Metadata
Key | Value |
---|---|
engine | transformers |
prompt | instruct |
temp | 0.2 |
top_p | 0.95 |
max_new_tokens | 1024 |
n_completions | 10 |
Solutions
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
var sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
var sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
var sortedNumbers = numbers.sorted() // variable 'sortedNumbers' was never mutated; consider changing to 'let' constant
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
let current = sortedNumbers[i]
let next = sortedNumbers[i + 1]
if abs(current - next) < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
let current = sortedNumbers[i]
let next = sortedNumbers[i + 1]
if abs(current - next) < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
for i in 0..<numbers.count {
for j in i+1..<numbers.count {
if abs(numbers[i] - numbers[j]) < threshold {
return true
}
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] < threshold {
return true
}
}
return false
}
```
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] <= threshold {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if in given array of numbers, are any two numbers closer to each other than
given threshold.
hasCloseElements(numbers: [1.0, 2.0, 3.0], threshold: 0.5) == false
hasCloseElements(numbers: [1.0, 2.8, 3.0, 4.0, 5.0, 2.0], threshold: 0.3) == true
### Response:
```swift
func hasCloseElements(numbers: [Double], threshold: Double) -> Bool {
guard numbers.count > 1 else { return false }
let sortedNumbers = numbers.sorted()
for i in 0..<sortedNumbers.count - 1 {
if sortedNumbers[i + 1] - sortedNumbers[i] <= threshold {
return true
}
}
return false
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var depth: Int = 0
for char in parenString {
if char == "(" {
depth += 1
current += String(char)
} else if char == ")" {
depth -= 1
current += String(char)
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var depth: Int = 0
for char in parenString {
if char == "(" {
depth += 1
current += String(char)
} else if char == ")" {
depth -= 1
current += String(char)
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var depth: Int = 0
for char in parenString {
if char == "(" {
depth += 1
current.append(char)
} else if char == ")" {
depth -= 1
current.append(char)
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var depth: Int = 0
for char in parenString {
if char == "(" {
depth += 1
current.append(char)
} else if char == ")" {
depth -= 1
current.append(char)
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var current = ""
var depth = 0
for char in parenString {
if char == "(" {
depth += 1
current += String(char)
} else if char == ")" {
depth -= 1
current += String(char)
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result = [String]()
var current = ""
var depth = 0
for char in parenString {
if char == "(" {
depth += 1
current += String(char)
} else if char == ")" {
depth -= 1
current += String(char)
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var openParenCount: Int = 0
for char in parenString {
if char == "(" {
openParenCount += 1
current.append(char)
} else if char == ")" {
openParenCount -= 1
current.append(char)
if openParenCount == 0 {
result.append(current)
current = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var openParenCount: Int = 0
for char in parenString {
if char == "(" {
openParenCount += 1
current.append(char)
} else if char == ")" {
openParenCount -= 1
current.append(char)
if openParenCount == 0 {
result.append(current)
current = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: [Character] = []
var openParenCount = 0
for char in parenString {
if char == "(" {
openParenCount += 1
currentGroup.append(char)
} else if char == ")" {
openParenCount -= 1
currentGroup.append(char)
if openParenCount == 0 {
result.append(String(currentGroup))
currentGroup = []
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: [Character] = []
var openParenCount = 0
for char in parenString {
if char == "(" {
openParenCount += 1
currentGroup.append(char)
} else if char == ")" {
openParenCount -= 1
currentGroup.append(char)
if openParenCount == 0 {
result.append(String(currentGroup))
currentGroup = []
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup += String(char)
} else if char == ")" {
openBraces -= 1
currentGroup += String(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup = ""
var openBraces = 0
for char in parenString {
if char == "(" {
openBraces += 1
currentGroup += String(char)
} else if char == ")" {
openBraces -= 1
currentGroup += String(char)
if openBraces == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup += String(char)
} else if char == ")" {
openCount -= 1
currentGroup += String(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup = ""
var openCount = 0
for char in parenString {
if char == "(" {
openCount += 1
currentGroup += String(char)
} else if char == ")" {
openCount -= 1
currentGroup += String(char)
if openCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var depth: Int = 0
for char in parenString {
if char == "(" {
if depth == 0 {
current = "("
} else {
current += "("
}
depth += 1
} else if char == ")" {
depth -= 1
current += ")"
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var depth: Int = 0
for char in parenString {
if char == "(" {
if depth == 0 {
current = "("
} else {
current += "("
}
depth += 1
} else if char == ")" {
depth -= 1
current += ")"
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openParenthesesCount: Int = 0
for char in parenString {
if char == "(" {
openParenthesesCount += 1
currentGroup.append(char)
} else if char == ")" {
openParenthesesCount -= 1
currentGroup.append(char)
if openParenthesesCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var currentGroup: String = ""
var openParenthesesCount: Int = 0
for char in parenString {
if char == "(" {
openParenthesesCount += 1
currentGroup.append(char)
} else if char == ")" {
openParenthesesCount -= 1
currentGroup.append(char)
if openParenthesesCount == 0 {
result.append(currentGroup)
currentGroup = ""
}
}
}
return result
}
```
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var depth: Int = 0
for char in parenString {
if char == "(" {
depth += 1
current.append(char)
} else if char == ")" {
depth -= 1
current.append(char)
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the array of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
separateParenGroups(parenString: "( ) (( )) (( )( ))") == ["()", "(())", "(()())"]
### Response:
```swift
func separateParenGroups(parenString: String) -> [String] {
var result: [String] = []
var current: String = ""
var depth: Int = 0
for char in parenString {
if char == "(" {
depth += 1
current.append(char)
} else if char == ")" {
depth -= 1
current.append(char)
if depth == 0 {
result.append(current)
current = ""
}
}
}
return result
}
```
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
```
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
```
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
```
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
```
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
```
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
```
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number.truncatingRemainder(dividingBy: 1)
}
```
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
truncateNumber(number: 3.5) == 0.5
### Response:
```swift
func truncateNumber(number: Double) -> Double {
return number - floor(number)
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're given an array of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return true. Otherwise it should return false.
belowZero(operations: [1, 2, 3]) == false
belowZero(operations: [1, 2, -4, 5]) == true
### Response:
```swift
func belowZero(operations: [Int]) -> Bool {
var balance = 0
for operation in operations {
balance += operation
if balance < 0 {
return true
}
}
return false
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let sumOfAbsoluteDifferences = numbers.reduce(0.0) { $0 + abs($1 - mean) }
return sumOfAbsoluteDifferences / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let sumOfAbsoluteDifferences = numbers.reduce(0.0) { $0 + abs($1 - mean) }
return sumOfAbsoluteDifferences / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0.0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0.0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0.0, +) / Double(deviations.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0.0, +) / Double(deviations.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let deviation = numbers.map { abs($0 - mean) }
return deviation.reduce(0.0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let deviation = numbers.map { abs($0 - mean) }
return deviation.reduce(0.0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else {
return 0.0
}
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let deviation = numbers.map { abs($0 - mean) }.reduce(0.0, +)
return deviation / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else {
return 0.0
}
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let deviation = numbers.map { abs($0 - mean) }.reduce(0.0, +)
return deviation / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let absDiffs = numbers.map { abs($0 - mean) }
return absDiffs.reduce(0.0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0.0, +) / Double(numbers.count)
let absDiffs = numbers.map { abs($0 - mean) }
return absDiffs.reduce(0.0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviations = numbers.map { abs($0 - mean) }
return deviations.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0, +) / Double(numbers.count)
let mad = numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
return mad
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0.0 }
let mean = numbers.reduce(0, +) / Double(numbers.count)
let mad = numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
return mad
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0 }
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviation = numbers.map { abs($0 - mean) }
return deviation.reduce(0, +) / Double(numbers.count)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0 }
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviation = numbers.map { abs($0 - mean) }
return deviation.reduce(0, +) / Double(numbers.count)
}
```
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0 }
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviation = numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
return deviation
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
meanAbsoluteDeviation(numbers: [1.0, 2.0, 3.0, 4.0]) == 1.0
### Response:
```swift
func meanAbsoluteDeviation(numbers: [Double]) -> Double {
guard numbers.count > 0 else { return 0 }
let mean = numbers.reduce(0, +) / Double(numbers.count)
let deviation = numbers.map { abs($0 - mean) }.reduce(0, +) / Double(numbers.count)
return deviation
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
result.removeLast()
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
result.removeLast()
return result
}
```
// Fatal error: Can't remove last element from an empty collection
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard numbers.count > 1 else { return numbers }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard numbers.count > 1 else { return numbers }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index < numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
result.append(numbers[0])
for number in numbers.dropFirst() {
result.append(delimeter)
result.append(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
result.append(numbers[0])
for number in numbers.dropFirst() {
result.append(delimeter)
result.append(number)
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
result.removeLast()
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
result.removeLast()
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard numbers.count > 0 else { return [] }
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
result.removeLast()
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard numbers.count > 0 else { return [] }
var result = [Int]()
for number in numbers {
result.append(number)
result.append(delimeter)
}
result.removeLast()
return result
}
```
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Insert a number 'delimeter' between every two consecutive elements of input array `numbers'
intersperse(numbers: [] as [Int], delimeter: 4) == [] as [Int]
intersperse(numbers: [1, 2, 3], delimeter: 4) == [1, 4, 2, 4, 3]
### Response:
```swift
func intersperse(numbers: [Int], delimeter: Int) -> [Int] {
guard !numbers.isEmpty else { return [] }
var result = [Int]()
for (index, number) in numbers.enumerated() {
result.append(number)
if index != numbers.count - 1 {
result.append(delimeter)
}
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result = [Int]()
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result = [Int]()
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result = [Int]()
for group in groups {
var currentDepth = 0
var maxDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
if currentDepth > maxDepth {
maxDepth = currentDepth
}
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result = [Int]()
for group in groups {
var currentDepth = 0
var maxDepth = 0
for char in group {
if char == "(" {
currentDepth += 1
if currentDepth > maxDepth {
maxDepth = currentDepth
}
} else if char == ")" {
currentDepth -= 1
}
}
result.append(maxDepth)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
return parenString.split(separator: " ").map { group in
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
return maxLevel
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
return parenString.split(separator: " ").map { group in
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
return maxLevel
}
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var deepestLevel = 0
var currentLevel = 0
for char in group {
if char == "(" {
currentLevel += 1
if currentLevel > deepestLevel {
deepestLevel = currentLevel
}
} else if char == ")" {
currentLevel -= 1
}
}
result.append(deepestLevel)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var deepestLevel = 0
var currentLevel = 0
for char in group {
if char == "(" {
currentLevel += 1
if currentLevel > deepestLevel {
deepestLevel = currentLevel
}
} else if char == ")" {
currentLevel -= 1
}
}
result.append(deepestLevel)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var deepestLevel = 0
var currentLevel = 0
for char in group {
if char == "(" {
currentLevel += 1
if currentLevel > deepestLevel {
deepestLevel = currentLevel
}
} else if char == ")" {
currentLevel -= 1
}
}
result.append(deepestLevel)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var deepestLevel = 0
var currentLevel = 0
for char in group {
if char == "(" {
currentLevel += 1
if currentLevel > deepestLevel {
deepestLevel = currentLevel
}
} else if char == ")" {
currentLevel -= 1
}
}
result.append(deepestLevel)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
var result: [Int] = []
let groups = parenString.split(separator: " ")
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result: [Int] = []
for group in groups {
var currentLevel = 0
var maxLevel = 0
for char in group {
if char == "(" {
currentLevel += 1
maxLevel = max(maxLevel, currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
result.append(maxLevel)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result: [Int] = []
for group in groups {
var currentLevel = 0
var maxLevel = 0
for char in group {
if char == "(" {
currentLevel += 1
maxLevel = max(maxLevel, currentLevel)
} else if char == ")" {
currentLevel -= 1
}
}
result.append(maxLevel)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result: [Int] = []
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result: [Int] = []
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result: [Int] = []
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
if level > maxLevel {
maxLevel = level
}
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result: [Int] = []
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
if level > maxLevel {
maxLevel = level
}
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
```
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result = [Int]()
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
parseNestedParens(parenString: "(()()) ((())) () ((())()())") == [2, 3, 1, 3]
### Response:
```swift
func parseNestedParens(parenString: String) -> [Int] {
let groups = parenString.split(separator: " ")
var result = [Int]()
for group in groups {
var level = 0
var maxLevel = 0
for char in group {
if char == "(" {
level += 1
maxLevel = max(maxLevel, level)
} else if char == ")" {
level -= 1
}
}
result.append(maxLevel)
}
return result
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that contain given substring
filterBySubstring(strings: [] as [String], substring: "a") == [] as [String]
filterBySubstring(strings: ["abc", "bacd", "cde", "array"], substring: "a") == ["abc", "bacd", "array"]
### Response:
```swift
func filterBySubstring(strings: [String], substring: String) -> [String] {
return strings.filter { $0.contains(substring) }
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given array of integers, return a tuple consisting of a sum and a product of all the integers in an array.
Empty sum should be equal to 0 and empty product should be equal to 1.
sumProduct(numbers: [] as [Int]) == (0, 1)
sumProduct(numbers: [1, 2, 3, 4]) == (10, 24)
### Response:
```swift
func sumProduct(numbers: [Int]) -> (Int, Int) {
var sum = 0
var product = 1
for number in numbers {
sum += number
product *= number
}
return (sum, product)
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result: [Int] = []
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result: [Int] = []
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
```
max = max(max, number) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var max = Int.min
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var max = Int.min
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
```
max = max(max, number) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
```
max = max(max, number) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result = [Int]()
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result = [Int]()
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
```
max = max(max, number) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result = [Int]()
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result = [Int]()
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
```
max = max(max, number) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result = [Int]()
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result = [Int]()
for number in numbers {
max = max(max, number)
result.append(max)
}
return result
}
```
max = max(max, number) // cannot call value of non-function type 'Int'
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var max = Int.min
for number in numbers {
max = Swift.max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result: [Int] = []
var max = Int.min
for number in numbers {
max = Swift.max(max, number)
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = Swift.max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = Swift.max(max, number)
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = Swift.max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var result = [Int]()
var max = Int.min
for number in numbers {
max = Swift.max(max, number)
result.append(max)
}
return result
}
```
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result = [Int]()
for number in numbers {
max = Swift.max(max, number)
result.append(max)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a given array of integers, generate an array of rolling maximum element found until given moment
in the sequence.
rollingMax(numbers: [1, 2, 3, 2, 3, 4, 2]) == [1, 2, 3, 3, 3, 4, 4]
### Response:
```swift
func rollingMax(numbers: [Int]) -> [Int] {
var max = Int.min
var result = [Int]()
for number in numbers {
max = Swift.max(max, number)
result.append(max)
}
return result
}
```
func makePalindrome(string: String) -> String {
let reversed = String(string.reversed())
for i in 0...string.count {
let prefix = String(string.prefix(i))
if reversed.hasPrefix(prefix) {
return string + reversed.dropFirst(i)
}
}
return string
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let reversed = String(string.reversed())
for i in 0...string.count {
let prefix = String(string.prefix(i))
if reversed.hasPrefix(prefix) {
return string + reversed.dropFirst(i)
}
}
return string
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
guard !string.isEmpty else { return "" }
let reversedString = String(string.reversed())
let maxLength = string.count
var longestPalindrome = ""
for length in (1...maxLength).reversed() {
let startIndex = string.index(string.startIndex, offsetBy: length)
let substring = String(string[..<startIndex])
let reversedSubstring = String(substring.reversed())
if reversedSubstring == substring {
longestPalindrome = substring
break
}
}
let prefix = String(string[string.startIndex..<longestPalindrome.startIndex])
let reversedPrefix = String(prefix.reversed())
return string + reversedPrefix
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
guard !string.isEmpty else { return "" }
let reversedString = String(string.reversed())
let maxLength = string.count
var longestPalindrome = ""
for length in (1...maxLength).reversed() {
let startIndex = string.index(string.startIndex, offsetBy: length)
let substring = String(string[..<startIndex])
let reversedSubstring = String(substring.reversed())
if reversedSubstring == substring {
longestPalindrome = substring
break
}
}
let prefix = String(string[string.startIndex..<longestPalindrome.startIndex])
let reversedPrefix = String(prefix.reversed())
return string + reversedPrefix
}
```
let reversedString = String(string.reversed()) // initialization of immutable value 'reversedString' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
for index in 0...string.count {
let prefix = string.prefix(index)
if reversedString.hasPrefix(String(prefix)) {
return string + reversedString.dropFirst(index)
}
}
return string + reversedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
for index in 0...string.count {
let prefix = string.prefix(index)
if reversedString.hasPrefix(String(prefix)) {
return string + reversedString.dropFirst(index)
}
}
return string + reversedString
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
var string = string
if string.isEmpty {
return ""
}
let reversedString = String(string.reversed())
for i in 0...string.count {
let prefix = String(string.prefix(i))
if reversedString.hasPrefix(prefix) {
return string + reversedString.suffix(reversedString.count - i)
}
}
return string
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
var string = string
if string.isEmpty {
return ""
}
let reversedString = String(string.reversed())
for i in 0...string.count {
let prefix = String(string.prefix(i))
if reversedString.hasPrefix(prefix) {
return string + reversedString.suffix(reversedString.count - i)
}
}
return string
}
```
var string = string // variable 'string' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
let reversed = String(string.reversed())
for i in 0...string.count {
let prefix = string.prefix(i)
if reversed.hasPrefix(String(prefix)) {
return string + String(reversed.dropFirst(i))
}
}
return string
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let reversed = String(string.reversed())
for i in 0...string.count {
let prefix = string.prefix(i)
if reversed.hasPrefix(String(prefix)) {
return string + String(reversed.dropFirst(i))
}
}
return string
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return ""
}
let reversedString = String(string.reversed())
for i in 0...string.count {
let prefix = String(reversedString.prefix(i))
if string.hasSuffix(prefix) {
return string + String(reversedString.dropFirst(i))
}
}
return string + reversedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return ""
}
let reversedString = String(string.reversed())
for i in 0...string.count {
let prefix = String(reversedString.prefix(i))
if string.hasSuffix(prefix) {
return string + String(reversedString.dropFirst(i))
}
}
return string + reversedString
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return ""
}
let reversedString = String(string.reversed())
for i in 0...string.count {
let prefix = String(reversedString.prefix(i))
if string.hasSuffix(prefix) {
return string + String(reversedString.dropFirst(i))
}
}
return string + reversedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return ""
}
let reversedString = String(string.reversed())
for i in 0...string.count {
let prefix = String(reversedString.prefix(i))
if string.hasSuffix(prefix) {
return string + String(reversedString.dropFirst(i))
}
}
return string + reversedString
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
if string.isEmpty {
return ""
}
let reversedString = String(string.reversed())
let maxLength = string.count
for i in 0...maxLength {
let prefix = String(reversedString.prefix(i))
if string.hasSuffix(prefix) {
return string + String(reversedString.dropFirst(i))
}
}
return string + reversedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
if string.isEmpty {
return ""
}
let reversedString = String(string.reversed())
let maxLength = string.count
for i in 0...maxLength {
let prefix = String(reversedString.prefix(i))
if string.hasSuffix(prefix) {
return string + String(reversedString.dropFirst(i))
}
}
return string + reversedString
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
let maxLength = string.count
var palindrome = ""
for i in 0...maxLength {
let prefix = String(string.prefix(i))
let suffix = String(reversedString.suffix(i))
if prefix == suffix {
palindrome = prefix + String(string.dropFirst(i)) + suffix
break
}
}
return palindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
let reversedString = String(string.reversed())
let maxLength = string.count
var palindrome = ""
for i in 0...maxLength {
let prefix = String(string.prefix(i))
let suffix = String(reversedString.suffix(i))
if prefix == suffix {
palindrome = prefix + String(string.dropFirst(i)) + suffix
break
}
}
return palindrome
}
```
// XCTAssertTrue failed
func makePalindrome(string: String) -> String {
guard !string.isEmpty else { return "" }
let reversed = String(string.reversed())
for i in 0...string.count {
let prefix = String(reversed.prefix(i))
if string.hasSuffix(prefix) {
return string + String(reversed.dropFirst(i))
}
}
return string + reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
makePalindrome(string: "") == ""
makePalindrome(string: "cat") == "catac"
makePalindrome(string: "cata") == "catac"
### Response:
```swift
func makePalindrome(string: String) -> String {
guard !string.isEmpty else { return "" }
let reversed = String(string.reversed())
for i in 0...string.count {
let prefix = String(reversed.prefix(i))
if string.hasSuffix(prefix) {
return string + String(reversed.dropFirst(i))
}
}
return string + reversed
}
```
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2) ?? 0
let bInt = Int(b, radix: 2) ?? 0
return String(aInt ^ bInt, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2) ?? 0
let bInt = Int(b, radix: 2) ?? 0
return String(aInt ^ bInt, radix: 2)
}
```
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2)!
let bInt = Int(b, radix: 2)!
let resultInt = aInt ^ bInt
return String(resultInt, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2)!
let bInt = Int(b, radix: 2)!
let resultInt = aInt ^ bInt
return String(resultInt, radix: 2)
}
```
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
let a = a.map { Int(String($0))! }
let b = b.map { Int(String($0))! }
let result = zip(a, b).map { $0 ^ $1 }
return result.map { String($0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
let a = a.map { Int(String($0))! }
let b = b.map { Int(String($0))! }
let result = zip(a, b).map { $0 ^ $1 }
return result.map { String($0) }.joined()
}
```
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2) ?? 0
let bInt = Int(b, radix: 2) ?? 0
let result = aInt ^ bInt
return String(result, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2) ?? 0
let bInt = Int(b, radix: 2) ?? 0
let result = aInt ^ bInt
return String(result, radix: 2)
}
```
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2)!
let bInt = Int(b, radix: 2)!
let resultInt = aInt ^ bInt
return String(resultInt, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2)!
let bInt = Int(b, radix: 2)!
let resultInt = aInt ^ bInt
return String(resultInt, radix: 2)
}
```
// XCTAssertTrue failed
func stringXor(a: String, b: String) -> String {
var result = ""
for (aChar, bChar) in zip(a, b) {
if aChar == "0" && bChar == "0" {
result += "0"
} else if aChar == "0" && bChar == "1" {
result += "1"
} else if aChar == "1" && bChar == "0" {
result += "1"
} else {
result += "0"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (aChar, bChar) in zip(a, b) {
if aChar == "0" && bChar == "0" {
result += "0"
} else if aChar == "0" && bChar == "1" {
result += "1"
} else if aChar == "1" && bChar == "0" {
result += "1"
} else {
result += "0"
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
guard a.count == b.count else { return "" }
var result = ""
for (aChar, bChar) in zip(a, b) {
if aChar != bChar {
result += "1"
} else {
result += "0"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
guard a.count == b.count else { return "" }
var result = ""
for (aChar, bChar) in zip(a, b) {
if aChar != bChar {
result += "1"
} else {
result += "0"
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (aChar, bChar) in zip(a, b) {
if aChar == "0", bChar == "0" {
result += "0"
} else if aChar == "0", bChar == "1" {
result += "1"
} else if aChar == "1", bChar == "0" {
result += "1"
} else {
result += "0"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (aChar, bChar) in zip(a, b) {
if aChar == "0", bChar == "0" {
result += "0"
} else if aChar == "0", bChar == "1" {
result += "1"
} else if aChar == "1", bChar == "0" {
result += "1"
} else {
result += "0"
}
}
return result
}
```
func stringXor(a: String, b: String) -> String {
var result = ""
for (a, b) in zip(a, b) {
result += String(a == b ? "0" : "1")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
var result = ""
for (a, b) in zip(a, b) {
result += String(a == b ? "0" : "1")
}
return result
}
```
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2) ?? 0
let bInt = Int(b, radix: 2) ?? 0
let result = aInt ^ bInt
return String(result, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
stringXor(a: "010", b: "110") == "100"
### Response:
```swift
func stringXor(a: String, b: String) -> String {
let aInt = Int(a, radix: 2) ?? 0
let bInt = Int(b, radix: 2) ?? 0
let result = aInt ^ bInt
return String(result, radix: 2)
}
```
// XCTAssertTrue failed
func longest(strings: [String]) -> String? {
guard let longest = strings.max(by: { $0.count < $1.count }) else {
return nil
}
return longest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard let longest = strings.max(by: { $0.count < $1.count }) else {
return nil
}
return longest
}
```
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard let longest = strings.max(by: { $0.count < $1.count }) else {
return nil
}
return longest
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard let longest = strings.max(by: { $0.count < $1.count }) else {
return nil
}
return longest
}
```
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else {
return nil
}
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.max(by: { $0.count < $1.count })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max { $0.count < $1.count }
}
```
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.max(by: { $0.count < $1.count })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard strings.count > 0 else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Out of array of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return nil in case the input array is empty.
longest(strings: [] as [String]) == nil
longest(strings: ["a", "b", "c"]) == "a"
longest(strings: ["a", "bb", "ccc"]) == "ccc"
### Response:
```swift
func longest(strings: [String]) -> String? {
guard !strings.isEmpty else { return nil }
return strings.max(by: { $0.count < $1.count })
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
if b == 0 {
return a
}
return greatestCommonDivisor(a: b, b: a % b)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
if b == 0 {
return a
}
return greatestCommonDivisor(a: b, b: a % b)
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
if b == 0 {
return a
} else {
return greatestCommonDivisor(a: b, b: a % b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
if b == 0 {
return a
} else {
return greatestCommonDivisor(a: b, b: a % b)
}
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
if b == 0 {
return a
}
return greatestCommonDivisor(a: b, b: a % b)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
if b == 0 {
return a
}
return greatestCommonDivisor(a: b, b: a % b)
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
if a == 0 {
return b
}
if b == 0 {
return a
}
if a > b {
return greatestCommonDivisor(a: a % b, b: b)
} else {
return greatestCommonDivisor(a: a, b: b % a)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
if a == 0 {
return b
}
if b == 0 {
return a
}
if a > b {
return greatestCommonDivisor(a: a % b, b: b)
} else {
return greatestCommonDivisor(a: a, b: b % a)
}
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a greatest common divisor of two integers a and b
greatestCommonDivisor(a: 3, b: 5) == 1
greatestCommonDivisor(a: 25, b: 15) == 5
### Response:
```swift
func greatestCommonDivisor(a: Int, b: Int) -> Int {
var a = a
var b = b
while b != 0 {
let temp = b
b = a % b
a = temp
}
return a
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes = [String]()
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var prefixes: [String] = []
for i in 0..<string.count {
prefixes.append(String(string.prefix(i + 1)))
}
return prefixes
}
```
func allPrefixes(string: String) -> [String] {
var result = [String]()
for i in 0..<string.count {
result.append(String(string.prefix(i + 1)))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of all prefixes from shortest to longest of the input string
allPrefixes(string: "abc") == ["a", "ab", "abc"]
### Response:
```swift
func allPrefixes(string: String) -> [String] {
var result = [String]()
for i in 0..<string.count {
result.append(String(string.prefix(i + 1)))
}
return result
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return a string containing space-delimited numbers starting from 0 upto n inclusive.
stringSequence(n: 0) == "0"
stringSequence(n: 5) == "0 1 2 3 4 5"
### Response:
```swift
func stringSequence(n: Int) -> String {
var result = ""
for i in 0...n {
result += "\(i) "
}
return result
}
```
// XCTAssertTrue failed
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char)
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char)
}
return set.count
}
```
// XCTAssertTrue failed
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char)
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char)
}
return set.count
}
```
// XCTAssertTrue failed
func countDistinctCharacters(string: String) -> Int {
let lowercasedString = string.lowercased()
let set = Set(lowercasedString)
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
let lowercasedString = string.lowercased()
let set = Set(lowercasedString)
return set.count
}
```
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for char in string {
characterSet.insert(char.lowercased().first!)
}
return characterSet.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for char in string {
characterSet.insert(char.lowercased().first!)
}
return characterSet.count
}
```
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
```
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
```
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
```
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var set = Set<Character>()
for char in string {
set.insert(char.lowercased().first!)
}
return set.count
}
```
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for char in string {
characterSet.insert(char.lowercased().first!)
}
return characterSet.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string, find out how many distinct characters (regardless of case) does it consist of
countDistinctCharacters(string: "xyzXYZ") == 3
countDistinctCharacters(string: "Jerry") == 4
### Response:
```swift
func countDistinctCharacters(string: String) -> Int {
var characterSet = Set<Character>()
for char in string {
characterSet.insert(char.lowercased().first!)
}
return characterSet.count
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentBeat = 0
for char in musicString {
switch char {
case "o":
currentBeat = 4
case "|":
result.append(currentBeat)
currentBeat = 0
case ".":
currentBeat += 1
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentBeat = 0
for char in musicString {
switch char {
case "o":
currentBeat = 4
case "|":
result.append(currentBeat)
currentBeat = 0
case ".":
currentBeat += 1
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
if note == "o" {
result.append(4)
} else if note == "o|" {
result.append(2)
} else if note == ".|" {
result.append(1)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.split(separator: " ")
for note in notes {
if note == "o" {
result.append(4)
} else if note == "o|" {
result.append(2)
} else if note == ".|" {
result.append(1)
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
var currentNote = ""
for char in musicString {
currentNote.append(char)
if char == " " {
result.append(getNoteLength(note: currentNote))
currentNote = ""
}
}
result.append(getNoteLength(note: currentNote))
return result
}
func getNoteLength(note: String) -> Int {
switch note {
case "o":
return 4
case "o|":
return 2
case ".|":
return 1
default:
return 0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
var currentNote = ""
for char in musicString {
currentNote.append(char)
if char == " " {
result.append(getNoteLength(note: currentNote))
currentNote = ""
}
}
result.append(getNoteLength(note: currentNote))
return result
}
func getNoteLength(note: String) -> Int {
switch note {
case "o":
return 4
case "o|":
return 2
case ".|":
return 1
default:
return 0
}
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
var currentNote = ""
for char in musicString {
if char == " " {
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
} else {
currentNote.append(char)
}
}
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
var currentNote = ""
for char in musicString {
if char == " " {
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
} else {
currentNote.append(char)
}
}
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
let notes = musicString.components(separatedBy: " ")
for note in notes {
switch note {
case "o":
result.append(4)
case "o|":
result.append(2)
case ".|":
result.append(1)
default:
break
}
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
if char == " " {
result.append(getNoteLength(note: currentNote))
currentNote = ""
} else {
currentNote += String(char)
}
}
result.append(getNoteLength(note: currentNote))
return result
}
func getNoteLength(note: String) -> Int {
switch note {
case "o":
return 4
case "o|":
return 2
case ".|":
return 1
default:
return 0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
if char == " " {
result.append(getNoteLength(note: currentNote))
currentNote = ""
} else {
currentNote += String(char)
}
}
result.append(getNoteLength(note: currentNote))
return result
}
func getNoteLength(note: String) -> Int {
switch note {
case "o":
return 4
case "o|":
return 2
case ".|":
return 1
default:
return 0
}
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
if char == " " {
result.append(getNoteDuration(note: currentNote))
currentNote = ""
} else {
currentNote.append(char)
}
}
result.append(getNoteDuration(note: currentNote))
return result
}
func getNoteDuration(note: String) -> Int {
switch note {
case "o":
return 4
case "o|":
return 2
case ".|":
return 1
default:
return 0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
if char == " " {
result.append(getNoteDuration(note: currentNote))
currentNote = ""
} else {
currentNote.append(char)
}
}
result.append(getNoteDuration(note: currentNote))
return result
}
func getNoteDuration(note: String) -> Int {
switch note {
case "o":
return 4
case "o|":
return 2
case ".|":
return 1
default:
return 0
}
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
var currentNote = ""
for char in musicString {
if char == " " {
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
} else {
currentNote.append(char)
}
}
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
var currentNote = ""
for char in musicString {
if char == " " {
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
} else {
currentNote.append(char)
}
}
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
return result
}
```
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
var currentNote = ""
for char in musicString {
if char == " " {
result.append(getNoteDuration(note: currentNote))
currentNote = ""
} else {
currentNote.append(char)
}
}
result.append(getNoteDuration(note: currentNote))
return result
}
func getNoteDuration(note: String) -> Int {
switch note {
case "o":
return 4
case "o|":
return 2
case ".|":
return 1
default:
return 0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result: [Int] = []
var currentNote = ""
for char in musicString {
if char == " " {
result.append(getNoteDuration(note: currentNote))
currentNote = ""
} else {
currentNote.append(char)
}
}
result.append(getNoteDuration(note: currentNote))
return result
}
func getNoteDuration(note: String) -> Int {
switch note {
case "o":
return 4
case "o|":
return 2
case ".|":
return 1
default:
return 0
}
}
```
// XCTAssertTrue failed
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
if char == " " {
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
} else {
currentNote += String(char)
}
}
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return array of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
parseMusic(musicString: "o o| .| o| o| .| .| .| .| o o") == [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
### Response:
```swift
func parseMusic(musicString: String) -> [Int] {
var result = [Int]()
var currentNote = ""
for char in musicString {
if char == " " {
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
currentNote = ""
} else {
currentNote += String(char)
}
}
if currentNote == "o" {
result.append(4)
} else if currentNote == "o|" {
result.append(2)
} else if currentNote == ".|" {
result.append(1)
}
return result
}
```
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.upperBound :
string.index(after: range.lowerBound)
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.upperBound :
string.index(after: range.lowerBound)
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.upperBound :
string.index(after: range.lowerBound)
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.upperBound :
string.index(after: range.lowerBound)
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
guard !string.isEmpty && !substring.isEmpty else { return 0 }
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
guard !string.isEmpty && !substring.isEmpty else { return 0 }
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.upperBound :
string.index(after: range.lowerBound)
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.upperBound :
string.index(after: range.lowerBound)
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.upperBound :
string.index(after: range.lowerBound)
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.upperBound :
string.index(after: range.lowerBound)
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.upperBound
}
return count
}
```
// XCTAssertTrue failed
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.lowerBound : range.upperBound
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Find how many times a given substring can be found in the original string. Count overlaping cases.
howManyTimes(string: "", substring: "a") == 0
howManyTimes(string: "aaa", substring: "a") == 3
howManyTimes(string: "aaaa", substring: "aa") == 3
### Response:
```swift
func howManyTimes(string: String, substring: String) -> Int {
var count = 0
var startIndex = string.startIndex
while startIndex < string.endIndex,
let range = string[startIndex...].range(of: substring) {
count += 1
startIndex = range.lowerBound < range.upperBound ? range.lowerBound : range.upperBound
}
return count
}
```
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers.split(separator: " ").sorted {
numberMap[$0]! < numberMap[$1]!
}
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers.split(separator: " ").sorted {
numberMap[$0]! < numberMap[$1]!
}
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").sorted { // instance method 'sorted(using:)' requires the types 'ArraySlice<String.Element>' (aka 'ArraySlice<Character>') and '((String, String) -> Bool).Compared' be equivalent
let sortedNumbers = numbers.split(separator: " ").sorted { // type '(String, String) -> Bool' cannot conform to 'SortComparator'
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { String($0) }
.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { String($0) }
.joined(separator: " ")
return sortedNumbers
}
```
.map { numberMap[$0]! } // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ")
let sortedNumberWords = numberWords.sorted {
switch ($0, $1) {
case ("zero", _): return true
case ("one", "zero"): return false
case ("one", _): return true
case ("two", "zero"): return false
case ("two", "one"): return false
case ("two", _): return true
case ("three", "zero"): return false
case ("three", "one"): return false
case ("three", "two"): return false
case ("three", _): return true
case ("four", "zero"): return false
case ("four", "one"): return false
case ("four", "two"): return false
case ("four", "three"): return false
case ("four", _): return true
case ("five", "zero"): return false
case ("five", "one"): return false
case ("five", "two"): return false
case ("five", "three"): return false
case ("five", "four"): return false
case ("five", _): return true
case ("six", "zero"): return false
case ("six", "one"): return false
case ("six", "two"): return false
case ("six", "three"): return false
case ("six", "four"): return false
case ("six", "five"): return false
case ("six", _): return true
case ("seven", "zero"): return false
case ("seven", "one"): return false
case ("seven", "two"): return false
case ("seven", "three"): return false
case ("seven", "four"): return false
case ("seven", "five"): return false
case ("seven", "six"): return false
case ("seven", _): return true
case ("eight", "zero"): return false
case ("eight", "one"): return false
case ("eight", "two"): return false
case ("eight", "three"): return false
case ("eight", "four"): return false
case ("eight", "five"): return false
case ("eight", "six"): return false
case ("eight", "seven"): return false
case ("eight", _): return true
case ("nine", "zero"): return false
case ("nine", "one"): return false
case ("nine", "two"): return false
case ("nine", "three"): return false
case ("nine", "four"): return false
case ("nine", "five"): return false
case ("nine", "six"): return false
case ("nine", "seven"): return false
case ("nine", "eight"): return false
case ("nine", _): return true
default: return false
}
}
return sortedNumberWords.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberWords = numbers.split(separator: " ")
let sortedNumberWords = numberWords.sorted {
switch ($0, $1) {
case ("zero", _): return true
case ("one", "zero"): return false
case ("one", _): return true
case ("two", "zero"): return false
case ("two", "one"): return false
case ("two", _): return true
case ("three", "zero"): return false
case ("three", "one"): return false
case ("three", "two"): return false
case ("three", _): return true
case ("four", "zero"): return false
case ("four", "one"): return false
case ("four", "two"): return false
case ("four", "three"): return false
case ("four", _): return true
case ("five", "zero"): return false
case ("five", "one"): return false
case ("five", "two"): return false
case ("five", "three"): return false
case ("five", "four"): return false
case ("five", _): return true
case ("six", "zero"): return false
case ("six", "one"): return false
case ("six", "two"): return false
case ("six", "three"): return false
case ("six", "four"): return false
case ("six", "five"): return false
case ("six", _): return true
case ("seven", "zero"): return false
case ("seven", "one"): return false
case ("seven", "two"): return false
case ("seven", "three"): return false
case ("seven", "four"): return false
case ("seven", "five"): return false
case ("seven", "six"): return false
case ("seven", _): return true
case ("eight", "zero"): return false
case ("eight", "one"): return false
case ("eight", "two"): return false
case ("eight", "three"): return false
case ("eight", "four"): return false
case ("eight", "five"): return false
case ("eight", "six"): return false
case ("eight", "seven"): return false
case ("eight", _): return true
case ("nine", "zero"): return false
case ("nine", "one"): return false
case ("nine", "two"): return false
case ("nine", "three"): return false
case ("nine", "four"): return false
case ("nine", "five"): return false
case ("nine", "six"): return false
case ("nine", "seven"): return false
case ("nine", "eight"): return false
case ("nine", _): return true
default: return false
}
}
return sortedNumberWords.joined(separator: " ")
}
```
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberMap[$0]! }.sorted().map { String($0) }
return sortedNumbers.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap = ["zero": 0, "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9]
let sortedNumbers = numbers.split(separator: " ").map { numberMap[$0]! }.sorted().map { String($0) }
return sortedNumbers.joined(separator: " ")
}
```
let sortedNumbers = numbers.split(separator: " ").map { numberMap[$0]! }.sorted().map { String($0) } // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func sortNumbers(numbers: String) -> String {
let numberMap = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { String($0) }
.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { String($0) }
.joined(separator: " ")
return sortedNumbers
}
```
.map { numberMap[$0]! } // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func sortNumbers(numbers: String) -> String {
let numberMap = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { String($0) }
.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { String($0) }
.joined(separator: " ")
return sortedNumbers
}
```
.map { numberMap[$0]! } // cannot convert value of type 'String.SubSequence' (aka 'Substring') to expected argument type 'String'
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { numberMap.first(where: { $0.value == $0 })!.key }
.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { numberMap.first(where: { $0.value == $0 })!.key }
.joined(separator: " ")
return sortedNumbers
}
```
.map { numberMap.first(where: { $0.value == $0 })!.key } // contextual type for closure argument list expects 1 argument, which cannot be implicitly ignored
.map { numberMap.first(where: { $0.value == $0 })!.key } // binary operator '==' cannot be applied to operands of type 'Int' and 'Dictionary<String, Int>.Element' (aka '(key: String, value: Int)')
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { numberMap.first(where: { $0.value == $0 })!.key }
.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { numberMap.first(where: { $0.value == $0 })!.key }
.joined(separator: " ")
return sortedNumbers
}
```
.map { numberMap.first(where: { $0.value == $0 })!.key } // binary operator '==' cannot be applied to operands of type 'Int' and 'Dictionary<String, Int>.Element' (aka '(key: String, value: Int)')
.map { numberMap.first(where: { $0.value == $0 })!.key } // contextual type for closure argument list expects 1 argument, which cannot be implicitly ignored
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { numberMap.first(where: { $0.value == $0 })!.key }
.joined(separator: " ")
return sortedNumbers
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
let sortedNumbers = numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { numberMap.first(where: { $0.value == $0 })!.key }
.joined(separator: " ")
return sortedNumbers
}
```
.map { numberMap.first(where: { $0.value == $0 })!.key } // binary operator '==' cannot be applied to operands of type 'Int' and 'Dictionary<String, Int>.Element' (aka '(key: String, value: Int)')
.map { numberMap.first(where: { $0.value == $0 })!.key } // contextual type for closure argument list expects 1 argument, which cannot be implicitly ignored
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
return numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { numberMap.first(where: { $0.value == $0 })!.key }
.joined(separator: " ")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
sortNumbers(numbers: "three one five") == "one three five"
### Response:
```swift
func sortNumbers(numbers: String) -> String {
let numberMap: [String: Int] = [
"zero": 0,
"one": 1,
"two": 2,
"three": 3,
"four": 4,
"five": 5,
"six": 6,
"seven": 7,
"eight": 8,
"nine": 9
]
return numbers
.split(separator: " ")
.map { numberMap[$0]! }
.sorted()
.map { numberMap.first(where: { $0.value == $0 })!.key }
.joined(separator: " ")
}
```
.map { numberMap.first(where: { $0.value == $0 })!.key } // binary operator '==' cannot be applied to operands of type 'Int' and 'Dictionary<String, Int>.Element' (aka '(key: String, value: Int)')
.map { numberMap.first(where: { $0.value == $0 })!.key } // contextual type for closure argument list expects 1 argument, which cannot be implicitly ignored
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDistance = Double.greatestFiniteMagnitude
var closestPair = (Double.nan, Double.nan)
for i in 0..<numbers.count - 1 {
let distance = numbers[i + 1] - numbers[i]
if distance < minDistance {
minDistance = distance
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDistance = Double.greatestFiniteMagnitude
var closestPair = (Double.nan, Double.nan)
for i in 0..<numbers.count - 1 {
let distance = numbers[i + 1] - numbers[i]
if distance < minDistance {
minDistance = distance
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count-1 {
let diff = numbers[i+1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i+1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count-1 {
let diff = numbers[i+1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i+1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.nan, Double.nan)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.nan, Double.nan)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.leastNormalMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.leastNormalMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair = (Double.greatestFiniteMagnitude, Double.greatestFiniteMagnitude)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair: (Double, Double) = (0, 0)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From a supplied array of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
findClosestElements(numbers: [1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
### Response:
```swift
func findClosestElements(numbers: [Double]) -> (Double, Double) {
var minDiff = Double.greatestFiniteMagnitude
var closestPair: (Double, Double) = (0, 0)
for i in 0..<numbers.count - 1 {
let diff = numbers[i + 1] - numbers[i]
if diff < minDiff {
minDiff = diff
closestPair = (numbers[i], numbers[i + 1])
}
}
return closestPair
}
```
// XCTAssertTrue failed
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
let range = max - min
return numbers.map { ($0 - min) / range }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count >= 2 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of numbers (of at least two elements), apply a linear transform to that array,
such that the smallest number will become 0 and the largest will become 1
rescaleToUnit(numbers: [1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]
### Response:
```swift
func rescaleToUnit(numbers: [Double]) -> [Double] {
guard numbers.count > 1 else { return numbers }
let min = numbers.min()!
let max = numbers.max()!
return numbers.map { ($0 - min) / (max - min) }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter given array of any swiftthon values only for integers
filterIntegers(values: ["a", 3.14, 5]) == [5]
filterIntegers(values: [1, 2, 3, "abc", [:] as [AnyHashable : AnyHashable], [] as [AnyHashable]]) == [1, 2, 3]
### Response:
```swift
func filterIntegers(values: [AnyHashable]) -> [Int] {
return values.compactMap { $0 as? Int }
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func strlen(string: String) -> Int {
return string.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return length of given string
strlen(string: "") == 0
strlen(string: "abc") == 3
### Response:
```swift
func strlen(string: String) -> Int {
return string.count
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
for i in stride(from: n - 1, through: 1, by: -1) {
if n % i == 0 {
return i
}
}
return 1
}
```
func largestDivisor(n: Int) -> Int {
var result = 1
for i in 2..<n {
if n % i == 0 {
result = i
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var result = 1
for i in 2..<n {
if n % i == 0 {
result = i
}
}
return result
}
```
func largestDivisor(n: Int) -> Int {
var divisor = n - 1
while divisor > 0 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given number n, find the largest number that divides n evenly, smaller than n
largestDivisor(n: 15) == 5
### Response:
```swift
func largestDivisor(n: Int) -> Int {
var divisor = n - 1
while divisor > 0 {
if n % divisor == 0 {
return divisor
}
divisor -= 1
}
return 1
}
```
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
result.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
result.append(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
result.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
result.append(number)
}
return result
}
```
func factorize(n: Int) -> [Int] {
var n = n
var result: [Int] = []
var i = 2
while i * i <= n {
while n % i == 0 {
result.append(i)
n /= i
}
i += 1
}
if n > 1 {
result.append(n)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var n = n
var result: [Int] = []
var i = 2
while i * i <= n {
while n % i == 0 {
result.append(i)
n /= i
}
i += 1
}
if n > 1 {
result.append(n)
}
return result
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
factors.append(number)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
factors.append(number)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
result.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
result.append(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
result.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
result.append(number)
}
return result
}
```
func factorize(n: Int) -> [Int] {
var n = n
var factors: [Int] = []
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var n = n
var factors: [Int] = []
var i = 2
while i * i <= n {
if n % i == 0 {
factors.append(i)
n /= i
} else {
i += 1
}
}
if n > 1 {
factors.append(n)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
result.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
result.append(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
result.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
result.append(number)
}
return result
}
```
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
result.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
result.append(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
result.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
result.append(number)
}
return result
}
```
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
factors.append(number)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var factors = [Int]()
var number = n
var divisor = 2
while divisor * divisor <= number {
if number % divisor == 0 {
factors.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
if number > 1 {
factors.append(number)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var n = n
var factors = [Int]()
var i = 2
while i * i <= n {
while n % i == 0 {
factors.append(i)
n /= i
}
i += 1
}
if n > 1 {
factors.append(n)
}
return factors
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var n = n
var factors = [Int]()
var i = 2
while i * i <= n {
while n % i == 0 {
factors.append(i)
n /= i
}
i += 1
}
if n > 1 {
factors.append(n)
}
return factors
}
```
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
while number % divisor == 0 {
result.append(divisor)
number /= divisor
}
divisor += 1
}
if number > 1 {
result.append(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array of prime factors of given integer in the order from smallest to largest.
Each of the factors should be arrayed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
factorize(n: 8) == [2, 2, 2]
factorize(n: 25) == [5, 5]
factorize(n: 70) == [2, 5, 7]
### Response:
```swift
func factorize(n: Int) -> [Int] {
var result: [Int] = []
var number = n
var divisor = 2
while divisor * divisor <= number {
while number % divisor == 0 {
result.append(divisor)
number /= divisor
}
divisor += 1
}
if number > 1 {
result.append(number)
}
return result
}
```
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if seen.contains(number) {
continue
}
result.append(number)
seen.insert(number)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if seen.contains(number) {
continue
}
result.append(number)
seen.insert(number)
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if !seen.contains(number) {
result.append(number)
seen.insert(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result: [Int] = []
var seen: Set<Int> = []
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
From an array of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
removeDuplicates(numbers: [1, 2, 3, 2, 4]) == [1, 3, 4]
### Response:
```swift
func removeDuplicates(numbers: [Int]) -> [Int] {
var result = [Int]()
var seen = Set<Int>()
for number in numbers {
if seen.insert(number).inserted {
result.append(number)
}
}
return result
}
```
// XCTAssertTrue failed
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else if char.isLowercase {
flippedString += char.uppercased()
} else {
flippedString += char
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else if char.isLowercase {
flippedString += char.uppercased()
} else {
flippedString += char
}
}
return flippedString
}
```
flippedString += char // cannot convert value of type 'Character' to expected argument type 'String'
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += char.lowercased()
} else if char.isLowercase {
result += char.uppercased()
} else {
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += char.lowercased()
} else if char.isLowercase {
result += char.uppercased()
} else {
result += String(char)
}
}
return result
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += char.lowercased()
} else if char.isLowercase {
result += char.uppercased()
} else {
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += char.lowercased()
} else if char.isLowercase {
result += char.uppercased()
} else {
result += String(char)
}
}
return result
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else if char.isLowercase {
flippedString += char.uppercased()
} else {
flippedString += String(char)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else if char.isLowercase {
flippedString += char.uppercased()
} else {
flippedString += String(char)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else if char.isLowercase {
flippedString += char.uppercased()
} else {
flippedString += String(char)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else if char.isLowercase {
flippedString += char.uppercased()
} else {
flippedString += String(char)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
return string.map { character in
if character.isUppercase {
return character.lowercased()
} else {
return character.uppercased()
}
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
return string.map { character in
if character.isUppercase {
return character.lowercased()
} else {
return character.uppercased()
}
}.joined()
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else {
flippedString += char.uppercased()
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else {
flippedString += char.uppercased()
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += char.lowercased()
} else if char.isLowercase {
result += char.uppercased()
} else {
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += char.lowercased()
} else if char.isLowercase {
result += char.uppercased()
} else {
result += String(char)
}
}
return result
}
```
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else if char.isLowercase {
flippedString += char.uppercased()
} else {
flippedString += String(char)
}
}
return flippedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var flippedString = ""
for char in string {
if char.isUppercase {
flippedString += char.lowercased()
} else if char.isLowercase {
flippedString += char.uppercased()
} else {
flippedString += String(char)
}
}
return flippedString
}
```
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += char.lowercased()
} else if char.isLowercase {
result += char.uppercased()
} else {
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
flipCase(string: "Hello") == "hELLO"
### Response:
```swift
func flipCase(string: String) -> String {
var result = ""
for char in string {
if char.isUppercase {
result += char.lowercased()
} else if char.isLowercase {
result += char.uppercased()
} else {
result += String(char)
}
}
return result
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.reduce("") { $0 + $1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.reduce("") { $0 + $1 }
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func concatenate(strings: [String]) -> String {
return strings.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Concatenate array of strings into a single string
concatenate(strings: [] as [String]) == ""
concatenate(strings: ["a", "b", "c"]) == "abc"
### Response:
```swift
func concatenate(strings: [String]) -> String {
return strings.joined()
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Filter an input array of strings only for ones that start with a given prefix.
filterByPrefix(strings: [] as [String], prefix: "a") == [] as [String]
filterByPrefix(strings: ["abc", "bcd", "cde", "array"], prefix: "a") == ["abc", "array"]
### Response:
```swift
func filterByPrefix(strings: [String], prefix: String) -> [String] {
return strings.filter { $0.hasPrefix(prefix) }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return only positive numbers in the array.
getPositive(l: [-1, 2, -4, 5, 6]) == [2, 5, 6]
getPositive(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 9, 123, 1]
### Response:
```swift
func getPositive(l: [Int]) -> [Int] {
return l.filter { $0 > 0 }
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
let i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
let i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
i += 6 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
let i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
let i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
i += 6 // left side of mutating operator isn't mutable: 'i' is a 'let' constant
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
for i in stride(from: 5, through: Int(sqrt(Double(n))), by: 6) {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
for i in stride(from: 5, through: Int(sqrt(Double(n))), by: 6) {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if a given number is prime, and false otherwise.
isPrime(n: 6) == false
isPrime(n: 101) == true
isPrime(n: 11) == true
isPrime(n: 13441) == true
isPrime(n: 61) == true
isPrime(n: 4) == false
isPrime(n: 1) == false
### Response:
```swift
func isPrime(n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
sortThird(l: [1, 2, 3]) == [1, 2, 3]
sortThird(l: [5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]
### Response:
```swift
func sortThird(l: [Int]) -> [Int] {
var result = l
for i in stride(from: 2, to: l.count, by: 3) {
result[i] = l[i].sorted()
}
return result
}
```
result[i] = l[i].sorted() // value of type 'Int' has no member 'sorted'
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
var unique = Set<Int>()
for element in l {
unique.insert(element)
}
return Array(unique).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
var unique = Set<Int>()
for element in l {
unique.insert(element)
}
return Array(unique).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique elements in an array
unique(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
### Response:
```swift
func unique(l: [Int]) -> [Int] {
return Array(Set(l)).sorted()
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
var max = Int.min
for i in l {
if i > max {
max = i
}
}
return max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
var max = Int.min
for i in l {
if i > max {
max = i
}
}
return max
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max() ?? 0
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func maxElement(l: [Int]) -> Int {
return l.max()!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return maximum element in the array.
maxElement(l: [1, 2, 3]) == 3
maxElement(l: [5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == 123
### Response:
```swift
func maxElement(l: [Int]) -> Int {
return l.max()!
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 0..<n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i)
for char in digits {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let digits = String(i)
for char in digits {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
fizzBuzz(n: 50) == 0
fizzBuzz(n: 78) == 2
fizzBuzz(n: 79) == 3
### Response:
```swift
func fizzBuzz(n: Int) -> Int {
var count = 0
for i in 1...n {
if i % 11 == 0 || i % 13 == 0 {
let str = String(i)
for char in str {
if char == "7" {
count += 1
}
}
}
}
return count
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var l = l
let evenIndices = stride(from: 0, to: l.count, by: 2)
let evenValues = l[evenIndices].sorted()
for (index, value) in zip(evenIndices, evenValues) {
l[index] = value
}
return l
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var l = l
let evenIndices = stride(from: 0, to: l.count, by: 2)
let evenValues = l[evenIndices].sorted()
for (index, value) in zip(evenIndices, evenValues) {
l[index] = value
}
return l
}
```
let evenValues = l[evenIndices].sorted() // no exact matches in call to subscript
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 1, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 1, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var even = l.enumerated().filter { $0.offset % 2 == 0 }.map { $0.element }
even.sort()
var result = l
for (index, value) in even.enumerated() {
result[index * 2] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var even = l.enumerated().filter { $0.offset % 2 == 0 }.map { $0.element }
even.sort()
var result = l
for (index, value) in even.enumerated() {
result[index * 2] = value
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 0, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 0, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 0, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 0, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 1, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 1, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var evenIndices = l.enumerated().filter { $0.offset % 2 == 0 }.map { $0.element }
evenIndices.sort()
var result = l
for (index, element) in evenIndices.enumerated() {
result[index * 2] = element
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = l.enumerated().filter { $0.offset % 2 == 0 }.map { $0.element }
evenIndices.sort()
var result = l
for (index, element) in evenIndices.enumerated() {
result[index * 2] = element
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 1, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var result = l
let evenIndices = stride(from: 1, to: l.count, by: 2)
let sortedEvenIndices = evenIndices.map { l[$0] }.sorted()
for (index, value) in zip(evenIndices, sortedEvenIndices) {
result[index] = value
}
return result
}
```
// XCTAssertTrue failed
func sortEven(l: [Int]) -> [Int] {
var even = l.enumerated().filter { $0.offset % 2 == 0 }.map { $0.element }
even.sort()
var result = l
for (index, value) in even.enumerated() {
result[index * 2] = value
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var even = l.enumerated().filter { $0.offset % 2 == 0 }.map { $0.element }
even.sort()
var result = l
for (index, value) in even.enumerated() {
result[index * 2] = value
}
return result
}
```
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
evenIndices.append(value)
}
}
evenIndices.sort()
var result = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
result.append(evenIndices[index / 2])
} else {
result.append(value)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes an array l and returns an array l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
sortEven(l: [1, 2, 3]) == [1, 2, 3]
sortEven(l: [5, 6, 3, 4]) == [3, 6, 5, 4]
### Response:
```swift
func sortEven(l: [Int]) -> [Int] {
var evenIndices = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
evenIndices.append(value)
}
}
evenIndices.sort()
var result = [Int]()
for (index, value) in l.enumerated() {
if index % 2 == 0 {
result.append(evenIndices[index / 2])
} else {
result.append(value)
}
}
return result
}
```
func primeFib(n: Int) -> Int {
var fibs = [0, 1]
var primeFibs = [2]
var i = 2
while primeFibs.count < n {
fibs.append(fibs[i - 1] + fibs[i - 2])
if isPrime(fibs[i]) {
primeFibs.append(fibs[i])
}
i += 1
}
return primeFibs[n - 1]
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibs = [0, 1]
var primeFibs = [2]
var i = 2
while primeFibs.count < n {
fibs.append(fibs[i - 1] + fibs[i - 2])
if isPrime(fibs[i]) {
primeFibs.append(fibs[i])
}
i += 1
}
return primeFibs[n - 1]
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibs = [0, 1]
var primes = [2]
var i = 2
while primes.count < n {
fibs.append(fibs[i - 1] + fibs[i - 2])
let fib = fibs[i]
var isPrime = true
for prime in primes {
if fib % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(fib)
}
i += 1
}
return primes[n - 1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibs = [0, 1]
var primes = [2]
var i = 2
while primes.count < n {
fibs.append(fibs[i - 1] + fibs[i - 2])
let fib = fibs[i]
var isPrime = true
for prime in primes {
if fib % prime == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(fib)
}
i += 1
}
return primes[n - 1]
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentFibonacciIndex = 1
var currentPrimeIndex = 0
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentFibonacciIndex - 1] + fibonacciNumbers[currentFibonacciIndex]
currentFibonacciIndex += 1
fibonacciNumbers.append(currentFibonacciNumber)
while currentPrimeNumber <= currentFibonacciNumber {
if isPrime(number: currentPrimeNumber) {
primeNumbers.append(currentPrimeNumber)
}
currentPrimeNumber = primeNumbers[currentPrimeIndex] * primeNumbers[currentPrimeIndex + 1]
currentPrimeIndex += 1
}
}
return primeNumbers[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentFibonacciIndex = 1
var currentPrimeIndex = 0
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentFibonacciIndex - 1] + fibonacciNumbers[currentFibonacciIndex]
currentFibonacciIndex += 1
fibonacciNumbers.append(currentFibonacciNumber)
while currentPrimeNumber <= currentFibonacciNumber {
if isPrime(number: currentPrimeNumber) {
primeNumbers.append(currentPrimeNumber)
}
currentPrimeNumber = primeNumbers[currentPrimeIndex] * primeNumbers[currentPrimeIndex + 1]
currentPrimeIndex += 1
}
}
return primeNumbers[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentFibonacciIndex = 1
var currentPrimeIndex = 0
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentFibonacciIndex - 1] + fibonacciNumbers[currentFibonacciIndex]
currentFibonacciIndex += 1
fibonacciNumbers.append(currentFibonacciNumber)
while currentPrimeNumber < currentFibonacciNumber {
currentPrimeNumber = primeNumbers[currentPrimeIndex] * primeNumbers[currentPrimeIndex] + 1
primeNumbers.append(currentPrimeNumber)
currentPrimeIndex += 1
}
}
return primeNumbers[n - 1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentFibonacciIndex = 1
var currentPrimeIndex = 0
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentFibonacciIndex - 1] + fibonacciNumbers[currentFibonacciIndex]
currentFibonacciIndex += 1
fibonacciNumbers.append(currentFibonacciNumber)
while currentPrimeNumber < currentFibonacciNumber {
currentPrimeNumber = primeNumbers[currentPrimeIndex] * primeNumbers[currentPrimeIndex] + 1
primeNumbers.append(currentPrimeNumber)
currentPrimeIndex += 1
}
}
return primeNumbers[n - 1]
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibs = [0, 1]
var primeFibs = [2]
while primeFibs.count < n {
fibs.append(fibs[fibs.count - 1] + fibs[fibs.count - 2])
if isPrime(fibs[fibs.count - 1]) {
primeFibs.append(fibs[fibs.count - 1])
}
}
return primeFibs[n - 1]
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in 3...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibs = [0, 1]
var primeFibs = [2]
while primeFibs.count < n {
fibs.append(fibs[fibs.count - 1] + fibs[fibs.count - 2])
if isPrime(fibs[fibs.count - 1]) {
primeFibs.append(fibs[fibs.count - 1])
}
}
return primeFibs[n - 1]
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
if n == 2 {
return true
}
if n % 2 == 0 {
return false
}
for i in 3...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacci = [0, 1]
var prime = [2]
var i = 2
while prime.count < n {
fibonacci.append(fibonacci[i - 1] + fibonacci[i - 2])
var j = 2
var isPrime = true
while j * j <= fibonacci[i] {
if fibonacci[i] % j == 0 {
isPrime = false
break
}
j += 1
}
if isPrime {
prime.append(fibonacci[i])
}
i += 1
}
return prime[n - 1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacci = [0, 1]
var prime = [2]
var i = 2
while prime.count < n {
fibonacci.append(fibonacci[i - 1] + fibonacci[i - 2])
var j = 2
var isPrime = true
while j * j <= fibonacci[i] {
if fibonacci[i] % j == 0 {
isPrime = false
break
}
j += 1
}
if isPrime {
prime.append(fibonacci[i])
}
i += 1
}
return prime[n - 1]
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentFibonacciIndex = 1
var currentPrimeIndex = 0
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentFibonacciIndex - 1] + fibonacciNumbers[currentFibonacciIndex]
currentFibonacciIndex += 1
fibonacciNumbers.append(currentFibonacciNumber)
while currentPrimeNumber < currentFibonacciNumber {
currentPrimeNumber = primeNumbers[currentPrimeIndex] * primeNumbers[currentPrimeIndex]
currentPrimeIndex += 1
primeNumbers.append(currentPrimeNumber)
}
if currentFibonacciNumber == currentPrimeNumber {
primeNumbers.append(currentFibonacciNumber)
}
}
return primeNumbers[n - 1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentFibonacciIndex = 1
var currentPrimeIndex = 0
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentFibonacciIndex - 1] + fibonacciNumbers[currentFibonacciIndex]
currentFibonacciIndex += 1
fibonacciNumbers.append(currentFibonacciNumber)
while currentPrimeNumber < currentFibonacciNumber {
currentPrimeNumber = primeNumbers[currentPrimeIndex] * primeNumbers[currentPrimeIndex]
currentPrimeIndex += 1
primeNumbers.append(currentPrimeNumber)
}
if currentFibonacciNumber == currentPrimeNumber {
primeNumbers.append(currentFibonacciNumber)
}
}
return primeNumbers[n - 1]
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentIndex = 2
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentIndex - 1] + fibonacciNumbers[currentIndex - 2]
fibonacciNumbers.append(currentFibonacciNumber)
while currentPrimeNumber < currentFibonacciNumber {
if isPrime(number: currentPrimeNumber) {
primeNumbers.append(currentPrimeNumber)
}
currentPrimeNumber += 1
}
currentIndex += 1
}
return primeNumbers[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentIndex = 2
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentIndex - 1] + fibonacciNumbers[currentIndex - 2]
fibonacciNumbers.append(currentFibonacciNumber)
while currentPrimeNumber < currentFibonacciNumber {
if isPrime(number: currentPrimeNumber) {
primeNumbers.append(currentPrimeNumber)
}
currentPrimeNumber += 1
}
currentIndex += 1
}
return primeNumbers[n - 1]
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentPrimeNumberIndex = 0
var currentFibonacciNumberIndex = 1
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentFibonacciNumberIndex - 1] + fibonacciNumbers[currentFibonacciNumberIndex]
fibonacciNumbers.append(currentFibonacciNumber)
currentFibonacciNumberIndex += 1
while currentPrimeNumber < currentFibonacciNumber {
currentPrimeNumber = primeNumbers[currentPrimeNumberIndex] * primeNumbers[currentPrimeNumberIndex]
primeNumbers.append(currentPrimeNumber)
currentPrimeNumberIndex += 1
}
}
return primeNumbers[n - 1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibonacciNumbers = [0, 1]
var primeNumbers = [2]
var currentFibonacciNumber = 1
var currentPrimeNumber = 2
var currentPrimeNumberIndex = 0
var currentFibonacciNumberIndex = 1
while primeNumbers.count < n {
currentFibonacciNumber = fibonacciNumbers[currentFibonacciNumberIndex - 1] + fibonacciNumbers[currentFibonacciNumberIndex]
fibonacciNumbers.append(currentFibonacciNumber)
currentFibonacciNumberIndex += 1
while currentPrimeNumber < currentFibonacciNumber {
currentPrimeNumber = primeNumbers[currentPrimeNumberIndex] * primeNumbers[currentPrimeNumberIndex]
primeNumbers.append(currentPrimeNumber)
currentPrimeNumberIndex += 1
}
}
return primeNumbers[n - 1]
}
```
// XCTAssertTrue failed
func primeFib(n: Int) -> Int {
var fibs = [0, 1]
var primes = [2]
var i = 2
while primes.count < n {
fibs.append(fibs[i - 1] + fibs[i - 2])
if isPrime(fibs[i]) {
primes.append(fibs[i])
}
i += 1
}
return primes[n - 1]
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
primeFib(n: 1) == 2
primeFib(n: 2) == 3
primeFib(n: 3) == 5
primeFib(n: 4) == 13
primeFib(n: 5) == 89
### Response:
```swift
func primeFib(n: Int) -> Int {
var fibs = [0, 1]
var primes = [2]
var i = 2
while primes.count < n {
fibs.append(fibs[i - 1] + fibs[i - 2])
if isPrime(fibs[i]) {
primes.append(fibs[i])
}
i += 1
}
return primes[n - 1]
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func triplesSumToZero(l: [Int]) -> Bool {
var sum = 0
for i in 0..<l.count {
sum += l[i]
}
if sum == 0 {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var sum = 0
for i in 0..<l.count {
sum += l[i]
}
if sum == 0 {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func triplesSumToZero(l: [Int]) -> Bool {
var hashSet = Set<Int>()
for i in l {
if hashSet.contains(-i) {
return true
}
for j in hashSet {
if hashSet.contains(-i - j) {
return true
}
}
hashSet.insert(i)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var hashSet = Set<Int>()
for i in l {
if hashSet.contains(-i) {
return true
}
for j in hashSet {
if hashSet.contains(-i - j) {
return true
}
}
hashSet.insert(i)
}
return false
}
```
// XCTAssertTrue failed
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for i in l {
for j in l {
if seen.contains(-i - j) {
return true
}
}
seen.insert(i)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for i in l {
for j in l {
if seen.contains(-i - j) {
return true
}
}
seen.insert(i)
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
triples_sum_to_zero takes an array of integers as an input.
it returns true if there are three distinct elements in the array that
sum to zero, and false otherwise.
triplesSumToZero(l: [1, 3, 5, 0]) == false
triplesSumToZero(l: [1, 3, -2, 1]) == true
triplesSumToZero(l: [1, 2, 3, 7]) == false
triplesSumToZero(l: [2, 4, -5, 3, 9, 7]) == true
triplesSumToZero(l: [1]) == false
### Response:
```swift
func triplesSumToZero(l: [Int]) -> Bool {
for i in 0..<l.count {
for j in i+1..<l.count {
for k in j+1..<l.count {
if l[i] + l[j] + l[k] == 0 {
return true
}
}
}
}
return false
}
```
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
### Response:
```swift
func carRaceCollision(n: Int) -> Int {
return n * (n - 1) / 2
}
```
// XCTAssertTrue failed
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return array with elements incremented by 1.
incrList(l: [1, 2, 3]) == [2, 3, 4]
incrList(l: [5, 3, 5, 2, 3, 3, 9, 0, 123]) == [6, 4, 6, 3, 4, 4, 10, 1, 124]
### Response:
```swift
func incrList(l: [Int]) -> [Int] {
return l.map { $0 + 1 }
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen: Set<Int> = []
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen: Set<Int> = []
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen = Set<Int>()
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var seen: Set<Int> = []
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var seen: Set<Int> = []
for num in l {
if seen.contains(-num) {
return true
}
seen.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var sumToZero = false
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
sumToZero = true
break
}
}
}
return sumToZero
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var sumToZero = false
for i in 0..<l.count {
for j in i+1..<l.count {
if l[i] + l[j] == 0 {
sumToZero = true
break
}
}
}
return sumToZero
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(-num) {
return true
}
set.insert(num)
}
return false
}
```
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
pairs_sum_to_zero takes an array of integers as an input.
it returns true if there are two distinct elements in the array that
sum to zero, and false otherwise.
pairsSumToZero(l: [1, 3, 5, 0]) == false
pairsSumToZero(l: [1, 3, -2, 1]) == false
pairsSumToZero(l: [1, 2, 3, 7]) == false
pairsSumToZero(l: [2, 4, -5, 3, 5, 7]) == true
pairsSumToZero(l: [1]) == false
### Response:
```swift
func pairsSumToZero(l: [Int]) -> Bool {
var set = Set<Int>()
for num in l {
if set.contains(num) {
return true
}
set.insert(-num)
}
return false
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var result = ""
var x = x
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
changeBase(x: 8, base: 3) == "22"
changeBase(x: 8, base: 2) == "1000"
changeBase(x: 7, base: 2) == "111"
### Response:
```swift
func changeBase(x: Int, base: Int) -> String {
var x = x
var result = ""
while x > 0 {
result = String(x % base) + result
x /= base
}
return result
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given length of a side and high return area for a triangle.
triangleArea(a: 5, h: 3) == 7.5
### Response:
```swift
func triangleArea(a: Int, h: Int) -> Double {
return Double(a * h) / 2
}
```
func fib4(n: Int) -> Int {
guard n >= 0 else { return 0 }
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4.suffix(4).reduce(0, +))
}
return fib4[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
guard n >= 0 else { return 0 }
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4.suffix(4).reduce(0, +))
}
return fib4[n]
}
```
func fib4(n: Int) -> Int {
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4.suffix(4).reduce(0, +))
}
return fib4[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4.suffix(4).reduce(0, +))
}
return fib4[n]
}
```
func fib4(n: Int) -> Int {
guard n >= 0 else {
return 0
}
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 3...n {
let e = a + b + c + d
a = b
b = c
c = d
d = e
}
return d
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
guard n >= 0 else {
return 0
}
var a = 0
var b = 0
var c = 2
var d = 0
for _ in 3...n {
let e = a + b + c + d
a = b
b = c
c = d
d = e
}
return d
}
```
// XCTAssertTrue failed
func fib4(n: Int) -> Int {
var fib4: [Int] = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4[fib4.count - 1] + fib4[fib4.count - 2] + fib4[fib4.count - 3] + fib4[fib4.count - 4])
}
return fib4[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib4: [Int] = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4[fib4.count - 1] + fib4[fib4.count - 2] + fib4[fib4.count - 3] + fib4[fib4.count - 4])
}
return fib4[n]
}
```
func fib4(n: Int) -> Int {
guard n > 0 else { return 0 }
guard n != 1 else { return 0 }
guard n != 2 else { return 2 }
guard n != 3 else { return 0 }
var fib4 = [Int](repeating: 0, count: n)
fib4[0] = 0
fib4[1] = 0
fib4[2] = 2
fib4[3] = 0
for i in 4...n {
fib4[i] = fib4[i-1] + fib4[i-2] + fib4[i-3] + fib4[i-4]
}
return fib4[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
guard n > 0 else { return 0 }
guard n != 1 else { return 0 }
guard n != 2 else { return 2 }
guard n != 3 else { return 0 }
var fib4 = [Int](repeating: 0, count: n)
fib4[0] = 0
fib4[1] = 0
fib4[2] = 2
fib4[3] = 0
for i in 4...n {
fib4[i] = fib4[i-1] + fib4[i-2] + fib4[i-3] + fib4[i-4]
}
return fib4[n]
}
```
// Fatal error: Index out of range
func fib4(n: Int) -> Int {
guard n >= 0 else { return 0 }
guard n > 3 else { return n == 2 ? 2 : 0 }
var a = 0, b = 0, c = 2, d = 0
for _ in 4...n {
let e = a + b + c + d
a = b
b = c
c = d
d = e
}
return d
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
guard n >= 0 else { return 0 }
guard n > 3 else { return n == 2 ? 2 : 0 }
var a = 0, b = 0, c = 2, d = 0
for _ in 4...n {
let e = a + b + c + d
a = b
b = c
c = d
d = e
}
return d
}
```
func fib4(n: Int) -> Int {
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4[fib4.count - 1] + fib4[fib4.count - 2] + fib4[fib4.count - 3] + fib4[fib4.count - 4])
}
return fib4[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4[fib4.count - 1] + fib4[fib4.count - 2] + fib4[fib4.count - 3] + fib4[fib4.count - 4])
}
return fib4[n]
}
```
func fib4(n: Int) -> Int {
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4[fib4.count - 1] + fib4[fib4.count - 2] + fib4[fib4.count - 3] + fib4[fib4.count - 4])
}
return fib4[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4[fib4.count - 1] + fib4[fib4.count - 2] + fib4[fib4.count - 3] + fib4[fib4.count - 4])
}
return fib4[n]
}
```
func fib4(n: Int) -> Int {
guard n > 0 else { return 0 }
var lastFour = [0, 0, 2, 0]
for _ in 4...n {
let sum = lastFour.reduce(0, +)
lastFour.removeFirst()
lastFour.append(sum)
}
return lastFour.last!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
guard n > 0 else { return 0 }
var lastFour = [0, 0, 2, 0]
for _ in 4...n {
let sum = lastFour.reduce(0, +)
lastFour.removeFirst()
lastFour.append(sum)
}
return lastFour.last!
}
```
func fib4(n: Int) -> Int {
guard n > 0 else { return 0 }
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4[fib4.count - 1] + fib4[fib4.count - 2] + fib4[fib4.count - 3] + fib4[fib4.count - 4])
}
return fib4[n]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
fib4(n: 5) == 4
fib4(n: 6) == 8
fib4(n: 7) == 14
### Response:
```swift
func fib4(n: Int) -> Int {
guard n > 0 else { return 0 }
var fib4 = [0, 0, 2, 0]
for _ in 4...n {
fib4.append(fib4[fib4.count - 1] + fib4[fib4.count - 2] + fib4[fib4.count - 3] + fib4[fib4.count - 4])
}
return fib4[n]
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
if sorted.count % 2 == 0 {
return Double(sorted[sorted.count / 2] + sorted[sorted.count / 2 - 1]) / 2
} else {
return Double(sorted[sorted.count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
if sorted.count % 2 == 0 {
return Double(sorted[sorted.count / 2] + sorted[sorted.count / 2 - 1]) / 2
} else {
return Double(sorted[sorted.count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
if sorted.count % 2 == 0 {
return Double(sorted[sorted.count / 2] + sorted[sorted.count / 2 - 1]) / 2
} else {
return Double(sorted[sorted.count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
if sorted.count % 2 == 0 {
return Double(sorted[sorted.count / 2] + sorted[sorted.count / 2 - 1]) / 2
} else {
return Double(sorted[sorted.count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return median of elements in the array l.
median(l: [3, 1, 2, 4, 5]) == 3
median(l: [-10, 4, 6, 1000, 10, 20]) == 15.0
### Response:
```swift
func median(l: [Int]) -> Double {
let sorted = l.sorted()
let count = sorted.count
if count % 2 == 0 {
return Double(sorted[count / 2] + sorted[count / 2 - 1]) / 2
} else {
return Double(sorted[count / 2])
}
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let textReversed = String(text.reversed())
return text == textReversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let textReversed = String(text.reversed())
return text == textReversed
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Checks if given string is a palindrome
isPalindrome(text: "") == true
isPalindrome(text: "aba") == true
isPalindrome(text: "aaaaa") == true
isPalindrome(text: "zbcd") == false
### Response:
```swift
func isPalindrome(text: String) -> Bool {
let text = text.lowercased()
let reversedText = String(text.reversed())
return text == reversedText
}
```
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
```
n /= 2 // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func modp(n: Int, p: Int) -> Int {
let n = BigInt(n)
let p = BigInt(p)
return n.power(p) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
let n = BigInt(n)
let p = BigInt(p)
return n.power(p) % p
}
```
let n = BigInt(n) // cannot find 'BigInt' in scope
let p = BigInt(p) // cannot find 'BigInt' in scope
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
```
n /= 2 // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
```
n /= 2 // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
```
n /= 2 // left side of mutating operator isn't mutable: 'n' is a 'let' constant
func modp(n: Int, p: Int) -> Int {
return Int(pow(2, Double(n))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(2, Double(n))) % p
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func modp(n: Int, p: Int) -> Int {
return Int(pow(2.0, Double(n))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(2.0, Double(n))) % p
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var power = 2
var n = n
while n > 0 {
if n % 2 == 1 {
result = (result * power) % p
}
power = (power * power) % p
n /= 2
}
return result
}
```
func modp(n: Int, p: Int) -> Int {
return Int(pow(2.0, Double(n))) % p
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
return Int(pow(2.0, Double(n))) % p
}
```
// Fatal error: Double value cannot be converted to Int because it is either infinite or NaN
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent /= 2
base = (base * base) % p
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return 2^n modulo p (be aware of numerics).
modp(n: 3, p: 5) == 3
modp(n: 1101, p: 101) == 2
modp(n: 0, p: 101) == 1
modp(n: 3, p: 11) == 8
modp(n: 100, p: 101) == 1
### Response:
```swift
func modp(n: Int, p: Int) -> Int {
var result = 1
var base = 2
var exponent = n
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % p
}
exponent /= 2
base = (base * base) % p
}
return result
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.unicodeScalars.filter { !vowels.contains($0) }
return String(result)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.unicodeScalars.filter { !vowels.contains($0) }
return String(result)
}
```
let result = text.unicodeScalars.filter { !vowels.contains($0) } // instance method 'contains' requires that 'String.UnicodeScalarView.Element' (aka 'Unicode.Scalar') conform to 'StringProtocol'
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.unicodeScalars.filter { !vowels.contains($0) }
return String(result)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.unicodeScalars.filter { !vowels.contains($0) }
return String(result)
}
```
let result = text.unicodeScalars.filter { !vowels.contains($0) } // instance method 'contains' requires that 'String.UnicodeScalarView.Element' (aka 'Unicode.Scalar') conform to 'StringProtocol'
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.unicodeScalars.filter { !vowels.contains($0) }
return String(result)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
let result = text.unicodeScalars.filter { !vowels.contains($0) }
return String(result)
}
```
let result = text.unicodeScalars.filter { !vowels.contains($0) } // instance method 'contains' requires that 'String.UnicodeScalarView.Element' (aka 'Unicode.Scalar') conform to 'StringProtocol'
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let filtered = text.filter { !vowels.contains($0) }
return String(filtered)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let filtered = text.filter { !vowels.contains($0) }
return String(filtered)
}
```
let filtered = text.filter { !vowels.contains($0) } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
return text.filter { !"aeiouAEIOU".contains($0) }
}
```
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
remove_vowels is a function that takes string and returns string without vowels.
removeVowels(text: "") == ""
removeVowels(text: "abcdef") == "bcdf"
removeVowels(text: "aaaaa") == ""
removeVowels(text: "aaBAA") == "B"
removeVowels(text: "zbcd") == "zbcd"
### Response:
```swift
func removeVowels(text: String) -> String {
let vowels = "aeiouAEIOU"
return text.filter { !vowels.contains($0) }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
return !l.contains { $0 >= t }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
return !l.contains { $0 >= t }
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for num in l {
if num >= t {
return false
}
}
return true
}
```
func belowThreshold(l: [Int], t: Int) -> Bool {
for number in l {
if number >= t {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true if all numbers in the array l are below threshold t.
belowThreshold(l: [1, 2, 4, 10], t: 100) == true
belowThreshold(l: [1, 20, 4, 10], t: 5) == false
### Response:
```swift
func belowThreshold(l: [Int], t: Int) -> Bool {
for number in l {
if number >= t {
return false
}
}
return true
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func add(x: Int, y: Int) -> Int {
return x + y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Add two numbers x and y
add(x: 2, y: 3) == 5
add(x: 5, y: 7) == 12
### Response:
```swift
func add(x: Int, y: Int) -> Int {
return x + y
}
```
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
let s0CharsSet = Set(s0Chars)
let s1CharsSet = Set(s1Chars)
return s0CharsSet == s1CharsSet
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
let s0CharsSet = Set(s0Chars)
let s1CharsSet = Set(s1Chars)
return s0CharsSet == s1CharsSet
}
```
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
return s0Chars.count == s1Chars.count && s0Chars.sorted() == s1Chars.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
return s0Chars.count == s1Chars.count && s0Chars.sorted() == s1Chars.sorted()
}
```
// XCTAssertTrue failed
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0 = s0.lowercased()
let s1 = s1.lowercased()
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
let s0CharsSet = Set(s0Chars)
let s1CharsSet = Set(s1Chars)
let s0CharsCount = s0Chars.count
let s1CharsCount = s1Chars.count
let s0CharsSetCount = s0CharsSet.count
let s1CharsSetCount = s1CharsSet.count
let s0CharsSetCountDiff = s0CharsSetCount - s1CharsSetCount
let s1CharsSetCountDiff = s1CharsSetCount - s0CharsSetCount
let s0CharsCountDiff = s0CharsCount - s1CharsCount
let s1CharsCountDiff = s1CharsCount - s0CharsCount
let s0CharsSetCountDiffAbs = abs(s0CharsSetCountDiff)
let s1CharsSetCountDiffAbs = abs(s1CharsSetCountDiff)
let s0CharsCountDiffAbs = abs(s0CharsCountDiff)
let s1CharsCountDiffAbs = abs(s1CharsCountDiff)
let s0CharsSetCountDiffAbsDiv2 = s0CharsSetCountDiffAbs / 2
let s1CharsSetCountDiffAbsDiv2 = s1CharsSetCountDiffAbs / 2
let s0CharsCountDiffAbsDiv2 = s0CharsCountDiffAbs / 2
let s1CharsCountDiffAbsDiv2 = s1CharsCountDiffAbs / 2
let s0CharsSetCountDiffAbsMod2 = s0CharsSetCountDiffAbs % 2
let s1CharsSetCountDiffAbsMod2 = s1CharsSetCountDiffAbs % 2
let s0CharsCountDiffAbsMod2 = s0CharsCountDiffAbs % 2
let s1CharsCountDiffAbsMod2 = s1CharsCountDiffAbs % 2
let s0CharsSetCountDiffAbsDiv2Mod2 = s0CharsSetCountDiffAbsDiv2 % 2
let s1CharsSetCountDiffAbsDiv2Mod2 = s1CharsSetCountDiffAbsDiv2 % 2
let s0CharsCountDiffAbsDiv2Mod2 = s0CharsCountDiffAbsDiv2 % 2
let s1CharsCountDiffAbsDiv2Mod2 = s1CharsCountDiffAbsDiv2 % 2
let s0CharsSetCountDiffAbsDiv2Mod2Diff = s0CharsSetCountDiffAbsDiv2Mod2 - s0CharsSetCountDiffAbsMod2
let s1CharsSetCountDiffAbsDiv2Mod2Diff = s1CharsSetCountDiffAbsDiv2Mod2 - s1CharsSetCountDiffAbsMod2
let s0CharsCountDiffAbsDiv2Mod2Diff = s0CharsCountDiffAbsDiv2Mod2 - s0CharsCountDiffAbsMod2
let s1CharsCountDiffAbsDiv2Mod2Diff = s1CharsCountDiffAbsDiv2Mod2 - s1CharsCountDiffAbsMod2
let s0CharsSetCountDiffAbsDiv2Mod2DiffAbs = abs(s0CharsSetCountDiffAbsDiv2Mod2Diff)
let s1CharsSetCountDiffAbsDiv2Mod2DiffAbs = abs(s1CharsSetCountDiffAbsDiv2Mod2Diff)
let s0CharsCountDiffAbsDiv2Mod2DiffAbs = abs(s0CharsCountDiffAbsDiv2Mod2Diff)
let s1CharsCountDiffAbsDiv2Mod2DiffAbs = abs(s1CharsCountDiffAbsDiv2Mod2Diff)
let s0CharsSetCountDiffAbsDiv2Mod2DiffAbsDiv2 = s0CharsSetCountDiffAbsDiv2Mod2DiffAbs / 2
let s1CharsSetCountDiffAbsDiv
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabc") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "dddddddabc", s1: "abcd") == true) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcd", s1: "dddddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "abcd", s1: "dddddddabcf") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false) // cannot find 'sameChars' in scope
XCTAssertTrue(sameChars(s0: "aabb", s1: "aaccc") == false) // cannot find 'sameChars' in scope
func sameChars(s0: String, s1: String) -> Bool {
let s0 = s0.lowercased()
let s1 = s1.lowercased()
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
let s0Set = Set(s0Chars)
let s1Set = Set(s1Chars)
return s0Set == s1Set
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0 = s0.lowercased()
let s1 = s1.lowercased()
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
let s0Set = Set(s0Chars)
let s1Set = Set(s1Chars)
return s0Set == s1Set
}
```
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
return s0Chars.count == s1Chars.count && s0Chars.sorted() == s1Chars.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
return s0Chars.count == s1Chars.count && s0Chars.sorted() == s1Chars.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
return s0Chars.count == s1Chars.count && s0Chars.sorted() == s1Chars.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
return s0Chars.count == s1Chars.count && s0Chars.sorted() == s1Chars.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var s0 = s0
var s1 = s1
if s0.count != s1.count {
return false
}
for char in s0 {
if let index = s1.firstIndex(of: char) {
s1.remove(at: index)
} else {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0 = s0
var s1 = s1
if s0.count != s1.count {
return false
}
for char in s0 {
if let index = s1.firstIndex(of: char) {
s1.remove(at: index)
} else {
return false
}
}
return true
}
```
var s0 = s0 // variable 's0' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
return s0Chars.count == s1Chars.count && s0Chars.sorted() == s1Chars.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
return s0Chars.count == s1Chars.count && s0Chars.sorted() == s1Chars.sorted()
}
```
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
var s0 = s0
var s1 = s1
for char in s0 {
if let index = s1.firstIndex(of: char) {
s1.remove(at: index)
} else {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
var s0 = s0
var s1 = s1
for char in s0 {
if let index = s1.firstIndex(of: char) {
s1.remove(at: index)
} else {
return false
}
}
return true
}
```
var s0 = s0 // variable 's0' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func sameChars(s0: String, s1: String) -> Bool {
let s0 = s0.lowercased()
let s1 = s1.lowercased()
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
let s0CharsSet = Set(s0Chars)
let s1CharsSet = Set(s1Chars)
return s0CharsSet == s1CharsSet
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Check if two words have the same characters.
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddeddabc") == true
sameChars(s0: "abcd", s1: "dddddddabc") == true
sameChars(s0: "dddddddabc", s1: "abcd") == true
sameChars(s0: "eabcd", s1: "dddddddabc") == false
sameChars(s0: "abcd", s1: "dddddddabce") == false
sameChars(s0: "eabcdzzzz", s1: "dddzzzzzzzddddabc") == false
### Response:
```swift
func sameChars(s0: String, s1: String) -> Bool {
let s0 = s0.lowercased()
let s1 = s1.lowercased()
let s0Chars = s0.map { $0 }
let s1Chars = s1.map { $0 }
let s0CharsSet = Set(s0Chars)
let s1CharsSet = Set(s1Chars)
return s0CharsSet == s1CharsSet
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0, b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0, b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
```
func fib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
}
return a
}
```
func fib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
}
return a
}
```
func fib(n: Int) -> Int {
guard n > 1 else { return n }
var (a, b) = (0, 1)
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
guard n > 1 else { return n }
var (a, b) = (0, 1)
for _ in 2...n {
(a, b) = (b, a + b)
}
return b
}
```
func fib(n: Int) -> Int {
if n < 2 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n < 2 {
return n
}
var a = 0
var b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0, b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
var a = 0, b = 1
for _ in 2...n {
let c = a + b
a = b
b = c
}
return b
}
```
func fib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 1
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 1
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func fib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
}
return a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
var a = 0, b = 1
for _ in 0..<n {
let c = a + b
a = b
b = c
}
return a
}
```
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return n-th Fibonacci number.
fib(n: 10) == 55
fib(n: 1) == 1
fib(n: 8) == 21
### Response:
```swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return fib(n: n - 1) + fib(n: n - 2)
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "<" {
count += 1
} else if char == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "<" {
count += 1
} else if char == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
if stack.last == "<" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
if stack.last == "<" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "<" {
count += 1
} else if char == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "<" {
count += 1
} else if char == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "<" {
count += 1
} else if char == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "<" {
count += 1
} else if char == ">" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
if stack.last == "<" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack: [Character] = []
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
if stack.last == "<" {
stack.removeLast()
} else {
return false
}
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty || stack.removeLast() != "<" {
return false
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "<" and ">".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "<") == false
correctBracketing(brackets: "<>") == true
correctBracketing(brackets: "<<><>>") == true
correctBracketing(brackets: "><<>") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "<" {
stack.append(char)
} else if char == ">" {
if stack.isEmpty || stack.removeLast() != "<" {
return false
}
}
}
return stack.isEmpty
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 3 { return true }
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i-1] {
increasing = true
if decreasing { return false }
} else if l[i] < l[i-1] {
decreasing = true
if increasing { return false }
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 3 { return true }
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i-1] {
increasing = true
if decreasing { return false }
} else if l[i] < l[i-1] {
decreasing = true
if increasing { return false }
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 3 {
return true
}
var increasing = true
var decreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
increasing = false
}
if l[i] > l[i - 1] {
decreasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 3 {
return true
}
var increasing = true
var decreasing = true
for i in 1..<l.count {
if l[i] < l[i - 1] {
increasing = false
}
if l[i] > l[i - 1] {
decreasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 0..<l.count - 1 {
if l[i] < l[i + 1] {
increasing = true
}
if l[i] > l[i + 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 0..<l.count - 1 {
if l[i] < l[i + 1] {
increasing = true
}
if l[i] > l[i + 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 3 {
return true
}
var increasing = false
var decreasing = false
for i in 0..<l.count-1 {
if l[i] < l[i+1] {
increasing = true
} else if l[i] > l[i+1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 3 {
return true
}
var increasing = false
var decreasing = false
for i in 0..<l.count-1 {
if l[i] < l[i+1] {
increasing = true
} else if l[i] > l[i+1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let increasing = l[0] < l[l.count - 1]
for i in 0..<l.count - 1 {
if increasing && l[i] > l[i + 1] {
return false
} else if !increasing && l[i] < l[i + 1] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let increasing = l[0] < l[l.count - 1]
for i in 0..<l.count - 1 {
if increasing && l[i] > l[i + 1] {
return false
} else if !increasing && l[i] < l[i + 1] {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 3 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
if decreasing {
return false
}
} else if l[i] < l[i - 1] {
decreasing = true
if increasing {
return false
}
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 3 {
return true
}
var increasing = false
var decreasing = false
for i in 1..<l.count {
if l[i] > l[i - 1] {
increasing = true
if decreasing {
return false
}
} else if l[i] < l[i - 1] {
decreasing = true
if increasing {
return false
}
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 3 {
return true
}
var increasing = true
var decreasing = true
for i in 1..<l.count {
if l[i] > l[i - 1] {
decreasing = false
} else if l[i] < l[i - 1] {
increasing = false
}
}
return increasing || decreasing
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 3 {
return true
}
var increasing = true
var decreasing = true
for i in 1..<l.count {
if l[i] > l[i - 1] {
decreasing = false
} else if l[i] < l[i - 1] {
increasing = false
}
}
return increasing || decreasing
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 0..<l.count - 1 {
if l[i] < l[i + 1] {
increasing = true
}
if l[i] > l[i + 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 2 {
return true
}
var increasing = false
var decreasing = false
for i in 0..<l.count - 1 {
if l[i] < l[i + 1] {
increasing = true
}
if l[i] > l[i + 1] {
decreasing = true
}
if increasing && decreasing {
return false
}
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
if l.count < 3 { return true }
let increasing = l[1] > l[0]
for i in 2..<l.count {
if increasing && l[i] < l[i - 1] { return false }
if !increasing && l[i] > l[i - 1] { return false }
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
if l.count < 3 { return true }
let increasing = l[1] > l[0]
for i in 2..<l.count {
if increasing && l[i] < l[i - 1] { return false }
if !increasing && l[i] > l[i - 1] { return false }
}
return true
}
```
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let increasing = l[0] < l[l.count - 1]
for i in 0..<l.count - 1 {
if increasing && l[i] > l[i + 1] {
return false
} else if !increasing && l[i] < l[i + 1] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return true is array elements are monotonically increasing or decreasing.
monotonic(l: [1, 2, 4, 20]) == true
monotonic(l: [1, 20, 4, 10]) == false
monotonic(l: [4, 1, 0, -10]) == true
### Response:
```swift
func monotonic(l: [Int]) -> Bool {
guard l.count > 1 else { return true }
let increasing = l[0] < l[l.count - 1]
for i in 0..<l.count - 1 {
if increasing && l[i] > l[i + 1] {
return false
} else if !increasing && l[i] < l[i + 1] {
return false
}
}
return true
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
var result = [Int]()
for i in l1 {
set.insert(i)
}
for i in l2 {
if set.contains(i) {
result.append(i)
set.remove(i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
var result = [Int]()
for i in l1 {
set.insert(i)
}
for i in l2 {
if set.contains(i) {
result.append(i)
set.remove(i)
}
}
return result
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let intersection = set1.intersection(set2)
return Array(intersection).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
let intersection = set1.intersection(set2)
return Array(intersection).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
var result = [Int]()
for element in l1 {
set.insert(element)
}
for element in l2 {
if set.contains(element) {
result.append(element)
set.remove(element)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
var result = [Int]()
for element in l1 {
set.insert(element)
}
for element in l2 {
if set.contains(element) {
result.append(element)
set.remove(element)
}
}
return result
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
var result = [Int]()
for i in l1 {
set.insert(i)
}
for i in l2 {
if set.contains(i) {
result.append(i)
set.remove(i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
var result = [Int]()
for i in l1 {
set.insert(i)
}
for i in l2 {
if set.contains(i) {
result.append(i)
set.remove(i)
}
}
return result
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
var result = [Int]()
for i in l1 {
set.insert(i)
}
for i in l2 {
if set.contains(i) {
result.append(i)
set.remove(i)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
var set = Set<Int>()
var result = [Int]()
for i in l1 {
set.insert(i)
}
for i in l2 {
if set.contains(i) {
result.append(i)
set.remove(i)
}
}
return result
}
```
// XCTAssertTrue failed
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return sorted unique common elements for two arrays.
common(l1: [1, 4, 3, 34, 653, 2, 5], l2: [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]
common(l1: [5, 3, 2, 8], l2: [3, 2]) == [2, 3]
### Response:
```swift
func common(l1: [Int], l2: [Int]) -> [Int] {
let set1 = Set(l1)
let set2 = Set(l2)
return Array(set1.intersection(set2)).sorted()
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var divisor = 2
while divisor * divisor <= n {
if n % divisor == 0 {
n /= divisor
largestPrimeFactor = divisor
} else {
divisor += 1
}
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var divisor = 2
while divisor * divisor <= n {
if n % divisor == 0 {
n /= divisor
largestPrimeFactor = divisor
} else {
divisor += 1
}
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var i = 2
while i * i <= n {
while n % i == 0 {
largestPrimeFactor = i
n /= i
}
i += 1
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var i = 2
while i * i <= n {
while n % i == 0 {
largestPrimeFactor = i
n /= i
}
i += 1
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestFactor = 2
while n > 1 {
if n % largestFactor == 0 {
n /= largestFactor
} else {
largestFactor += 1
}
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestFactor = 2
while n > 1 {
if n % largestFactor == 0 {
n /= largestFactor
} else {
largestFactor += 1
}
}
return largestFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var divisor = 2
while divisor * divisor <= n {
if n % divisor == 0 {
largestPrimeFactor = divisor
n /= divisor
} else {
divisor += 1
}
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var divisor = 2
while divisor * divisor <= n {
if n % divisor == 0 {
largestPrimeFactor = divisor
n /= divisor
} else {
divisor += 1
}
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestFactor = 0
var i = 2
while i * i <= n {
if n % i == 0 {
largestFactor = i
while n % i == 0 {
n /= i
}
}
i += 1
}
if n > largestFactor {
largestFactor = n
}
return largestFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestFactor = 0
var i = 2
while i * i <= n {
if n % i == 0 {
largestFactor = i
while n % i == 0 {
n /= i
}
}
i += 1
}
if n > largestFactor {
largestFactor = n
}
return largestFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var i = 2
while i * i <= n {
while n % i == 0 {
largestPrimeFactor = i
n /= i
}
i += 1
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var i = 2
while i * i <= n {
while n % i == 0 {
largestPrimeFactor = i
n /= i
}
i += 1
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 2
while n > 1 {
if n % largestPrimeFactor == 0 {
n /= largestPrimeFactor
} else {
largestPrimeFactor += 1
}
}
return largestPrimeFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 2
while n > 1 {
if n % largestPrimeFactor == 0 {
n /= largestPrimeFactor
} else {
largestPrimeFactor += 1
}
}
return largestPrimeFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var i = 2
while i * i <= n {
if n % i == 0 {
n /= i
} else {
i += 1
}
}
return n
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var i = 2
while i * i <= n {
if n % i == 0 {
n /= i
} else {
i += 1
}
}
return n
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var i = 2
while i * i <= n {
while n % i == 0 {
largestPrimeFactor = i
n /= i
}
i += 1
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var i = 2
while i * i <= n {
while n % i == 0 {
largestPrimeFactor = i
n /= i
}
i += 1
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
```
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var i = 2
while i * i <= n {
if n % i == 0 {
n /= i
largestPrimeFactor = i
} else {
i += 1
}
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Return the largest prime factor of n. Assume n > 1 and is not a prime.
largestPrimeFactor(n: 13195) == 29
largestPrimeFactor(n: 2048) == 2
### Response:
```swift
func largestPrimeFactor(n: Int) -> Int {
var n = n
var largestPrimeFactor = 0
var i = 2
while i * i <= n {
if n % i == 0 {
n /= i
largestPrimeFactor = i
} else {
i += 1
}
}
if n > largestPrimeFactor {
largestPrimeFactor = n
}
return largestPrimeFactor
}
```
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
```
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
```
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
```
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
```
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (n * (n + 1)) / 2
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
return (1...n).reduce(0, +)
}
```
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
sum_to_n is a function that sums numbers from 1 to n.
sumToN(n: 30) == 465
sumToN(n: 100) == 5050
sumToN(n: 5) == 15
sumToN(n: 10) == 55
sumToN(n: 1) == 1
### Response:
```swift
func sumToN(n: Int) -> Int {
var sum = 0
for i in 1...n {
sum += i
}
return sum
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "(" {
count += 1
} else if char == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "(" {
count += 1
} else if char == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "(" {
count += 1
} else if char == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "(" {
count += 1
} else if char == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openBrackets = 0
for char in brackets {
if char == "(" {
openBrackets += 1
} else if char == ")" {
openBrackets -= 1
}
if openBrackets < 0 {
return false
}
}
return openBrackets == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var openBrackets = 0
for char in brackets {
if char == "(" {
openBrackets += 1
} else if char == ")" {
openBrackets -= 1
}
if openBrackets < 0 {
return false
}
}
return openBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "(" {
count += 1
} else if char == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "(" {
count += 1
} else if char == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var openBrackets = 0
for char in brackets {
if char == "(" {
openBrackets += 1
} else if char == ")" {
openBrackets -= 1
if openBrackets < 0 {
return false
}
}
}
return openBrackets == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var openBrackets = 0
for char in brackets {
if char == "(" {
openBrackets += 1
} else if char == ")" {
openBrackets -= 1
if openBrackets < 0 {
return false
}
}
}
return openBrackets == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "(" {
count += 1
} else if char == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var count = 0
for char in brackets {
if char == "(" {
count += 1
} else if char == ")" {
count -= 1
}
if count < 0 {
return false
}
}
return count == 0
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
brackets is a string of "(" and ")".
return true if every opening bracket has a corresponding closing bracket.
correctBracketing(brackets: "(") == false
correctBracketing(brackets: "()") == true
correctBracketing(brackets: "(()())") == true
correctBracketing(brackets: ")(()") == false
### Response:
```swift
func correctBracketing(brackets: String) -> Bool {
var stack = [Character]()
for char in brackets {
if char == "(" {
stack.append(char)
} else if char == ")" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return stack.isEmpty
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index > 0 {
result.append(value * index)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index > 0 {
result.append(value * index)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index == 0 {
continue
}
result.append(value * index)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index == 0 {
continue
}
result.append(value * index)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index > 0 {
result.append(value * index)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index > 0 {
result.append(value * index)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index > 0 {
result.append(value * index)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index > 0 {
result.append(value * index)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index == 0 {
continue
}
result.append(value * index)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index == 0 {
continue
}
result.append(value * index)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index == 0 {
continue
}
result.append(value * index)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index == 0 {
continue
}
result.append(value * index)
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index != 0 {
result.append(value * index)
}
}
return result
}
```
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index == 0 {
continue
}
result.append(value * index)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
derivative(xs: [3, 1, 2, 4, 5]) == [1, 4, 12, 20]
derivative(xs: [1, 2, 3]) == [2, 6]
### Response:
```swift
func derivative(xs: [Int]) -> [Int] {
var result = [Int]()
for (index, value) in xs.enumerated() {
if index == 0 {
continue
}
result.append(value * index)
}
return result
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func fibfib(n: Int) -> Int {
guard n > 0 else { return 0 }
guard n < 3 else { return 1 }
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
guard n > 0 else { return 0 }
guard n < 3 else { return 1 }
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
// XCTAssertTrue failed
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func fibfib(n: Int) -> Int {
guard n > 0 else { return 0 }
guard n > 1 else { return 0 }
guard n > 2 else { return 1 }
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
guard n > 0 else { return 0 }
guard n > 1 else { return 0 }
guard n > 2 else { return 1 }
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
fibfib(n: 1) == 0
fibfib(n: 5) == 4
fibfib(n: 8) == 24
### Response:
```swift
func fibfib(n: Int) -> Int {
if n == 0 {
return 0
}
if n == 1 {
return 0
}
if n == 2 {
return 1
}
return fibfib(n: n - 1) + fibfib(n: n - 2) + fibfib(n: n - 3)
}
```
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
let vowelsInString = s.lowercased().filter { vowels.contains($0) }
return vowelsInString.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = ["a", "e", "i", "o", "u"]
let vowelsInString = s.lowercased().filter { vowels.contains($0) }
return vowelsInString.count
}
```
let vowelsInString = s.lowercased().filter { vowels.contains($0) } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let y = "Y"
let count = s.count
var vowelCount = 0
for i in 0..<count {
let char = s[s.index(s.startIndex, offsetBy: i)]
if vowels.contains(char) {
vowelCount += 1
} else if char == y && i == count - 1 {
vowelCount += 1
}
}
return vowelCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let y = "Y"
let count = s.count
var vowelCount = 0
for i in 0..<count {
let char = s[s.index(s.startIndex, offsetBy: i)]
if vowels.contains(char) {
vowelCount += 1
} else if char == y && i == count - 1 {
vowelCount += 1
}
}
return vowelCount
}
```
} else if char == y && i == count - 1 { // binary operator '==' cannot be applied to operands of type 'Character' and 'String'
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let vowelsCount = s.count(where: { vowels.contains($0) })
return s.last == "y" || s.last == "Y" ? vowelsCount + 1 : vowelsCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let vowelsCount = s.count(where: { vowels.contains($0) })
return s.last == "y" || s.last == "Y" ? vowelsCount + 1 : vowelsCount
}
```
let vowelsCount = s.count(where: { vowels.contains($0) }) // cannot call value of non-function type 'Int'
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let y = "Y"
let yCount = s.hasSuffix(y) ? 1 : 0
return s.reduce(0) { $0 + (vowels.contains($1) ? 1 : 0) } + yCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let y = "Y"
let yCount = s.hasSuffix(y) ? 1 : 0
return s.reduce(0) { $0 + (vowels.contains($1) ? 1 : 0) } + yCount
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let y = "yY"
let count = s.count
var vowelCount = 0
for i in 0..<count {
if vowels.contains(s[s.index(s.startIndex, offsetBy: i)]) {
vowelCount += 1
}
if i == count - 1 && y.contains(s[s.index(s.startIndex, offsetBy: i)]) {
vowelCount += 1
}
}
return vowelCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let y = "yY"
let count = s.count
var vowelCount = 0
for i in 0..<count {
if vowels.contains(s[s.index(s.startIndex, offsetBy: i)]) {
vowelCount += 1
}
if i == count - 1 && y.contains(s[s.index(s.startIndex, offsetBy: i)]) {
vowelCount += 1
}
}
return vowelCount
}
```
func vowelsCount(s: String) -> Int {
var count = 0
let vowels = "aeiouAEIOU"
for char in s {
if vowels.contains(char) {
count += 1
}
}
if s.hasSuffix("y") || s.hasSuffix("Y") {
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
var count = 0
let vowels = "aeiouAEIOU"
for char in s {
if vowels.contains(char) {
count += 1
}
}
if s.hasSuffix("y") || s.hasSuffix("Y") {
count += 1
}
return count
}
```
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let vowelsInWord = s.filter { vowels.contains($0) }
let yAtEnd = s.hasSuffix("y") ? 1 : 0
return vowelsInWord.count + yAtEnd
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let vowelsInWord = s.filter { vowels.contains($0) }
let yAtEnd = s.hasSuffix("y") ? 1 : 0
return vowelsInWord.count + yAtEnd
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let vowelsInWord = s.filter { vowels.contains($0) }
return vowelsInWord.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let vowelsInWord = s.filter { vowels.contains($0) }
return vowelsInWord.count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouyAEIOUY"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouyAEIOUY"
var count = 0
for char in s {
if vowels.contains(char) {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let vowelsCount = s.reduce(0) { (count, char) in
count + (vowels.contains(char) ? 1 : 0)
}
return vowelsCount + (s.last == "y" || s.last == "Y" ? 1 : 0)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
vowelsCount(s: "abcde") == 2
vowelsCount(s: "ACEDY") == 3
### Response:
```swift
func vowelsCount(s: String) -> Int {
let vowels = "aeiouAEIOU"
let vowelsCount = s.reduce(0) { (count, char) in
count + (vowels.contains(char) ? 1 : 0)
}
return vowelsCount + (s.last == "y" || s.last == "Y" ? 1 : 0)
}
```
func circularShift(x: Int, shift: Int) -> String {
let digits = Array(String(x))
let shifted = shift > digits.count ? digits.reversed() : digits.dropFirst(shift) + digits.prefix(shift)
return String(shifted)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = Array(String(x))
let shifted = shift > digits.count ? digits.reversed() : digits.dropFirst(shift) + digits.prefix(shift)
return String(shifted)
}
```
let shifted = shift > digits.count ? digits.reversed() : digits.dropFirst(shift) + digits.prefix(shift) // missing argument label 'while:' in call
let shifted = shift > digits.count ? digits.reversed() : digits.dropFirst(shift) + digits.prefix(shift) // cannot convert value of type 'Int' to expected argument type '(String.Element) throws -> Bool' (aka '(Character) throws -> Bool')
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shifted = shift % digits.count
let result = digits.suffix(shifted) + digits.prefix(digits.count - shifted)
return String(result)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shifted = shift % digits.count
let result = digits.suffix(shifted) + digits.prefix(digits.count - shifted)
return String(result)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shift = shift % digits.count
let shifted = digits.dropFirst(shift) + digits.prefix(shift)
return String(shifted)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shift = shift % digits.count
let shifted = digits.dropFirst(shift) + digits.prefix(shift)
return String(shifted)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shift = shift % digits.count
return String(digits.dropFirst(shift) + digits.prefix(shift))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shift = shift % digits.count
return String(digits.dropFirst(shift) + digits.prefix(shift))
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = Array(String(x))
let shifted = Array(digits.dropFirst(shift)) + digits.prefix(shift)
return String(shifted)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = Array(String(x))
let shifted = Array(digits.dropFirst(shift)) + digits.prefix(shift)
return String(shifted)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shift = shift % digits.count
return String(digits.suffix(shift) + digits.prefix(digits.count - shift))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shift = shift % digits.count
return String(digits.suffix(shift) + digits.prefix(digits.count - shift))
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shift = shift % digits.count
let shifted = digits.dropFirst(shift) + digits.prefix(shift)
return String(shifted)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shift = shift % digits.count
let shifted = digits.dropFirst(shift) + digits.prefix(shift)
return String(shifted)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = Array(String(x))
let shift = shift % digits.count
let shifted = digits.dropFirst(shift) + digits.prefix(shift)
return String(shifted)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = Array(String(x))
let shift = shift % digits.count
let shifted = digits.dropFirst(shift) + digits.prefix(shift)
return String(shifted)
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shifted = digits.dropLast(shift).appending(digits.suffix(shift))
return shifted == digits ? String(digits.reversed()) : shifted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let shifted = digits.dropLast(shift).appending(digits.suffix(shift))
return shifted == digits ? String(digits.reversed()) : shifted
}
```
// XCTAssertTrue failed
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let count = digits.count
let shifted = shift % count
let result = digits.suffix(count - shifted) + digits.prefix(shifted)
return String(result)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
circularShift(x: 12, shift: 1) == "21"
circularShift(x: 12, shift: 2) == "12"
### Response:
```swift
func circularShift(x: Int, shift: Int) -> String {
let digits = String(x)
let count = digits.count
let shifted = shift % count
let result = digits.suffix(count - shifted) + digits.prefix(shifted)
return String(result)
}
```
// XCTAssertTrue failed
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue!
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue!
}
}
return sum
}
```
sum += char.asciiValue! // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue!
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue!
}
}
return sum
}
```
sum += char.asciiValue! // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue!
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue!
}
}
return sum
}
```
sum += char.asciiValue! // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue ?? 0
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue ?? 0
}
}
return sum
}
```
sum += char.asciiValue ?? 0 // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue ?? 0
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue ?? 0
}
}
return sum
}
```
sum += char.asciiValue ?? 0 // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue ?? 0
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue ?? 0
}
}
return sum
}
```
sum += char.asciiValue ?? 0 // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue ?? 0
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue ?? 0
}
}
return sum
}
```
sum += char.asciiValue ?? 0 // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue!
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += char.asciiValue!
}
}
return sum
}
```
sum += char.asciiValue! // cannot convert value of type 'UInt8' to expected argument type 'Int'
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue!)
}
}
return sum
}
```
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue!)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum(s: "") == 0
digitSum(s: "abAB") == 131
digitSum(s: "abcCd") == 67
digitSum(s: "helloE") == 69
digitSum(s: "woArBld") == 131
digitSum(s: "aAaaaXa") == 153
### Response:
```swift
func digitSum(s: String) -> Int {
var sum = 0
for char in s {
if char.isUppercase {
sum += Int(char.asciiValue!)
}
}
return sum
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let s = s.split(separator: " ")
let apples = Int(s[0]) ?? 0
let oranges = Int(s[3]) ?? 0
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let s = s.split(separator: " ")
let apples = Int(s[0]) ?? 0
let oranges = Int(s[3]) ?? 0
return n - (apples + oranges)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let sArr = s.components(separatedBy: " ")
let apples = Int(sArr[0]) ?? 0
let oranges = Int(sArr[3]) ?? 0
return n - apples - oranges
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let sArr = s.components(separatedBy: " ")
let apples = Int(sArr[0]) ?? 0
let oranges = Int(sArr[3]) ?? 0
return n - apples - oranges
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let sArr = s.split(separator: " ")
let apples = Int(sArr[0]) ?? 0
let oranges = Int(sArr[3]) ?? 0
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let sArr = s.split(separator: " ")
let apples = Int(sArr[0]) ?? 0
let oranges = Int(sArr[3]) ?? 0
return n - (apples + oranges)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.split(separator: " ")
let apples = Int(applesAndOranges[0]) ?? 0
let oranges = Int(applesAndOranges[3]) ?? 0
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.split(separator: " ")
let apples = Int(applesAndOranges[0]) ?? 0
let oranges = Int(applesAndOranges[3]) ?? 0
return n - (apples + oranges)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.components(separatedBy: " and ")
let apples = Int(applesAndOranges[0].components(separatedBy: " ")[0]) ?? 0
let oranges = Int(applesAndOranges[1].components(separatedBy: " ")[0]) ?? 0
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.components(separatedBy: " and ")
let apples = Int(applesAndOranges[0].components(separatedBy: " ")[0]) ?? 0
let oranges = Int(applesAndOranges[1].components(separatedBy: " ")[0]) ?? 0
return n - (apples + oranges)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.components(separatedBy: " and ")
let apples = Int(applesAndOranges[0].components(separatedBy: " ")[0]) ?? 0
let oranges = Int(applesAndOranges[1].components(separatedBy: " ")[0]) ?? 0
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.components(separatedBy: " and ")
let apples = Int(applesAndOranges[0].components(separatedBy: " ")[0]) ?? 0
let oranges = Int(applesAndOranges[1].components(separatedBy: " ")[0]) ?? 0
return n - (apples + oranges)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.split(separator: " ")
let apples = Int(applesAndOranges[0]) ?? 0
let oranges = Int(applesAndOranges[3]) ?? 0
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.split(separator: " ")
let apples = Int(applesAndOranges[0]) ?? 0
let oranges = Int(applesAndOranges[3]) ?? 0
return n - (apples + oranges)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let numbers = s.components(separatedBy: CharacterSet.decimalDigits.inverted).compactMap { Int($0) }
return n - numbers.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let numbers = s.components(separatedBy: CharacterSet.decimalDigits.inverted).compactMap { Int($0) }
return n - numbers.reduce(0, +)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.split(separator: " ")
let apples = Int(applesAndOranges[0]) ?? 0
let oranges = Int(applesAndOranges[3]) ?? 0
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let applesAndOranges = s.split(separator: " ")
let apples = Int(applesAndOranges[0]) ?? 0
let oranges = Int(applesAndOranges[3]) ?? 0
return n - (apples + oranges)
}
```
func fruitDistribution(s: String, n: Int) -> Int {
let sArr = s.split(separator: " ")
let apples = Int(sArr[0]) ?? 0
let oranges = Int(sArr[3]) ?? 0
return n - (apples + oranges)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruitDistribution(s: "5 apples and 6 oranges", n: 19) == 8
fruitDistribution(s: "0 apples and 1 oranges", n: 3) == 2
fruitDistribution(s: "2 apples and 3 oranges", n: 100) == 95
fruitDistribution(s: "100 apples and 1 oranges", n: 120) == 19
### Response:
```swift
func fruitDistribution(s: String, n: Int) -> Int {
let sArr = s.split(separator: " ")
let apples = Int(sArr[0]) ?? 0
let oranges = Int(sArr[3]) ?? 0
return n - (apples + oranges)
}
```
func pluck(arr: [Int]) -> [Int] {
guard let min = arr.filter({ $0 % 2 == 0 }).min() else { return [] }
return [min, arr.firstIndex(of: min)!]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
guard let min = arr.filter({ $0 % 2 == 0 }).min() else { return [] }
return [min, arr.firstIndex(of: min)!]
}
```
func pluck(arr: [Int]) -> [Int] {
guard let min = arr.filter({ $0 % 2 == 0 }).min() else { return [] }
return [min, arr.firstIndex(of: min)!]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
guard let min = arr.filter({ $0 % 2 == 0 }).min() else { return [] }
return [min, arr.firstIndex(of: min)!]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
guard let min = arr.filter({ $0 % 2 == 0 }).min() else { return [] }
return [min, arr.firstIndex(of: min)!]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
guard let min = arr.filter({ $0 % 2 == 0 }).min() else { return [] }
return [min, arr.firstIndex(of: min)!]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEvenValue = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEvenValue {
smallestEvenValue = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEvenValue, smallestEvenIndex]
}
```
func pluck(arr: [Int]) -> [Int] {
guard let min = arr.filter({ $0 % 2 == 0 }).min() else { return [] }
return [min, arr.firstIndex(of: min)!]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
guard let min = arr.filter({ $0 % 2 == 0 }).min() else { return [] }
return [min, arr.firstIndex(of: min)!]
}
```
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEven, smallestEvenIndex]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in an array, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Example 4:
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
pluck(arr: [4, 2, 3]) == [2, 1]
pluck(arr: [1, 2, 3]) == [2, 1]
pluck(arr: [] as [Int]) == [] as [Int]
pluck(arr: [5, 0, 3, 0, 4, 2]) == [0, 1]
### Response:
```swift
func pluck(arr: [Int]) -> [Int] {
var smallestEven = Int.max
var smallestEvenIndex = Int.max
for (index, value) in arr.enumerated() {
if value % 2 == 0 && value < smallestEven {
smallestEven = value
smallestEvenIndex = index
}
}
return smallestEvenIndex == Int.max ? [] : [smallestEven, smallestEvenIndex]
}
```
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
var max = 0
for (key, value) in freq {
if key > max && key == value {
max = key
}
}
return max == 0 ? -1 : max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
var max = 0
for (key, value) in freq {
if key > max && key == value {
max = key
}
}
return max == 0 ? -1 : max
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for number in lst {
frequency[number, default: 0] += 1
}
return frequency.keys.max { frequency[$0]! < frequency[$1]! } ?? -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for number in lst {
frequency[number, default: 0] += 1
}
return frequency.keys.max { frequency[$0]! < frequency[$1]! } ?? -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
let max = freq.keys.max()!
for i in 1...max {
if freq[i]! >= i {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
let max = freq.keys.max()!
for i in 1...max {
if freq[i]! >= i {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num] = (freq[num] ?? 0) + 1
}
return lst.max(by: { freq[$0] ?? 0 < freq[$1] ?? 0 }) ?? -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num] = (freq[num] ?? 0) + 1
}
return lst.max(by: { freq[$0] ?? 0 < freq[$1] ?? 0 }) ?? -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
frequency[num, default: 0] += 1
}
let max = frequency.max { $0.value < $1.value }?.key ?? -1
return max > 0 && frequency[max]! >= max ? max : -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for num in lst {
frequency[num, default: 0] += 1
}
let max = frequency.max { $0.value < $1.value }?.key ?? -1
return max > 0 && frequency[max]! >= max ? max : -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
var result = -1
for (key, value) in freq {
if key > 0 && value >= key && key > result {
result = key
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
var result = -1
for (key, value) in freq {
if key > 0 && value >= key && key > result {
result = key
}
}
return result
}
```
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for number in lst {
frequency[number, default: 0] += 1
}
let sortedFrequency = frequency.sorted { $0.value > $1.value }
for (number, frequency) in sortedFrequency {
if number > 0 && frequency >= number {
return number
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for number in lst {
frequency[number, default: 0] += 1
}
let sortedFrequency = frequency.sorted { $0.value > $1.value }
for (number, frequency) in sortedFrequency {
if number > 0 && frequency >= number {
return number
}
}
return -1
}
```
// XCTAssertTrue failed
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for number in lst {
frequency[number, default: 0] += 1
}
let sortedFrequency = frequency.sorted { $0.value > $1.value }
for (number, frequency) in sortedFrequency {
if number > 0 && frequency >= number {
return number
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var frequency = [Int: Int]()
for number in lst {
frequency[number, default: 0] += 1
}
let sortedFrequency = frequency.sorted { $0.value > $1.value }
for (number, frequency) in sortedFrequency {
if number > 0 && frequency >= number {
return number
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
let sorted = freq.keys.sorted().reversed()
for num in sorted {
if freq[num]! >= num {
return num
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
let sorted = freq.keys.sorted().reversed()
for num in sorted {
if freq[num]! >= num {
return num
}
}
return -1
}
```
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
var max = 0
for (key, value) in freq {
if key > max && key <= value {
max = key
}
}
return max == 0 ? -1 : max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a non-empty array of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the array.
If no such a value exist, return -1.
Examples:
search(lst: [4, 1, 2, 2, 3, 1]) == 2
search(lst: [1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search(lst: [5, 5, 4, 4, 4]) == -1
### Response:
```swift
func search(lst: [Int]) -> Int {
var freq = [Int: Int]()
for num in lst {
freq[num, default: 0] += 1
}
var max = 0
for (key, value) in freq {
if key > max && key <= value {
max = key
}
}
return max == 0 ? -1 : max
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while !sortedList.isEmpty {
result.append(sortedList.removeFirst())
if !sortedList.isEmpty {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
let sorted = lst.sorted()
var result = [Int]()
var i = 0
var j = sorted.count - 1
while i < j {
result.append(sorted[i])
result.append(sorted[j])
i += 1
j -= 1
}
if i == j {
result.append(sorted[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
let sorted = lst.sorted()
var result = [Int]()
var i = 0
var j = sorted.count - 1
while i < j {
result.append(sorted[i])
result.append(sorted[j])
i += 1
j -= 1
}
if i == j {
result.append(sorted[i])
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
if lst.count < 2 {
return lst
}
var sortedList = lst.sorted()
var result = [Int]()
while sortedList.count > 0 {
result.append(sortedList.removeFirst())
if sortedList.count > 0 {
result.append(sortedList.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
if lst.count < 2 {
return lst
}
var sortedList = lst.sorted()
var result = [Int]()
while sortedList.count > 0 {
result.append(sortedList.removeFirst())
if sortedList.count > 0 {
result.append(sortedList.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
let sorted = lst.sorted()
var result = [Int]()
var i = 0
var j = sorted.count - 1
while i < j {
result.append(sorted[i])
result.append(sorted[j])
i += 1
j -= 1
}
if i == j {
result.append(sorted[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
let sorted = lst.sorted()
var result = [Int]()
var i = 0
var j = sorted.count - 1
while i < j {
result.append(sorted[i])
result.append(sorted[j])
i += 1
j -= 1
}
if i == j {
result.append(sorted[i])
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
var sorted = lst.sorted()
var result = [Int]()
while !sorted.isEmpty {
result.append(sorted.removeFirst())
if !sorted.isEmpty {
result.append(sorted.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sorted = lst.sorted()
var result = [Int]()
while !sorted.isEmpty {
result.append(sorted.removeFirst())
if !sorted.isEmpty {
result.append(sorted.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
if lst.count == 0 {
return []
}
var sortedList = lst.sorted()
var result = [Int]()
while sortedList.count > 1 {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
result.append(sortedList.removeFirst())
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
if lst.count == 0 {
return []
}
var sortedList = lst.sorted()
var result = [Int]()
while sortedList.count > 1 {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
result.append(sortedList.removeFirst())
return result
}
```
// Fatal error: Can't remove first element from an empty collection
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sorted = lst.sorted()
var result = [Int]()
while !sorted.isEmpty {
result.append(sorted.removeFirst())
if !sorted.isEmpty {
result.append(sorted.removeLast())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
var sorted = lst.sorted()
var result = [Int]()
while !sorted.isEmpty {
result.append(sorted.removeFirst())
if !sorted.isEmpty {
result.append(sorted.removeLast())
}
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
if lst.count == 0 {
return []
}
var sortedList = lst.sorted()
var result = [Int]()
var i = 0
var j = sortedList.count - 1
while i <= j {
result.append(sortedList[i])
i += 1
if i <= j {
result.append(sortedList[j])
j -= 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
if lst.count == 0 {
return []
}
var sortedList = lst.sorted()
var result = [Int]()
var i = 0
var j = sortedList.count - 1
while i <= j {
result.append(sortedList[i])
i += 1
if i <= j {
result.append(sortedList[j])
j -= 1
}
}
return result
}
```
var sortedList = lst.sorted() // variable 'sortedList' was never mutated; consider changing to 'let' constant
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while sortedList.count > 1 {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
if sortedList.count == 1 {
result.append(sortedList.removeFirst())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
var sortedList = lst.sorted()
var result = [Int]()
while sortedList.count > 1 {
result.append(sortedList.removeFirst())
result.append(sortedList.removeLast())
}
if sortedList.count == 1 {
result.append(sortedList.removeFirst())
}
return result
}
```
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
let sorted = lst.sorted()
var result = [Int]()
var i = 0
var j = sorted.count - 1
while i < j {
result.append(sorted[i])
result.append(sorted[j])
i += 1
j -= 1
}
if i == j {
result.append(sorted[i])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given array of integers, return array in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList(lst: [1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList(lst: [5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList(lst: [] as [Int]) == [] as [Int]
### Response:
```swift
func strangeSortList(lst: [Int]) -> [Int] {
guard lst.count > 1 else { return lst }
let sorted = lst.sorted()
var result = [Int]()
var i = 0
var j = sorted.count - 1
while i < j {
result.append(sorted[i])
result.append(sorted[j])
i += 1
j -= 1
}
if i == j {
result.append(sorted[i])
}
return result
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
guard sides[0] + sides[1] > sides[2] else { return -1 }
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
guard sides[0] + sides[1] > sides[2] else { return -1 }
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let largestSide = sortedSides[2]
let otherSides = sortedSides[0...1]
let isValidTriangle = otherSides[0] + otherSides[1] > largestSide
if isValidTriangle {
let s = Double(sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let largestSide = sortedSides[2]
let otherSides = sortedSides[0...1]
let isValidTriangle = otherSides[0] + otherSides[1] > largestSide
if isValidTriangle {
let s = Double(sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let isValidTriangle = sortedSides[0] + sortedSides[1] > sortedSides[2]
if isValidTriangle {
let s = Double(a + b + c) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let isValidTriangle = sortedSides[0] + sortedSides[1] > sortedSides[2]
if isValidTriangle {
let s = Double(a + b + c) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
guard sides[0] + sides[1] > sides[2] else { return -1 }
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c].sorted()
guard sides[0] + sides[1] > sides[2] else { return -1 }
let s = Double(sides[0] + sides[1] + sides[2]) / 2
let area = sqrt(s * (s - Double(sides[0])) * (s - Double(sides[1])) * (s - Double(sides[2])))
return round(area * 100) / 100
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let longestSide = sortedSides[2]
let shortestSide = sortedSides[0]
let middleSide = sortedSides[1]
if longestSide >= shortestSide + middleSide {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(100 * area) / 100
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let longestSide = sortedSides[2]
let shortestSide = sortedSides[0]
let middleSide = sortedSides[1]
if longestSide >= shortestSide + middleSide {
return -1
}
let s = (a + b + c) / 2
let area = sqrt(Double(s * (s - a) * (s - b) * (s - c)))
return round(100 * area) / 100
}
```
// XCTAssertTrue failed
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let largestSide = sortedSides[2]
let otherSides = sortedSides[0...1]
let sumOfOtherSides = otherSides.reduce(0, +)
if largestSide < sumOfOtherSides {
let s = (a + b + c) / 2
let area = sqrt(s * (s - a) * (s - b) * (s - c))
return Double(round(100 * area) / 100)
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let largestSide = sortedSides[2]
let otherSides = sortedSides[0...1]
let sumOfOtherSides = otherSides.reduce(0, +)
if largestSide < sumOfOtherSides {
let s = (a + b + c) / 2
let area = sqrt(s * (s - a) * (s - b) * (s - c))
return Double(round(100 * area) / 100)
} else {
return -1
}
}
```
let area = sqrt(s * (s - a) * (s - b) * (s - c)) // cannot convert value of type 'Int' to expected argument type 'Double'
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = (sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = (sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = (sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
if sortedSides[0] + sortedSides[1] > sortedSides[2] {
let s = (sides.reduce(0, +)) / 2
let area = sqrt(s * (s - Double(a)) * (s - Double(b)) * (s - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let isValidTriangle = sortedSides[0] + sortedSides[1] > sortedSides[2]
if isValidTriangle {
let semiperimeter = (a + b + c) / 2
let area = sqrt(semiperimeter * (semiperimeter - Double(a)) * (semiperimeter - Double(b)) * (semiperimeter - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let isValidTriangle = sortedSides[0] + sortedSides[1] > sortedSides[2]
if isValidTriangle {
let semiperimeter = (a + b + c) / 2
let area = sqrt(semiperimeter * (semiperimeter - Double(a)) * (semiperimeter - Double(b)) * (semiperimeter - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
```
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let largestSide = sortedSides[2]
let otherSides = sortedSides[0...1]
let isValidTriangle = otherSides.reduce(0, +) > largestSide
if isValidTriangle {
let semiPerimeter = (a + b + c) / 2
let area = sqrt(semiPerimeter * (semiPerimeter - Double(a)) * (semiPerimeter - Double(b)) * (semiPerimeter - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(a: 3, b: 4, c: 5) == 6.0
triangleArea(a: 1, b: 2, c: 10) == -1
### Response:
```swift
func triangleArea(a: Int, b: Int, c: Int) -> Double {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let largestSide = sortedSides[2]
let otherSides = sortedSides[0...1]
let isValidTriangle = otherSides.reduce(0, +) > largestSide
if isValidTriangle {
let semiPerimeter = (a + b + c) / 2
let area = sqrt(semiPerimeter * (semiPerimeter - Double(a)) * (semiPerimeter - Double(b)) * (semiPerimeter - Double(c)))
return round(area * 100) / 100
} else {
return -1
}
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.reversed().elementsEqual(q)
return sum <= w && isBalanced
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q.reversed().elementsEqual(q)
return sum <= w && isBalanced
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindromic(q)
}
func isPalindromic(_ array: [Int]) -> Bool {
var reversedArray = array
reversedArray.reverse()
return array == reversedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindromic(q)
}
func isPalindromic(_ array: [Int]) -> Bool {
var reversedArray = array
reversedArray.reverse()
return array == reversedArray
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindrome(q)
}
func isPalindrome(_ arr: [Int]) -> Bool {
var reversed = arr
reversed.reverse()
return arr == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindrome(q)
}
func isPalindrome(_ arr: [Int]) -> Bool {
var reversed = arr
reversed.reverse()
return arr == reversed
}
```
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in q {
sum += i
}
if sum > w {
return false
}
var isPalindrome = true
for i in 0..<q.count/2 {
if q[i] != q[q.count - i - 1] {
isPalindrome = false
break
}
}
return isPalindrome
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
var sum = 0
for i in q {
sum += i
}
if sum > w {
return false
}
var isPalindrome = true
for i in 0..<q.count/2 {
if q[i] != q[q.count - i - 1] {
isPalindrome = false
break
}
}
return isPalindrome
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
let isBalanced = q == q.reversed()
return isBalanced && sum <= w
}
```
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 0 {
return false
}
if q.count == 1 {
return q[0] <= w
}
if q.count == 2 {
return q[0] + q[1] <= w
}
if q.count % 2 == 0 {
return false
}
var sum = 0
var i = 0
var j = q.count - 1
while i < j {
sum += q[i] + q[j]
i += 1
j -= 1
}
return sum <= w
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 0 {
return false
}
if q.count == 1 {
return q[0] <= w
}
if q.count == 2 {
return q[0] + q[1] <= w
}
if q.count % 2 == 0 {
return false
}
var sum = 0
var i = 0
var j = q.count - 1
while i < j {
sum += q[i] + q[j]
i += 1
j -= 1
}
return sum <= w
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindrome(q)
}
func isPalindrome(_ arr: [Int]) -> Bool {
var reversed = arr
reversed.reverse()
return arr == reversed
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindrome(q)
}
func isPalindrome(_ arr: [Int]) -> Bool {
var reversed = arr
reversed.reverse()
return arr == reversed
}
```
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
if sum > w {
return false
}
for i in 0..<q.count {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
if sum > w {
return false
}
for i in 0..<q.count {
if q[i] != q[q.count - i - 1] {
return false
}
}
return true
}
```
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 0 {
return false
}
if q.count == 1 {
return q[0] <= w
}
if q.count == 2 {
return q[0] + q[1] <= w
}
if q.count % 2 == 0 {
return false
}
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var left = 0
var right = q.count - 1
while left < right {
if q[left] != q[right] {
return false
}
left += 1
right -= 1
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
if q.count == 0 {
return false
}
if q.count == 1 {
return q[0] <= w
}
if q.count == 2 {
return q[0] + q[1] <= w
}
if q.count % 2 == 0 {
return false
}
var sum = 0
for i in 0..<q.count {
sum += q[i]
}
if sum > w {
return false
}
var left = 0
var right = q.count - 1
while left < right {
if q[left] != q[right] {
return false
}
left += 1
right -= 1
}
return true
}
```
// XCTAssertTrue failed
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindrome(q)
}
func isPalindrome(_ array: [Int]) -> Bool {
var reversedArray = array
reversedArray.reverse()
return array == reversedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the object q will fly, and false otherwise.
The object q will fly if it's balanced (it is a palindromic array) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
# 1+2 is less than the maximum possible weight, but it's unbalanced.
# it's balanced, but 3+2+3 is more than the maximum possible weight.
# 3+2+3 is less than the maximum possible weight, and it's balanced.
# 3 is less than the maximum possible weight, and it's balanced.
willItFly(q: [1, 2], w: 5) == false
willItFly(q: [3, 2, 3], w: 1) == false
willItFly(q: [3, 2, 3], w: 9) == true
willItFly(q: [3], w: 5) == true
### Response:
```swift
func willItFly(q: [Int], w: Int) -> Bool {
let sum = q.reduce(0, +)
return sum <= w && isPalindrome(q)
}
func isPalindrome(_ array: [Int]) -> Bool {
var reversedArray = array
reversedArray.reverse()
return array == reversedArray
}
```
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var arr = arr
var count = 0
for i in 0...(arr.count / 2) {
if arr[i] != arr[arr.count - i - 1] {
arr[i] = arr[arr.count - i - 1]
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var arr = arr
var count = 0
for i in 0...(arr.count / 2) {
if arr[i] != arr[arr.count - i - 1] {
arr[i] = arr[arr.count - i - 1]
count += 1
}
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var arr = arr
var count = 0
for i in 0..<arr.count/2 {
if arr[i] != arr[arr.count-i-1] {
count += 1
arr[i] = arr[arr.count-i-1]
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var arr = arr
var count = 0
for i in 0..<arr.count/2 {
if arr[i] != arr[arr.count-i-1] {
count += 1
arr[i] = arr[arr.count-i-1]
}
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var arr = arr
var count = 0
for i in 0..<arr.count/2 {
if arr[i] != arr[arr.count-i-1] {
count += 1
arr[i] = arr[arr.count-i-1]
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var arr = arr
var count = 0
for i in 0..<arr.count/2 {
if arr[i] != arr[arr.count-i-1] {
count += 1
arr[i] = arr[arr.count-i-1]
}
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var count = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
count += 1
}
left += 1
right -= 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var count = 0
var left = 0
var right = arr.count - 1
while left < right {
if arr[left] != arr[right] {
count += 1
}
left += 1
right -= 1
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
```
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallestChange(arr: [1, 2, 3, 5, 4, 7, 9, 6]) == 4
smallestChange(arr: [1, 2, 3, 4, 3, 2, 2]) == 1
smallestChange(arr: [1, 2, 3, 2, 1]) == 0
### Response:
```swift
func smallestChange(arr: [Int]) -> Int {
var count = 0
var i = 0
var j = arr.count - 1
while i < j {
if arr[i] != arr[j] {
count += 1
}
i += 1
j -= 1
}
return count
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for item in lst1 {
total1 += item.count
}
for item in lst2 {
total2 += item.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
} else {
return lst1
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var total1 = 0
var total2 = 0
for item in lst1 {
total1 += item.count
}
for item in lst2 {
total2 += item.count
}
if total1 < total2 {
return lst1
} else if total2 < total1 {
return lst2
} else {
return lst1
}
}
```
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var lst1TotalChars = 0
var lst2TotalChars = 0
for str in lst1 {
lst1TotalChars += str.count
}
for str in lst2 {
lst2TotalChars += str.count
}
if lst1TotalChars < lst2TotalChars {
return lst1
} else {
return lst2
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
var lst1TotalChars = 0
var lst2TotalChars = 0
for str in lst1 {
lst1TotalChars += str.count
}
for str in lst2 {
lst2TotalChars += str.count
}
if lst1TotalChars < lst2TotalChars {
return lst1
} else {
return lst2
}
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Total = lst1.reduce(0) { $0 + $1.count }
let lst2Total = lst2.reduce(0) { $0 + $1.count }
return lst1Total < lst2Total ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Total = lst1.reduce(0) { $0 + $1.count }
let lst2Total = lst2.reduce(0) { $0 + $1.count }
return lst1Total < lst2Total ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Sum = lst1.reduce(0) { $0 + $1.count }
let lst2Sum = lst2.reduce(0) { $0 + $1.count }
return lst1Sum < lst2Sum ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1Sum = lst1.reduce(0) { $0 + $1.count }
let lst2Sum = lst2.reduce(0) { $0 + $1.count }
return lst1Sum < lst2Sum ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts two arrays of strings and returns the array that has
total number of chars in the all strings of the array less than the other array.
if the two arrays have the same number of chars, return the first array.
Examples
totalMatch(lst1: [] as [String], lst2: [] as [String]) == [] as [String]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "Hi"]) == ["hI", "Hi"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hi", "hi", "admin", "project"]) == ["hi", "admin"]
totalMatch(lst1: ["hi", "admin"], lst2: ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]
totalMatch(lst1: ["4"], lst2: ["1", "2", "3", "4", "5"]) == ["4"]
### Response:
```swift
func totalMatch(lst1: [String], lst2: [String]) -> [String] {
let lst1TotalChars = lst1.reduce(0) { $0 + $1.count }
let lst2TotalChars = lst2.reduce(0) { $0 + $1.count }
return lst1TotalChars < lst2TotalChars ? lst1 : lst2
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
for prime in primes {
while number % prime == 0 {
number /= prime
}
}
return number == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
for prime in primes {
while number % prime == 0 {
number /= prime
}
}
return number == 1
}
```
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] // variable 'primes' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes: [Int] = []
for i in 2...9 {
while number % i == 0 {
primes.append(i)
number /= i
}
}
return primes.count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes: [Int] = []
for i in 2...9 {
while number % i == 0 {
primes.append(i)
number /= i
}
}
return primes.count == 3
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var primeCount = 0
for prime in primes {
while number % prime == 0 {
number /= prime
primeCount += 1
}
}
return primeCount == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var primeCount = 0
for prime in primes {
while number % prime == 0 {
number /= prime
primeCount += 1
}
}
return primeCount == 3
}
```
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] // variable 'primes' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var count = 0
for prime in primes {
while number % prime == 0 {
number /= prime
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var count = 0
for prime in primes {
while number % prime == 0 {
number /= prime
count += 1
}
}
return count == 3
}
```
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] // variable 'primes' was never mutated; consider changing to 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var count = 0
for prime in primes {
while number % prime == 0 {
number /= prime
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var count = 0
for prime in primes {
while number % prime == 0 {
number /= prime
count += 1
}
}
return count == 3
}
```
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] // variable 'primes' was never mutated; consider changing to 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
let primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
for prime in primes {
if a % prime == 0 {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
let primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
for prime in primes {
if a % prime == 0 {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var count = 0
for prime in primes {
while number % prime == 0 {
number /= prime
count += 1
}
}
return count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var count = 0
for prime in primes {
while number % prime == 0 {
number /= prime
count += 1
}
}
return count == 3
}
```
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] // variable 'primes' was never mutated; consider changing to 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var number = a
var primes = [Int]()
var divisor = 2
while number != 1 {
if number % divisor == 0 {
primes.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return primes.count == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
return false
}
var number = a
var primes = [Int]()
var divisor = 2
while number != 1 {
if number % divisor == 0 {
primes.append(divisor)
number /= divisor
} else {
divisor += 1
}
}
return primes.count == 3
}
```
// XCTAssertTrue failed
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var primeCount = 0
for prime in primes {
while number % prime == 0 {
number /= prime
primeCount += 1
}
}
return primeCount == 3
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
var number = a
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
var primeCount = 0
for prime in primes {
while number % prime == 0 {
number /= prime
primeCount += 1
}
}
return primeCount == 3
}
```
var primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] // variable 'primes' was never mutated; consider changing to 'let' constant
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
var primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
for prime in primeNumbers {
if a % prime == 0 {
return true
}
}
return false
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
30 = 2 * 3 * 5
isMultiplyPrime(a: 30) == true
### Response:
```swift
func isMultiplyPrime(a: Int) -> Bool {
if a < 100 {
var primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
for prime in primeNumbers {
if a % prime == 0 {
return true
}
}
return false
}
return false
}
```
var primeNumbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] // variable 'primeNumbers' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
guard x > 0, n > 0 else { return false }
if n == 1 { return x == 1 }
var power = 1
while power < x {
power *= n
}
return power == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
guard x > 0, n > 0 else { return false }
if n == 1 { return x == 1 }
var power = 1
while power < x {
power *= n
}
return power == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
if n == 0 {
return false
}
if x == 0 {
return false
}
if x < 0 {
return false
}
if n < 0 {
return false
}
var result = 1
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
if n == 0 {
return false
}
if x == 0 {
return false
}
if x < 0 {
return false
}
if n < 0 {
return false
}
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
var result = 1
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
var result = x
while result % n == 0 {
result /= n
}
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
var result = x
while result % n == 0 {
result /= n
}
return result == 1
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
var result = 1
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
if n == 0 {
return false
}
if x == 0 {
return false
}
if n == x {
return true
}
var result = 1
while result < x {
result *= n
}
return result == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
if n == 0 {
return false
}
if x == 0 {
return false
}
if n == x {
return true
}
var result = 1
while result < x {
result *= n
}
return result == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
var current = n
while current < x {
current *= n
}
return current == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
var current = n
while current < x {
current *= n
}
return current == x
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
if n == 1 {
return x == 1
}
if n <= 0 || x <= 0 {
return false
}
var result = 1
while result <= x {
result *= n
if result == x {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if n == 1 {
return x == 1
}
if n <= 0 || x <= 0 {
return false
}
var result = 1
while result <= x {
result *= n
if result == x {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
if n == 0 {
return false
}
var result = x
while result % n == 0 {
result /= n
}
return result == 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
if x == 1 {
return true
}
if n == 1 {
return false
}
if n == 0 {
return false
}
var result = x
while result % n == 0 {
result /= n
}
return result == 1
}
```
func isSimplePower(x: Int, n: Int) -> Bool {
guard x > 0, n > 0 else { return false }
if x == 1 { return true }
var currentPower = n
while currentPower < x {
currentPower *= n
}
return currentPower == x
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
isSimplePower(x: 1, n: 4) == true
isSimplePower(x: 2, n: 2) == true
isSimplePower(x: 8, n: 2) == true
isSimplePower(x: 3, n: 2) == false
isSimplePower(x: 3, n: 1) == false
isSimplePower(x: 5, n: 3) == false
### Response:
```swift
func isSimplePower(x: Int, n: Int) -> Bool {
guard x > 0, n > 0 else { return false }
if x == 1 { return true }
var currentPower = n
while currentPower < x {
currentPower *= n
}
return currentPower == x
}
```
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
if a < 0 {
return iscube(a: -a)
}
var root = Int(a.squareRoot())
while root * root < a {
root += 1
}
return root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
if a < 0 {
return iscube(a: -a)
}
var root = Int(a.squareRoot())
while root * root < a {
root += 1
}
return root * root == a
}
```
var root = Int(a.squareRoot()) // value of type 'Int' has no member 'squareRoot'
while root * root < a { // binary operator '<' cannot be applied to operands of type 'Duration' and 'Int'
return root * root == a // binary operator '==' cannot be applied to operands of type 'Duration' and 'Int'
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
if a < 0 {
return iscube(a: -a)
}
var x = Int(a.squareRoot())
while x * x < a {
x += 1
}
return x * x == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
if a < 0 {
return iscube(a: -a)
}
var x = Int(a.squareRoot())
while x * x < a {
x += 1
}
return x * x == a
}
```
var x = Int(a.squareRoot()) // value of type 'Int' has no member 'squareRoot'
while x * x < a { // binary operator '<' cannot be applied to operands of type 'Duration' and 'Int'
return x * x == a // binary operator '==' cannot be applied to operands of type 'Duration' and 'Int'
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(Double(a).cbrt())
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(Double(a).cbrt())
return root * root * root == a
}
```
let root = Int(Double(a).cbrt()) // value of type 'Double' has no member 'cbrt'
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(sqrt(Double(abs(a))))
return a == root * root * root * a.signum()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(sqrt(Double(abs(a))))
return a == root * root * root * a.signum()
}
```
// XCTAssertTrue failed
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(a.squareRoot())
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(a.squareRoot())
return root * root * root == a
}
```
let root = Int(a.squareRoot()) // value of type 'Int' has no member 'squareRoot'
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(Double(a).cbrt())
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(Double(a).cbrt())
return root * root * root == a
}
```
let root = Int(Double(a).cbrt()) // value of type 'Double' has no member 'cbrt'
func iscube(a: Int) -> Bool {
guard a >= 0 else {
return false
}
let root = Int(a.squareRoot())
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
guard a >= 0 else {
return false
}
let root = Int(a.squareRoot())
return root * root * root == a
}
```
let root = Int(a.squareRoot()) // value of type 'Int' has no member 'squareRoot'
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(a.squareRoot())
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(a.squareRoot())
return root * root * root == a
}
```
let root = Int(a.squareRoot()) // value of type 'Int' has no member 'squareRoot'
func iscube(a: Int) -> Bool {
let root = a.squareRoot()
return root * root * root == a
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
let root = a.squareRoot()
return root * root * root == a
}
```
let root = a.squareRoot() // value of type 'Int' has no member 'squareRoot'
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(pow(Double(abs(a)), 1.0/3.0))
return a == root * root * root
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an integer a and returns true
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(a: 1) == true
iscube(a: 2) == false
iscube(a: -1) == true
iscube(a: 64) == true
iscube(a: 0) == true
iscube(a: 180) == false
### Response:
```swift
func iscube(a: Int) -> Bool {
if a == 0 {
return true
}
let root = Int(pow(Double(abs(a)), 1.0/3.0))
return a == root * root * root
}
```
// XCTAssertTrue failed
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.count { primes.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
return num.count { primes.contains($0) }
}
```
return num.count { primes.contains($0) } // cannot call value of non-function type 'Int'
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
```
func hexKey(num: String) -> Int {
let primes = Set(["2", "3", "5", "7", "B", "D"])
return num.count(where: { primes.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = Set(["2", "3", "5", "7", "B", "D"])
return num.count(where: { primes.contains($0) })
}
```
return num.count(where: { primes.contains($0) }) // cannot call value of non-function type 'Int'
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if primes.contains(String(char)) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
let primes = ["2", "3", "5", "7", "B", "D"]
var count = 0
for char in num {
if primes.contains(String(char)) {
count += 1
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2": count += 1
case "3": count += 1
case "5": count += 1
case "7": count += 1
case "B": count += 1
case "D": count += 1
default: break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2": count += 1
case "3": count += 1
case "5": count += 1
case "7": count += 1
case "B": count += 1
case "D": count += 1
default: break
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
```
func hexKey(num: String) -> Int {
var primeCount = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
primeCount += 1
default:
break
}
}
return primeCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var primeCount = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
primeCount += 1
default:
break
}
}
return primeCount
}
```
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
hexKey(num: "AB") == 1
hexKey(num: "1077E") == 2
hexKey(num: "ABED1A33") == 4
hexKey(num: "123456789ABCDEF0") == 6
hexKey(num: "2020") == 2
### Response:
```swift
func hexKey(num: String) -> Int {
var count = 0
for char in num {
switch char {
case "2", "3", "5", "7", "B", "D":
count += 1
default:
break
}
}
return count
}
```
func decimalToBinary(decimal: Int) -> String {
var result = "db"
var number = decimal
while number > 0 {
result = String(number % 2) + result
number /= 2
}
return result + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var result = "db"
var number = decimal
while number > 0 {
result = String(number % 2) + result
number /= 2
}
return result + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var decimal = decimal
while decimal > 0 {
binary = String(decimal % 2) + binary
decimal /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var decimal = decimal
while decimal > 0 {
binary = String(decimal % 2) + binary
decimal /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var decimal = decimal
while decimal > 0 {
binary = String(decimal % 2) + binary
decimal /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var decimal = decimal
while decimal > 0 {
binary = String(decimal % 2) + binary
decimal /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var decimalCopy = decimal
while decimalCopy > 0 {
binary = String(decimalCopy % 2) + binary
decimalCopy /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var decimalCopy = decimal
while decimalCopy > 0 {
binary = String(decimalCopy % 2) + binary
decimalCopy /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var binary = ""
var number = decimal
while number > 0 {
binary = String(number % 2) + binary
number /= 2
}
return "db" + binary + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
var result = "db"
var number = decimal
while number > 0 {
result = (number % 2 == 0 ? "0" : "1") + result
number /= 2
}
return result + "db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
var result = "db"
var number = decimal
while number > 0 {
result = (number % 2 == 0 ? "0" : "1") + result
number /= 2
}
return result + "db"
}
```
// XCTAssertTrue failed
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimalToBinary(decimal: 15) == "db1111db"
decimalToBinary(decimal: 32) == "db100000db"
### Response:
```swift
func decimalToBinary(decimal: Int) -> String {
let binary = String(decimal, radix: 2)
return "db\(binary)db"
}
```
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in stride(from: 0, to: s.count - 2, by: 3) {
let chars = s[i...i+2].map { $0 }
if chars[0] == chars[1] || chars[1] == chars[2] || chars[0] == chars[2] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in stride(from: 0, to: s.count - 2, by: 3) {
let chars = s[i...i+2].map { $0 }
if chars[0] == chars[1] || chars[1] == chars[2] || chars[0] == chars[2] {
return false
}
}
return true
}
```
let chars = s[i...i+2].map { $0 } // 'subscript(_:)' is unavailable: cannot subscript String with an integer range, use a String.Index range instead.
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let first = s[s.index(s.startIndex, offsetBy: i)]
let second = s[s.index(s.startIndex, offsetBy: i + 1)]
let third = s[s.index(s.startIndex, offsetBy: i + 2)]
if first == second || first == third || second == third {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let first = s[s.index(s.startIndex, offsetBy: i)]
let second = s[s.index(s.startIndex, offsetBy: i + 1)]
let third = s[s.index(s.startIndex, offsetBy: i + 2)]
if first == second || first == third || second == third {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+1)] || s[s.index(s.startIndex, offsetBy: i+1)] == s[s.index(s.startIndex, offsetBy: i+2)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+2)] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+1)] || s[s.index(s.startIndex, offsetBy: i+1)] == s[s.index(s.startIndex, offsetBy: i+2)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+2)] {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let char1 = s[s.index(s.startIndex, offsetBy: i)]
let char2 = s[s.index(s.startIndex, offsetBy: i + 1)]
let char3 = s[s.index(s.startIndex, offsetBy: i + 2)]
if char1 == char2 || char2 == char3 || char1 == char3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let char1 = s[s.index(s.startIndex, offsetBy: i)]
let char2 = s[s.index(s.startIndex, offsetBy: i + 1)]
let char3 = s[s.index(s.startIndex, offsetBy: i + 2)]
if char1 == char2 || char2 == char3 || char1 == char3 {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let subStr = s[s.index(s.startIndex, offsetBy: i)...s.index(s.startIndex, offsetBy: i + 2)]
if subStr.count != Set(subStr).count {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in stride(from: 0, to: s.count - 2, by: 3) {
let subStr = s[s.index(s.startIndex, offsetBy: i)...s.index(s.startIndex, offsetBy: i + 2)]
if subStr.count != Set(subStr).count {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 1)] ||
s[s.index(s.startIndex, offsetBy: i + 1)] == s[s.index(s.startIndex, offsetBy: i + 2)] ||
s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 2)] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 1)] ||
s[s.index(s.startIndex, offsetBy: i + 1)] == s[s.index(s.startIndex, offsetBy: i + 2)] ||
s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 2)] {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let char1 = s[s.index(s.startIndex, offsetBy: i)]
let char2 = s[s.index(s.startIndex, offsetBy: i + 1)]
let char3 = s[s.index(s.startIndex, offsetBy: i + 2)]
if char1 == char2 || char2 == char3 || char1 == char3 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
let char1 = s[s.index(s.startIndex, offsetBy: i)]
let char2 = s[s.index(s.startIndex, offsetBy: i + 1)]
let char3 = s[s.index(s.startIndex, offsetBy: i + 2)]
if char1 == char2 || char2 == char3 || char1 == char3 {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+1)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+2)] || s[s.index(s.startIndex, offsetBy: i+1)] == s[s.index(s.startIndex, offsetBy: i+2)] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
guard s.count >= 3 else { return false }
for i in 0..<s.count-2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+1)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i+2)] || s[s.index(s.startIndex, offsetBy: i+1)] == s[s.index(s.startIndex, offsetBy: i+2)] {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 1)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 2)] || s[s.index(s.startIndex, offsetBy: i + 1)] == s[s.index(s.startIndex, offsetBy: i + 2)] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 1)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 2)] || s[s.index(s.startIndex, offsetBy: i + 1)] == s[s.index(s.startIndex, offsetBy: i + 2)] {
return false
}
}
return true
}
```
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 1)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 2)] || s[s.index(s.startIndex, offsetBy: i + 1)] == s[s.index(s.startIndex, offsetBy: i + 2)] {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
Your task is to check if the string is hapswift or not.
A string is hapswift if its length is at least 3 and every 3 consecutive letters are distinct
For example:
isHappy(s: "a") == false
isHappy(s: "aa") == false
isHappy(s: "abcd") == true
isHappy(s: "aabb") == false
isHappy(s: "adb") == true
isHappy(s: "xyy") == false
### Response:
```swift
func isHappy(s: String) -> Bool {
if s.count < 3 {
return false
}
for i in 0..<s.count - 2 {
if s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 1)] || s[s.index(s.startIndex, offsetBy: i)] == s[s.index(s.startIndex, offsetBy: i + 2)] || s[s.index(s.startIndex, offsetBy: i + 1)] == s[s.index(s.startIndex, offsetBy: i + 2)] {
return false
}
}
return true
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades: [String] = []
for grade in grades {
if grade == 4.0 {
letterGrades.append("A+")
} else if grade > 3.7 {
letterGrades.append("A")
} else if grade > 3.3 {
letterGrades.append("A-")
} else if grade > 3.0 {
letterGrades.append("B+")
} else if grade > 2.7 {
letterGrades.append("B")
} else if grade > 2.3 {
letterGrades.append("B-")
} else if grade > 2.0 {
letterGrades.append("C+")
} else if grade > 1.7 {
letterGrades.append("C")
} else if grade > 1.3 {
letterGrades.append("C-")
} else if grade > 1.0 {
letterGrades.append("D+")
} else if grade > 0.7 {
letterGrades.append("D")
} else if grade > 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you an array of GPAs for some students and you have to write
a function that can output an array of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
numericalLetterGrade(grades: [4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]
### Response:
```swift
func numericalLetterGrade(grades: [Double]) -> [String] {
var letterGrades = [String]()
for grade in grades {
if grade >= 4.0 {
letterGrades.append("A+")
} else if grade >= 3.7 {
letterGrades.append("A")
} else if grade >= 3.3 {
letterGrades.append("A-")
} else if grade >= 3.0 {
letterGrades.append("B+")
} else if grade >= 2.7 {
letterGrades.append("B")
} else if grade >= 2.3 {
letterGrades.append("B-")
} else if grade >= 2.0 {
letterGrades.append("C+")
} else if grade >= 1.7 {
letterGrades.append("C")
} else if grade >= 1.3 {
letterGrades.append("C-")
} else if grade >= 1.0 {
letterGrades.append("D+")
} else if grade >= 0.7 {
letterGrades.append("D")
} else if grade >= 0.0 {
letterGrades.append("D-")
} else {
letterGrades.append("E")
}
}
return letterGrades
}
```
// XCTAssertTrue failed
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
if length == 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
if length == 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length < 2 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length <= 1 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
if length == 0 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns true if the string
length is a prime number or false otherwise
Examples
primeLength(string: "Hello") == true
primeLength(string: "abcdcba") == true
primeLength(string: "kittens") == true
primeLength(string: "orange") == false
### Response:
```swift
func primeLength(string: String) -> Bool {
let length = string.count
if length == 1 {
return true
}
if length == 0 {
return false
}
for i in 2..<length {
if length % i == 0 {
return false
}
}
return true
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return (10^(n-1) - 10^(n-2)) * 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
return (10^(n-1) - 10^(n-2)) * 2
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let start = 10.power(n - 1)
let end = 10.power(n)
return (end - start) * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
guard exponent >= 0 else { return 0 }
guard exponent > 0 else { return 1 }
return self * power(exponent - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let start = 10.power(n - 1)
let end = 10.power(n)
return (end - start) * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
guard exponent >= 0 else { return 0 }
guard exponent > 0 else { return 1 }
return self * power(exponent - 1)
}
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
return (n - 1) * 9 + 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
return (n - 1) * 9 + 1
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
guard exponent >= 0 else { return 0 }
guard exponent > 0 else { return 1 }
return self * power(exponent - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
guard exponent >= 0 else { return 0 }
guard exponent > 0 else { return 1 }
return self * power(exponent - 1)
}
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
return (1...exponent).reduce(1, { $0 * self })
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
return (1...exponent).reduce(1, { $0 * self })
}
}
```
return (1...exponent).reduce(1, { $0 * self }) // contextual closure type '(Int, ClosedRange<Int>.Element) throws -> Int' (aka '(Int, Int) throws -> Int') expects 2 arguments, but 1 was used in closure body
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
return (1...exponent).reduce(1, { $0 * self })
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
return (1...exponent).reduce(1, { $0 * self })
}
}
```
return (1...exponent).reduce(1, { $0 * self }) // contextual closure type '(Int, ClosedRange<Int>.Element) throws -> Int' (aka '(Int, Int) throws -> Int') expects 2 arguments, but 1 was used in closure body
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
guard exponent >= 0 else { return 0 }
guard exponent > 0 else { return 1 }
return self * power(exponent - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
guard exponent >= 0 else { return 0 }
guard exponent > 0 else { return 1 }
return self * power(exponent - 1)
}
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
var count = 0
for i in 1...n {
if i == 1 {
count += 1
} else {
count += 9 * Int(pow(Double(10), Double(i - 2)))
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
var count = 0
for i in 1...n {
if i == 1 {
count += 1
} else {
count += 9 * Int(pow(Double(10), Double(i - 2)))
}
}
return count
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
guard exponent >= 0 else { return 0 }
guard exponent > 0 else { return 1 }
return self * power(exponent - 1)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
guard n > 0 else { return 0 }
let count = 10.power(n - 1)
return count * 2
}
extension Int {
func power(_ exponent: Int) -> Int {
guard exponent >= 0 else { return 0 }
guard exponent > 0 else { return 1 }
return self * power(exponent - 1)
}
}
```
// XCTAssertTrue failed
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
let count = 10^(n-1)
return count + count - 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
### Response:
```swift
func startsOneEnds(n: Int) -> Int {
if n == 1 {
return 1
}
let count = 10^(n-1)
return count + count - 1
}
```
// XCTAssertTrue failed
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 10
num /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 10
num /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 10
num /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var num = N
while num > 0 {
sum += num % 10
num /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer N, return the total sum of its digits in binary.
Example
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
solve(N: 1000) == "1"
solve(N: 150) == "110"
solve(N: 147) == "1100"
### Response:
```swift
func solve(N: Int) -> String {
var sum = 0
var n = N
while n > 0 {
sum += n % 10
n /= 10
}
return String(sum, radix: 2)
}
```
@N integer // cannot find type 'integer' in scope
@N integer // unknown attribute 'N'
Constraints: 0 ≤ N ≤ 10000. // expected member name following '.'
Constraints: 0 ≤ N ≤ 10000. // expected expression
Constraints: 0 ≤ N ≤ 10000. // consecutive statements on a line must be separated by ';'
Constraints: 0 ≤ N ≤ 10000. // cannot find 'Constraints' in scope
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
// XCTAssertTrue failed
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 1 && element % 2 == 0 {
sum += element
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers lst. add the even elements that are at odd indices..
Examples:
add(lst: [4, 2, 6, 7]) == 2
### Response:
```swift
func add(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 1 && value % 2 == 0 {
sum += value
}
}
return sum
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var result = ""
for word in words {
var sortedWord = word.sorted()
result += sortedWord.joined() + " "
}
return result.trimmingCharacters(in: .whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var result = ""
for word in words {
var sortedWord = word.sorted()
result += sortedWord.joined() + " "
}
return result.trimmingCharacters(in: .whitespaces)
}
```
result += sortedWord.joined() + " " // no exact matches in call to instance method 'joined'
func antiShuffle(s: String) -> String {
var result = ""
var word = ""
for char in s {
if char == " " {
result += String(word.sorted()) + " "
word = ""
} else {
word += String(char)
}
}
result += String(word.sorted())
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
var result = ""
var word = ""
for char in s {
if char == " " {
result += String(word.sorted()) + " "
word = ""
} else {
word += String(char)
}
}
result += String(word.sorted())
return result
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var result = ""
for word in words {
let sortedWord = word.sorted()
result += sortedWord + " "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var result = ""
for word in words {
let sortedWord = word.sorted()
result += sortedWord + " "
}
return result
}
```
// XCTAssertTrue failed
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = word.sorted()
result += sortedWord.joined() + " "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = word.sorted()
result += sortedWord.joined() + " "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
result += sortedWord.joined() + " " // no exact matches in call to instance method 'joined'
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = word.sorted()
result += sortedWord.joined() + " "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.components(separatedBy: " ")
var result = ""
for word in words {
let sortedWord = word.sorted()
result += sortedWord.joined() + " "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
result += sortedWord.joined() + " " // no exact matches in call to instance method 'joined'
func antiShuffle(s: String) -> String {
var result = ""
var word = ""
for char in s {
if char == " " {
result += String(word.sorted()) + " "
word = ""
} else {
word += String(char)
}
}
result += String(word.sorted())
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
var result = ""
var word = ""
for char in s {
if char == " " {
result += String(word.sorted()) + " "
word = ""
} else {
word += String(char)
}
}
result += String(word.sorted())
return result
}
```
func antiShuffle(s: String) -> String {
var result = ""
var word = ""
for char in s {
if char == " " {
result += String(word.sorted())
result += " "
word = ""
} else {
word += String(char)
}
}
result += String(word.sorted())
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
var result = ""
var word = ""
for char in s {
if char == " " {
result += String(word.sorted())
result += " "
word = ""
} else {
word += String(char)
}
}
result += String(word.sorted())
return result
}
```
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var result = ""
for word in words {
let sortedWord = word.sorted()
result += sortedWord + " "
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var result = ""
for word in words {
let sortedWord = word.sorted()
result += sortedWord + " "
}
return result
}
```
// XCTAssertTrue failed
func antiShuffle(s: String) -> String {
var result = ""
var word = ""
for char in s {
if char == " " {
result += " "
word = ""
} else if char == "!" {
result += "!"
} else {
word += String(char)
result += String(word.sorted())
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
var result = ""
var word = ""
for char in s {
if char == " " {
result += " "
word = ""
} else if char == "!" {
result += "!"
} else {
word += String(char)
result += String(word.sorted())
}
}
return result
}
```
// XCTAssertTrue failed
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var result = ""
for word in words {
var chars = word.map { String($0) }
chars.sort { $0.unicodeScalars.first!.value < $1.unicodeScalars.first!.value }
result += chars.joined() + " "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
antiShuffle(s: "Hi") == "Hi"
antiShuffle(s: "hello") == "ehllo"
antiShuffle(s: "Hello World!!!") == "Hello !!!Wdlor"
### Response:
```swift
func antiShuffle(s: String) -> String {
let words = s.split(separator: " ")
var result = ""
for word in words {
var chars = word.map { String($0) }
chars.sort { $0.unicodeScalars.first!.value < $1.unicodeScalars.first!.value }
result += chars.joined() + " "
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, value) in row.enumerated() {
if value == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, value) in row.enumerated() {
if value == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, value) in row.enumerated() {
if value == x {
result.append((i, j))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowArray) in lst.enumerated() {
for (column, value) in rowArray.enumerated() {
if value == x {
result.append((row, column))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, rowArray) in lst.enumerated() {
for (column, value) in rowArray.enumerated() {
if value == x {
result.append((row, column))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, arr) in lst.enumerated() {
for (col, val) in arr.enumerated() {
if val == x {
result.append((row, col))
}
}
}
return result.sorted(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, arr) in lst.enumerated() {
for (col, val) in arr.enumerated() {
if val == x {
result.append((row, col))
}
}
}
return result.sorted(by: { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) })
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, column) in row.enumerated() {
if column == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, column) in row.enumerated() {
if column == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (i, row) in lst.enumerated() {
for (j, col) in row.enumerated() {
if col == x {
result.append((i, j))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
} else {
return a.0 < b.0
}
}
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, value) in row.enumerated() {
if value == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (rowIndex, row) in lst.enumerated() {
for (columnIndex, value) in row.enumerated() {
if value == x {
result.append((rowIndex, columnIndex))
}
}
}
return result.sorted { (a, b) -> Bool in
if a.0 == b.0 {
return a.1 > b.1
}
return a.0 < b.0
}
}
```
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, array) in lst.enumerated() {
for (column, value) in array.enumerated() {
if value == x {
result.append((row, column))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a 2 dimensional data, as a nested arrays,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the array,
and return array of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow(lst: [[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], x: 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow(lst: [] as [[Int]], x: 1) == [] as [(Int, Int)]
getRow(lst: [[] as [Int], [1], [1, 2, 3]], x: 3) == [(2, 2)]
### Response:
```swift
func getRow(lst: [[Int]], x: Int) -> [(Int, Int)] {
var result: [(Int, Int)] = []
for (row, array) in lst.enumerated() {
for (column, value) in array.enumerated() {
if value == x {
result.append((row, column))
}
}
}
return result.sorted { $0.0 < $1.0 || ($0.0 == $1.0 && $0.1 > $1.1) }
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let sortedArray = array.sorted()
let sum = sortedArray.first! + sortedArray.last!
return sum.isMultiple(of: 2) ? sortedArray.reversed() : sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let sortedArray = array.sorted()
let sum = sortedArray.first! + sortedArray.last!
return sum.isMultiple(of: 2) ? sortedArray.reversed() : sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let sum = array.first! + array.last!
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 1 else { return array }
let sum = array.first! + array.last!
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
let first = array[0]
let last = array[array.count - 1]
let sum = first + last
let sortedArray = array.sorted()
return sum % 2 == 0 ? sortedArray.reversed() : sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
let first = array[0]
let last = array[array.count - 1]
let sum = first + last
let sortedArray = array.sorted()
return sum % 2 == 0 ? sortedArray.reversed() : sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
let sum = array.first! + array.last!
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
let sum = array.first! + array.last!
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return array }
let first = array[0]
let last = array[array.count - 1]
let sum = first + last
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return array }
let first = array[0]
let last = array[array.count - 1]
let sum = first + last
let sortedArray = sum % 2 == 0 ? array.sorted(by: >) : array.sorted()
return sortedArray
}
```
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of non-negative integers, return a coswift of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
sortArray(array: [] as [Int]) == [] as [Int]
sortArray(array: [5]) == [5]
sortArray(array: [2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]
sortArray(array: [2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]
### Response:
```swift
func sortArray(array: [Int]) -> [Int] {
guard array.count > 0 else { return [] }
guard array.count > 1 else { return array }
let sum = array[0] + array[array.count - 1]
if sum % 2 == 0 {
return array.sorted(by: >)
} else {
return array.sorted(by: <)
}
}
```
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString += String(shiftedAlphabet[index])
} else {
encryptedString += String(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let shiftedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString += String(shiftedAlphabet[index])
} else {
encryptedString += String(char)
}
}
return encryptedString
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = alphabet.index(index, offsetBy: 8)
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
let newIndex = alphabet.index(index, offsetBy: 8)
encryptedString.append(alphabet[newIndex])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let encrypted = s.map { char in
guard let index = alphabet.firstIndex(of: char) else { return char }
return alphabet[index.advanced(by: 2 * 2)]
}
return String(encrypted)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let encrypted = s.map { char in
guard let index = alphabet.firstIndex(of: char) else { return char }
return alphabet[index.advanced(by: 2 * 2)]
}
return String(encrypted)
}
```
return alphabet[index.advanced(by: 2 * 2)] // value of type 'String.Index' has no member 'advanced'
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
var result = ""
for char in s {
if char.isASCII {
let ascii = Int(char.asciiValue!)
let shifted = ascii + 2 * 2
let newChar = Character(UnicodeScalar(shifted)!)
result.append(newChar)
} else {
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var result = ""
for char in s {
if char.isASCII {
let ascii = Int(char.asciiValue!)
let shifted = ascii + 2 * 2
let newChar = Character(UnicodeScalar(shifted)!)
result.append(newChar)
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
let shiftedChar = Character(UnicodeScalar(char.unicodeScalars.first!.value + 16)!)
result.append(shiftedChar)
} else {
result.append(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
let shiftedChar = Character(UnicodeScalar(char.unicodeScalars.first!.value + 16)!)
result.append(shiftedChar)
} else {
result.append(char)
}
}
return result
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
// XCTAssertTrue failed
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt(s: "hi") == "lm"
encrypt(s: "asdfghjkl") == "ewhjklnop"
encrypt(s: "gf") == "kj"
encrypt(s: "et") == "ix"
### Response:
```swift
func encrypt(s: String) -> String {
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let rotatedAlphabet = "cdefghijklmnopqrstuvwxyzab"
var encryptedString = ""
for char in s {
if let index = alphabet.firstIndex(of: char) {
encryptedString.append(rotatedAlphabet[index])
} else {
encryptedString.append(char)
}
}
return encryptedString
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
return sorted[1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
let sorted = lst.sorted()
return sorted[1]
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count >= 2 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count >= 2 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count >= 2 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count >= 2 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
if lst.count < 2 {
return nil
}
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count >= 2 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count >= 2 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var secondMin = lst[0]
for num in lst {
if num < min {
secondMin = min
min = num
} else if num < secondMin && num != min {
secondMin = num
}
}
return secondMin == min ? nil : secondMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count > 1 else { return nil }
var min = lst[0]
var secondMin = lst[0]
for num in lst {
if num < min {
secondMin = min
min = num
} else if num < secondMin && num != min {
secondMin = num
}
}
return secondMin == min ? nil : secondMin
}
```
// XCTAssertTrue failed
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count >= 2 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
Write a function next_smallest() that returns the 2nd smallest element of the array.
Return nil if there is no such element.
nextSmallest(lst: [1, 2, 3, 4, 5]) == 2
nextSmallest(lst: [5, 1, 4, 3, 2]) == 2
nextSmallest(lst: [] as [Int]) == nil
nextSmallest(lst: [1, 1]) == nil
### Response:
```swift
func nextSmallest(lst: [Int]) -> Int? {
guard lst.count >= 2 else { return nil }
var min = lst[0]
var nextMin = lst[0]
for i in 1..<lst.count {
if lst[i] < min {
nextMin = min
min = lst[i]
} else if lst[i] < nextMin && lst[i] != min {
nextMin = lst[i]
}
}
return nextMin == min ? nil : nextMin
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.lowercased().hasPrefix("i") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.hasPrefix("I ") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.hasPrefix("I ") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredomCount = 0
let sentences = S.components(separatedBy: CharacterSet(charactersIn: ".?!"))
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredomCount = 0
let sentences = S.components(separatedBy: CharacterSet(charactersIn: ".?!"))
for sentence in sentences {
if sentence.hasPrefix("I") {
boredomCount += 1
}
}
return boredomCount
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "?", "!"])
for sentence in sentences {
if sentence.hasPrefix("I") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "!", "?"])
for sentence in sentences {
if sentence.lowercased().hasPrefix("i ") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "!", "?"])
for sentence in sentences {
if sentence.lowercased().hasPrefix("i ") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: CharacterSet(charactersIn: ".?!"))
return sentences.filter { $0.lowercased().hasPrefix("i") }.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
let sentences = S.components(separatedBy: CharacterSet(charactersIn: ".?!"))
return sentences.filter { $0.lowercased().hasPrefix("i") }.count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "!", "?"])
for sentence in sentences {
if sentence.lowercased().hasPrefix("i ") {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var count = 0
let sentences = S.components(separatedBy: [".", "!", "?"])
for sentence in sentences {
if sentence.lowercased().hasPrefix("i ") {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.components(separatedBy: CharacterSet(charactersIn: ".?!"))
for sentence in sentences {
if sentence.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
isBored(S: "Hello world") == 0
isBored(S: "The sky is blue. The sun is shining. I love this weather") == 1
### Response:
```swift
func isBored(S: String) -> Int {
var boredoms = 0
let sentences = S.components(separatedBy: CharacterSet(charactersIn: ".?!"))
for sentence in sentences {
if sentence.hasPrefix("I") {
boredoms += 1
}
}
return boredoms
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInteger && y.isInteger && z.isInteger {
if x == y + z {
return true
} else if y == x + z {
return true
} else if z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInteger && y.isInteger && z.isInteger {
if x == y + z {
return true
} else if y == x + z {
return true
} else if z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInteger && y.isInteger && z.isInteger {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.isInteger && y.isInteger && z.isInteger {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
```
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
if x.isInteger && y.isInteger && z.isInteger { // value of type 'Double' has no member 'isInteger'
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (x == y + z) || (y == x + z) || (z == x + y)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (x == y + z) || (y == x + z) || (z == x + y)
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if (x == y + z) || (y == x + z) || (z == x + y) {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if (x == y + z) || (y == x + z) || (z == x + y) {
return true
} else {
return false
}
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (x == y + z) || (y == x + z) || (z == x + y)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (x == y + z) || (y == x + z) || (z == x + y)
}
```
// XCTAssertTrue failed
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
if x == y + z || y == x + z || z == x + y {
return true
}
}
return false
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (x == y + z || y == x + z || z == x + y) && x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
return (x == y + z || y == x + z || z == x + y) && x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0
}
```
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
anyInt(x: 5, y: 2, z: 7) == true
anyInt(x: 3, y: 2, z: 2) == false
anyInt(x: 3, y: -2, z: 1) == true
anyInt(x: 3.6, y: -2.2, z: 2) == false
### Response:
```swift
func anyInt(x: Double, y: Double, z: Double) -> Bool {
if x.truncatingRemainder(dividingBy: 1) == 0 && y.truncatingRemainder(dividingBy: 1) == 0 && z.truncatingRemainder(dividingBy: 1) == 0 {
if x == y + z || y == x + z || z == x + y {
return true
} else {
return false
}
} else {
return false
}
}
```
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let vowelsUpper = vowels.map { $0.uppercased() }
let vowelsSet = Set(vowels + vowelsUpper)
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let alphabetUpper = alphabet.uppercased()
let alphabetSet = Set(alphabet + alphabetUpper)
var encodedMessage = ""
for char in message {
if vowelsSet.contains(String(char)) {
let index = alphabetSet.firstIndex(of: String(char))!
let newIndex = index + 2
let newChar = alphabetSet[newIndex]
encodedMessage += newChar
} else if alphabetSet.contains(String(char)) {
encodedMessage += String(char)
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = ["a", "e", "i", "o", "u"]
let vowelsUpper = vowels.map { $0.uppercased() }
let vowelsSet = Set(vowels + vowelsUpper)
let alphabet = "abcdefghijklmnopqrstuvwxyz"
let alphabetUpper = alphabet.uppercased()
let alphabetSet = Set(alphabet + alphabetUpper)
var encodedMessage = ""
for char in message {
if vowelsSet.contains(String(char)) {
let index = alphabetSet.firstIndex(of: String(char))!
let newIndex = index + 2
let newChar = alphabetSet[newIndex]
encodedMessage += newChar
} else if alphabetSet.contains(String(char)) {
encodedMessage += String(char)
}
}
return encodedMessage
}
```
let index = alphabetSet.firstIndex(of: String(char))! // cannot convert value of type 'String' to expected argument type 'String.Element' (aka 'Character')
func encode(message: String) -> String {
let vowels = "AEIOUaeiou"
let vowelsReplacement = "CDEFGcdefg"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let result = message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}
return String(result).uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "AEIOUaeiou"
let vowelsReplacement = "CDEFGcdefg"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let result = message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}
return String(result).uppercased()
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isUppercase {
encodedMessage.append(char.lowercased())
} else {
encodedMessage.append(char.uppercased())
}
}
return encodedMessage
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
var encodedMessage = ""
for char in message {
if char.isUppercase {
encodedMessage.append(char.lowercased())
} else {
encodedMessage.append(char.uppercased())
}
}
return encodedMessage
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefgCDEFG"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let result = message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}
return String(result).uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefgCDEFG"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let result = message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}
return String(result).uppercased()
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefgCDEFG"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let result = message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}
return String(result).uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefgCDEFG"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let result = message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}
return String(result).uppercased()
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = "AEIOUaeiou"
let vowelsReplacement = "CDEFGcdefg"
let vowelsReplacementDict = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let encodedMessage = message.map { char in
if let replacement = vowelsReplacementDict[char] {
return replacement
} else {
return char
}
}
return String(encodedMessage).uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "AEIOUaeiou"
let vowelsReplacement = "CDEFGcdefg"
let vowelsReplacementDict = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let encodedMessage = message.map { char in
if let replacement = vowelsReplacementDict[char] {
return replacement
} else {
return char
}
}
return String(encodedMessage).uppercased()
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefgCDEFG"
let vowelsReplacementMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let encodