
return 1
} else {
return n * specialFactorial(n: n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n == 0 {
return 1
} else {
return n * specialFactorial(n: n - 1)
}
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 0 }
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 0 }
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
if n == 0 {
return 1
} else {
return n * specialFactorial(n: n - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
if n == 0 {
return 1
} else {
return n * specialFactorial(n: n - 1)
}
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 1 }
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
result += "_"
} else if count == 2 {
result += "-"
}
} else {
if count > 2 {
result += "-"
}
result += String(char)
count = 0
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
result += "_"
} else if count == 2 {
result += "-"
}
} else {
if count > 2 {
result += "-"
}
result += String(char)
count = 0
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
result += "_"
} else if count == 2 {
result += "-"
}
} else {
if count > 2 {
result += "-"
count = 0
}
result += String(char)
count = 0
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
result += "_"
} else if count == 2 {
result += "-"
}
} else {
if count > 2 {
result += "-"
count = 0
}
result += String(char)
count = 0
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
if spaceCount > 0 {
result += char
spaceCount = 0
} else {
result += char
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += "_"
} else if spaceCount > 2 {
result += "-"
}
} else {
if spaceCount > 0 {
result += char
spaceCount = 0
} else {
result += char
}
}
}
return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'
result += char // cannot convert value of type 'Character' to expected argument type 'String'
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += "_"
} else if spaceCount == 2 {
result += "-"
}
} else {
if spaceCount > 0 {
result += char
spaceCount = 0
} else {
result += char
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += "_"
} else if spaceCount == 2 {
result += "-"
}
} else {
if spaceCount > 0 {
result += char
spaceCount = 0
} else {
result += char
}
}
}
return result
}
```
result += char // cannot convert value of type 'Character' to expected argument type 'String'
result += char // cannot convert value of type 'Character' to expected argument type 'String'
func fixSpaces(text: String) -> String {
var newText = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
newText += "_"
} else if count == 2 {
newText += "-"
}
} else {
if count > 2 {
newText += "-"
count = 0
}
newText += String(char)
count = 0
}
}
return newText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var newText = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
newText += "_"
} else if count == 2 {
newText += "-"
}
} else {
if count > 2 {
newText += "-"
count = 0
}
newText += String(char)
count = 0
}
}
return newText
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += "_"
} else if spaceCount == 2 {
result += "-"
}
} else {
if spaceCount > 2 {
result += "-"
}
spaceCount = 0
result += String(char)
}
}
if spaceCount > 2 {
result += "-"
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount == 1 {
result += "_"
} else if spaceCount == 2 {
result += "-"
}
} else {
if spaceCount > 2 {
result += "-"
}
spaceCount = 0
result += String(char)
}
}
if spaceCount > 2 {
result += "-"
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var newText = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
if consecutiveSpaces > 2 {
newText += "-"
} else {
newText += "_"
}
} else {
newText += String(char)
consecutiveSpaces = 0
}
}
return newText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var newText = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
if consecutiveSpaces > 2 {
newText += "-"
} else {
newText += "_"
}
} else {
newText += String(char)
consecutiveSpaces = 0
}
}
return newText
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var newText = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount > 2 {
newText += "-"
} else {
newText += "_"
}
} else {
newText += String(char)
spaceCount = 0
}
}
return newText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var newText = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
if spaceCount > 2 {
newText += "-"
} else {
newText += "_"
}
} else {
newText += String(char)
spaceCount = 0
}
}
return newText
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
result += "_"
} else if count == 2 {
result += "-"
}
} else {
if count > 2 {
result += "-"
count = 0
}
result += String(char)
count = 0
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
result += "_"
} else if count == 2 {
result += "-"
}
} else {
if count > 2 {
result += "-"
count = 0
}
result += String(char)
count = 0
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var newText = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
newText += "_"
} else if count == 2 {
newText += "-"
}
} else {
if count > 2 {
newText += "-"
count = 0
}
newText += String(char)
count = 0
}
}
return newText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var newText = ""
var count = 0
for char in text {
if char == " " {
count += 1
if count == 1 {
newText += "_"
} else if count == 2 {
newText += "-"
}
} else {
if count > 2 {
newText += "-"
count = 0
}
newText += String(char)
count = 0
}
}
return newText
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 || extensionName.count == 0 {
return "No"
}
if name.count > 3 {
return "No"
}
if !name.allSatisfy({ $0.isLetter }) {
return "No"
}
if !extensionName.allSatisfy({ $0.isLetter }) {
return "No"
}
let validExtensions = ["txt", "exe", "dll"]
if !validExtensions.contains(extensionName) {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 || extensionName.count == 0 {
return "No"
}
if name.count > 3 {
return "No"
}
if !name.allSatisfy({ $0.isLetter }) {
return "No"
}
if !extensionName.allSatisfy({ $0.isLetter }) {
return "No"
}
let validExtensions = ["txt", "exe", "dll"]
if !validExtensions.contains(extensionName) {
return "No"
}
return "Yes"
}
```
if !validExtensions.contains(extensionName) { // instance method 'contains' requires the types 'String' and 'Substring.Element' (aka 'Character') be equivalent
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let ext = components[1]
if name.count == 0 || ext.count == 0 {
return "No"
}
if name.count > 3 {
return "No"
}
if !name.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(ext) {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let ext = components[1]
if name.count == 0 || ext.count == 0 {
return "No"
}
if name.count > 3 {
return "No"
}
if !name.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(ext) {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let fileNameArray = fileName.split(separator: ".")
if fileNameArray.count != 2 {
return "No"
}
let fileNameBeforeDot = fileNameArray[0]
let fileNameAfterDot = fileNameArray[1]
if fileNameBeforeDot.count == 0 || fileNameAfterDot.count == 0 {
return "No"
}
if fileNameBeforeDot.count > 3 {
return "No"
}
if !fileNameBeforeDot.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileNameAfterDot) {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let fileNameArray = fileName.split(separator: ".")
if fileNameArray.count != 2 {
return "No"
}
let fileNameBeforeDot = fileNameArray[0]
let fileNameAfterDot = fileNameArray[1]
if fileNameBeforeDot.count == 0 || fileNameAfterDot.count == 0 {
return "No"
}
if fileNameBeforeDot.count > 3 {
return "No"
}
if !fileNameBeforeDot.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileNameAfterDot) {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 || extensionName.count == 0 {
return "No"
}
if name.count > 3 {
for char in name {
if !char.isNumber {
return "No"
}
}
}
if !name.first!.isLetter {
return "No"
}
if extensionName != "txt" && extensionName != "exe" && extensionName != "dll" {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let extensionName = components[1]
if name.count == 0 || extensionName.count == 0 {
return "No"
}
if name.count > 3 {
for char in name {
if !char.isNumber {
return "No"
}
}
}
if !name.first!.isLetter {
return "No"
}
if extensionName != "txt" && extensionName != "exe" && extensionName != "dll" {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let fileNameArray = fileName.split(separator: ".")
if fileNameArray.count != 2 {
return "No"
}
let fileNameBeforeDot = fileNameArray[0]
let fileNameAfterDot = fileNameArray[1]
if fileNameBeforeDot.count == 0 || fileNameBeforeDot.count > 3 {
return "No"
}
let fileNameBeforeDotArray = Array(fileNameBeforeDot)
if fileNameBeforeDotArray[0].isNumber || fileNameBeforeDotArray[0].isLowercase || fileNameBeforeDotArray[0].isUppercase {
if fileNameAfterDot == "txt" || fileNameAfterDot == "exe" || fileNameAfterDot == "dll" {
return "Yes"
}
}
return "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let fileNameArray = fileName.split(separator: ".")
if fileNameArray.count != 2 {
return "No"
}
let fileNameBeforeDot = fileNameArray[0]
let fileNameAfterDot = fileNameArray[1]
if fileNameBeforeDot.count == 0 || fileNameBeforeDot.count > 3 {
return "No"
}
let fileNameBeforeDotArray = Array(fileNameBeforeDot)
if fileNameBeforeDotArray[0].isNumber || fileNameBeforeDotArray[0].isLowercase || fileNameBeforeDotArray[0].isUppercase {
if fileNameAfterDot == "txt" || fileNameAfterDot == "exe" || fileNameAfterDot == "dll" {
return "Yes"
}
}
return "No"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let fileNameArray = fileName.split(separator: ".")
if fileNameArray.count != 2 {
return "No"
}
let fileNameBeforeDot = fileNameArray[0]
let fileNameAfterDot = fileNameArray[1]
if fileNameBeforeDot.count == 0 || fileNameAfterDot.count == 0 {
return "No"
}
if fileNameBeforeDot.count > 3 {
return "No"
}
if !fileNameBeforeDot.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileNameAfterDot) {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let fileNameArray = fileName.split(separator: ".")
if fileNameArray.count != 2 {
return "No"
}
let fileNameBeforeDot = fileNameArray[0]
let fileNameAfterDot = fileNameArray[1]
if fileNameBeforeDot.count == 0 || fileNameAfterDot.count == 0 {
return "No"
}
if fileNameBeforeDot.count > 3 {
return "No"
}
if !fileNameBeforeDot.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileNameAfterDot) {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let fileNameArray = fileName.split(separator: ".")
if fileNameArray.count != 2 {
return "No"
}
let fileNameBeforeDot = fileNameArray[0]
let fileNameAfterDot = fileNameArray[1]
if fileNameBeforeDot.count == 0 || fileNameAfterDot.count == 0 {
return "No"
}
if fileNameBeforeDot.count > 3 {
return "No"
}
if !fileNameBeforeDot.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileNameAfterDot) {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let fileNameArray = fileName.split(separator: ".")
if fileNameArray.count != 2 {
return "No"
}
let fileNameBeforeDot = fileNameArray[0]
let fileNameAfterDot = fileNameArray[1]
if fileNameBeforeDot.count == 0 || fileNameAfterDot.count == 0 {
return "No"
}
if fileNameBeforeDot.count > 3 {
return "No"
}
if !fileNameBeforeDot.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(fileNameAfterDot) {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let ext = components[1]
if name.count == 0 || ext.count == 0 {
return "No"
}
if name.count > 3 {
return "No"
}
if name.first!.isNumber {
return "No"
}
if !name.allSatisfy({ $0.isLetter }) {
return "No"
}
if ![ "txt", "exe", "dll" ].contains(ext) {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let ext = components[1]
if name.count == 0 || ext.count == 0 {
return "No"
}
if name.count > 3 {
return "No"
}
if name.first!.isNumber {
return "No"
}
if !name.allSatisfy({ $0.isLetter }) {
return "No"
}
if ![ "txt", "exe", "dll" ].contains(ext) {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let ext = components[1]
if name.count == 0 || ext.count == 0 {
return "No"
}
if name.count > 3 {
return "No"
}
if !name.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(ext) {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let ext = components[1]
if name.count == 0 || ext.count == 0 {
return "No"
}
if name.count > 3 {
return "No"
}
if !name.allSatisfy({ $0.isLetter }) {
return "No"
}
if !["txt", "exe", "dll"].contains(ext) {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let ext = components[1]
if name.count == 0 || ext.count == 0 {
return "No"
}
if name.count > 3 {
for char in name {
if char.isNumber {
return "No"
}
}
}
if !name.first!.isLetter {
return "No"
}
if ![ "txt", "exe", "dll" ].contains(ext) {
return "No"
}
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.split(separator: ".")
if components.count != 2 {
return "No"
}
let name = components[0]
let ext = components[1]
if name.count == 0 || ext.count == 0 {
return "No"
}
if name.count > 3 {
for char in name {
if char.isNumber {
return "No"
}
}
}
if !name.first!.isLetter {
return "No"
}
if ![ "txt", "exe", "dll" ].contains(ext) {
return "No"
}
return "Yes"
}
```
// XCTAssertTrue failed
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return String(result.dropLast())
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return String(result.dropLast())
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeWords = words.filter { isPrime(String($0).count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
let primeWords = words.filter { isPrime(String($0).count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.components(separatedBy: " ")
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return String(result.dropLast())
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.components(separatedBy: " ")
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return String(result.dropLast())
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 { return false }
if num <= 3 { return true }
var i = 2
while i * i <= num {
if num % i == 0 { return false }
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.components(separatedBy: " ")
let primeWords = words.filter { isPrime($0.count) }
return primeWords.joined(separator: " ")
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 { return false }
if num <= 3 { return true }
var i = 2
while i * i <= num {
if num % i == 0 { return false }
i += 1
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.split(separator: " ")
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return String(result.dropLast())
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.split(separator: " ")
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return String(result.dropLast())
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
var i = 2
while i * i <= num {
if num % i == 0 {
return false
}
i += 1
}
return true
}
```
func simplify(x: String, n: String) -> Bool {
let xArray = x.components(separatedBy: "/")
let nArray = n.components(separatedBy: "/")
let xNum = Int(xArray[0])!
let xDen = Int(xArray[1])!
let nNum = Int(nArray[0])!
let nDen = Int(nArray[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArray = x.components(separatedBy: "/")
let nArray = n.components(separatedBy: "/")
let xNum = Int(xArray[0])!
let xDen = Int(xArray[1])!
let nNum = Int(nArray[0])!
let nDen = Int(nArray[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNum = Int(xParts[0])!
let xDen = Int(xParts[1])!
let nNum = Int(nParts[0])!
let nDen = Int(nParts[1])!
let result = xNum * nNum / xDen / nDen
return result == Int(result)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNum = Int(xParts[0])!
let xDen = Int(xParts[1])!
let nNum = Int(nParts[0])!
let nDen = Int(nParts[1])!
let result = xNum * nNum / xDen / nDen
return result == Int(result)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArr = x.split(separator: "/")
let nArr = n.split(separator: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArr = x.split(separator: "/")
let nArr = n.split(separator: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArray = x.components(separatedBy: "/")
let nArray = n.components(separatedBy: "/")
let xNum = Int(xArray[0])!
let xDen = Int(xArray[1])!
let nNum = Int(nArray[0])!
let nDen = Int(nArray[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArray = x.components(separatedBy: "/")
let nArray = n.components(separatedBy: "/")
let xNum = Int(xArray[0])!
let xDen = Int(xArray[1])!
let nNum = Int(nArray[0])!
let nDen = Int(nArray[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArray = x.components(separatedBy: "/")
let nArray = n.components(separatedBy: "/")
let xNum = Int(xArray[0])!
let xDenom = Int(xArray[1])!
let nNum = Int(nArray[0])!
let nDenom = Int(nArray[1])!
let result = xNum * nNum / xDenom / nDenom
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArray = x.components(separatedBy: "/")
let nArray = n.components(separatedBy: "/")
let xNum = Int(xArray[0])!
let xDenom = Int(xArray[1])!
let nNum = Int(nArray[0])!
let nDenom = Int(nArray[1])!
let result = xNum * nNum / xDenom / nDenom
return result == 1
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArr = x.components(separatedBy: "/")
let nArr = n.components(separatedBy: "/")
let xNum = Int(xArr[0])!
let xDen = Int(xArr[1])!
let nNum = Int(nArr[0])!
let nDen = Int(nArr[1])!
let result = xNum * nNum / xDen / nDen
return result == 1
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, +)
let sumB = String(abs(b)).reduce(0, +)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, +)
let sumB = String(abs(b)).reduce(0, +)
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
```
let sumA = String(abs(a)).reduce(0, +) // cannot convert value of type '(Int) -> Int' to expected argument type '(Int, String.Element) throws -> Int' (aka '(Int, Character) throws -> Int')
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).compactMap { $0.wholeNumberValue }.reduce(0, +)
let sumB = String(abs(b)).compactMap { $0.wholeNumberValue }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).compactMap { $0.wholeNumberValue }.reduce(0, +)
let sumB = String(abs(b)).compactMap { $0.wholeNumberValue }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(abs(b)).compactMap { Int(String($0)) }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(abs(b)).compactMap { Int(String($0)) }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0) { $0 + Int(String($1))! }
let sumB = String(abs(b)).reduce(0) { $0 + Int(String($1))! }
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0) { $0 + Int(String($1))! }
let sumB = String(abs(b)).reduce(0) { $0 + Int(String($1))! }
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
return sumA < sumB
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(a).compactMap { Int(String($0)) }.reduce(0, +)
let sumB = String(b).compactMap { Int(String($0)) }.reduce(0, +)
return sumA < sumB
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
if sumA == sumB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
}
return sumA < sumB
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumA = String(abs(a)).reduce(0, { $0 + Int(String($1))! })
let sumB = String(abs(b)).reduce(0, { $0 + Int(String($1))! })
return sumA < sumB || (sumA == sumB && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
```
let firstDigit = Int(String(num).first!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
let lastDigit = Int(String(num).last!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
```
let firstDigit = Int(String(num).first!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
let lastDigit = Int(String(num).last!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
```
let firstDigit = Int(String(num).first!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
let lastDigit = Int(String(num).last!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num) % 10
let lastDigit = abs(num) / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num) % 10
let lastDigit = abs(num) / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
```
let firstDigit = Int(String(num).first!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
let lastDigit = Int(String(num).last!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num) % 10
let lastDigit = abs(num) / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num) % 10
let lastDigit = abs(num) / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num) % 10
let lastDigit = abs(num) / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num) % 10
let lastDigit = abs(num) / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num) % 10
let lastDigit = abs(num) / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num) % 10
let lastDigit = abs(num) / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num % 10)
let lastDigit = abs(num % 100 / 10)
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num < 0 {
let firstDigit = abs(num % 10)
let lastDigit = abs(num % 100 / 10)
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && num % 2 != 0 {
let firstDigit = Int(String(num).first!) ?? 0
let lastDigit = Int(String(num).last!) ?? 0
if firstDigit % 2 != 0 && lastDigit % 2 != 0 {
count += 1
}
}
}
return count
}
```
let firstDigit = Int(String(num).first!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
let lastDigit = Int(String(num).last!) ?? 0 // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n-2 {
for j in i+1..<n-1 {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
return filtered.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
return filtered.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func sortedListSum(lst: [String]) -> [String] {
let filteredList = lst.filter { $0.count % 2 == 0 }
return filteredList.sorted {
if $0.count == $1.count {
return $0 < $1
} else {
return $0.count < $1.count
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filteredList = lst.filter { $0.count % 2 == 0 }
return filteredList.sorted {
if $0.count == $1.count {
return $0 < $1
} else {
return $0.count < $1.count
}
}
}
```
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
return filtered.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
return filtered.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func sortedListSum(lst: [String]) -> [String] {
let filteredList = lst.filter { $0.count % 2 == 0 }
return filteredList.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filteredList = lst.filter { $0.count % 2 == 0 }
return filteredList.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filteredArray = lst.filter { $0.count % 2 == 0 }
return filteredArray.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
return filtered.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let filtered = lst.filter { $0.count % 2 == 0 }
return filtered.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n < 2 {
return y
}
for i in 2..<n {
if n % i == 0 {
return y
}
}
return x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n < 2 {
return y
}
for i in 2..<n {
if n % i == 0 {
return y
}
}
return x
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
if n <= 1 {
isPrime = false
} else {
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
}
return isPrime ? x : y
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n < 2 {
return y
}
for i in 2..<n {
if n % i == 0 {
return y
}
}
return x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
if n < 2 {
return y
}
for i in 2..<n {
if n % i == 0 {
return y
}
}
return x
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num > 0 && num.truncatingRemainder(dividingBy: 1) == 0 && num % 2 != 0 { // '%' is unavailable: For floating point numbers use truncatingRemainder instead
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var maxStrength = -1000
var strongestExtension = ""
let classLower = className.lowercased()
let classUpper = className.uppercased()
for ext in extensions {
let extLower = ext.lowercased()
let extUpper = ext.uppercased()
let strength = extUpper.count - extLower.count
if strength > maxStrength {
maxStrength = strength
strongestExtension = ext
}
}
return classLower + "." + strongestExtension
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var maxStrength = -1000
var strongestExtension = ""
let classLower = className.lowercased()
let classUpper = className.uppercased()
for ext in extensions {
let extLower = ext.lowercased()
let extUpper = ext.uppercased()
let strength = extUpper.count - extLower.count
if strength > maxStrength {
maxStrength = strength
strongestExtension = ext
}
}
return classLower + "." + strongestExtension
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let classUpper = className.uppercased() // initialization of immutable value 'classUpper' was never used; consider replacing with assignment to '_' or removing it
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let class_name = className.lowercased().replacingOccurrences(of: " ", with: "_")
var max_strength = Int.min
var strongest_extension = ""
for extension_name in extensions {
let cap = extension_name.filter { $0.isUppercase }.count
let sm = extension_name.filter { $0.isLowercase }.count
let strength = cap - sm
if strength > max_strength {
max_strength = strength
strongest_extension = extension_name
}
}
return "\(class_name).\(strongest_extension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
let class_name = className.lowercased().replacingOccurrences(of: " ", with: "_")
var max_strength = Int.min
var strongest_extension = ""
for extension_name in extensions {
let cap = extension_name.filter { $0.isUppercase }.count
let sm = extension_name.filter { $0.isLowercase }.count
let strength = cap - sm
if strength > max_strength {
max_strength = strength
strongest_extension = extension_name
}
}
return "\(class_name).\(strongest_extension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var maxStrength = Int.min
let classLower = className.lowercased()
let classUpper = className.uppercased()
for extensionName in extensions {
let extensionLower = extensionName.lowercased()
let extensionUpper = extensionName.uppercased()
let strength = extensionUpper.count - extensionLower.count
if strength > maxStrength {
maxStrength = strength
strongestExtension = extensionName
}
}
return classLower + "_" + strongestExtension
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var maxStrength = Int.min
let classLower = className.lowercased()
let classUpper = className.uppercased()
for extensionName in extensions {
let extensionLower = extensionName.lowercased()
let extensionUpper = extensionName.uppercased()
let strength = extensionUpper.count - extensionLower.count
if strength > maxStrength {
maxStrength = strength
strongestExtension = extensionName
}
}
return classLower + "_" + strongestExtension
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
let classUpper = className.uppercased() // initialization of immutable value 'classUpper' was never used; consider replacing with assignment to '_' or removing it
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var maxStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > maxStrength {
maxStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var maxStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > maxStrength {
maxStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return className.lowercased() + "." + strongestExtension
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var strongestStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > strongestStrength {
strongestStrength = strength
strongestExtension = extensionName
}
}
return className.lowercased() + "." + strongestExtension
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var maxStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > maxStrength {
maxStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = ""
var maxStrength = Int.min
for extensionName in extensions {
let capCount = extensionName.filter { $0.isUppercase }.count
let smCount = extensionName.filter { $0.isLowercase }.count
let strength = capCount - smCount
if strength > maxStrength {
maxStrength = strength
strongestExtension = extensionName
}
}
return "\(className.lowercased()).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
for i in 0..<n {
let rotated = String(b.dropFirst(i) + b.prefix(i))
if a.contains(rotated) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
for i in 0..<n {
let rotated = String(b.dropFirst(i) + b.prefix(i))
if a.contains(rotated) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
let bLength = b.count
let aLength = a.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
let index = a.index(a.startIndex, offsetBy: i)
let subString = String(a[index...])
let subString2 = String(a[index..<a.endIndex]) + String(a[..<index])
if subString.contains(b) || subString2.contains(b) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bLength = b.count
let aLength = a.count
if bLength > aLength {
return false
}
for i in 0..<aLength {
let index = a.index(a.startIndex, offsetBy: i)
let subString = String(a[index...])
let subString2 = String(a[index..<a.endIndex]) + String(a[..<index])
if subString.contains(b) || subString2.contains(b) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
for i in 0..<n {
let rotated = String(b.dropFirst(i) + b.prefix(i))
if a.contains(rotated) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
for i in 0..<n {
let rotated = String(b.dropFirst(i) + b.prefix(i))
if a.contains(rotated) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
let a = Array(a)
let b = Array(b)
let n = a.count
let m = b.count
if m > n {
return false
}
for i in 0..<n {
var j = 0
while j < m && a[(i+j)%n] == b[j] {
j += 1
}
if j == m {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = Array(a)
let b = Array(b)
let n = a.count
let m = b.count
if m > n {
return false
}
for i in 0..<n {
var j = 0
while j < m && a[(i+j)%n] == b[j] {
j += 1
}
if j == m {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let a = Array(a)
let b = Array(b)
let n = a.count
let m = b.count
if m > n {
return false
}
for i in 0..<n-m+1 {
var j = 0
while j < m && a[i+j] == b[j] {
j += 1
}
if j == m {
return true
}
}
for i in 0..<n-m+1 {
var j = 0
while j < m && a[i+j] == b[j] {
j += 1
}
if j == m {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = Array(a)
let b = Array(b)
let n = a.count
let m = b.count
if m > n {
return false
}
for i in 0..<n-m+1 {
var j = 0
while j < m && a[i+j] == b[j] {
j += 1
}
if j == m {
return true
}
}
for i in 0..<n-m+1 {
var j = 0
while j < m && a[i+j] == b[j] {
j += 1
}
if j == m {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let bLength = b.count
let aLength = a.count
if bLength > aLength {
return false
}
for i in 0..<bLength {
let index = a.index(a.startIndex, offsetBy: i)
let subString = String(a[index...])
let rotatedString = subString + String(a[..<index])
if rotatedString.contains(b) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bLength = b.count
let aLength = a.count
if bLength > aLength {
return false
}
for i in 0..<bLength {
let index = a.index(a.startIndex, offsetBy: i)
let subString = String(a[index...])
let rotatedString = subString + String(a[..<index])
if rotatedString.contains(b) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let bLength = b.count
let aLength = a.count
if bLength > aLength {
return false
}
for i in 0 ..< bLength {
let start = a.index(a.startIndex, offsetBy: i)
let end = a.index(a.startIndex, offsetBy: i + bLength)
let subStr = a[start..<end]
if subStr == b {
return true
}
let rotatedStr = String(a.dropFirst(i) + a.prefix(i))
if rotatedStr == b {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bLength = b.count
let aLength = a.count
if bLength > aLength {
return false
}
for i in 0 ..< bLength {
let start = a.index(a.startIndex, offsetBy: i)
let end = a.index(a.startIndex, offsetBy: i + bLength)
let subStr = a[start..<end]
if subStr == b {
return true
}
let rotatedStr = String(a.dropFirst(i) + a.prefix(i))
if rotatedStr == b {
return true
}
}
return false
}
```
// Fatal error: String index is out of bounds
func cycpatternCheck(a: String, b: String) -> Bool {
let a = Array(a)
let b = Array(b)
let n = a.count
let m = b.count
if m > n {
return false
}
for i in 0..<n {
var j = 0
while j < m && a[(i+j)%n] == b[j] {
j += 1
}
if j == m {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = Array(a)
let b = Array(b)
let n = a.count
let m = b.count
if m > n {
return false
}
for i in 0..<n {
var j = 0
while j < m && a[(i+j)%n] == b[j] {
j += 1
}
if j == m {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let b = b + b
for i in 0..<a.count {
let index = a.index(a.startIndex, offsetBy: i)
let sub = String(a[index...])
if sub.contains(b) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let b = b + b
for i in 0..<a.count {
let index = a.index(a.startIndex, offsetBy: i)
let sub = String(a[index...])
if sub.contains(b) {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
let m = a.count
for i in 0..<n {
var j = 0
while j < n && i + j < m && a[a.index(a.startIndex, offsetBy: i + j)] == b[b.index(b.startIndex, offsetBy: j)] {
j += 1
}
if j == n {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let n = b.count
let m = a.count
for i in 0..<n {
var j = 0
while j < n && i + j < m && a[a.index(a.startIndex, offsetBy: i + j)] == b[b.index(b.startIndex, offsetBy: j)] {
j += 1
}
if j == n {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var countEven = 0
var countOdd = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
countEven += 1
} else {
countOdd += 1
}
num /= 10
}
return (countEven, countOdd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var countEven = 0
var countOdd = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
countEven += 1
} else {
countOdd += 1
}
num /= 10
}
return (countEven, countOdd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var countEven = 0
var countOdd = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
countEven += 1
} else {
countOdd += 1
}
num /= 10
}
return (countEven, countOdd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var countEven = 0
var countOdd = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
countEven += 1
} else {
countOdd += 1
}
num /= 10
}
return (countEven, countOdd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var countEven = 0
var countOdd = 0
var absNum = abs(num)
while absNum > 0 {
let digit = absNum % 10
if digit % 2 == 0 {
countEven += 1
} else {
countOdd += 1
}
absNum /= 10
}
return (countEven, countOdd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var countEven = 0
var countOdd = 0
var absNum = abs(num)
while absNum > 0 {
let digit = absNum % 10
if digit % 2 == 0 {
countEven += 1
} else {
countOdd += 1
}
absNum /= 10
}
return (countEven, countOdd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var countEven = 0
var countOdd = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
countEven += 1
} else {
countOdd += 1
}
num /= 10
}
return (countEven, countOdd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var countEven = 0
var countOdd = 0
var num = abs(num)
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
countEven += 1
} else {
countOdd += 1
}
num /= 10
}
return (countEven, countOdd)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
let numStr = String(abs(num))
var evenCount = 0
var oddCount = 0
for char in numStr {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOd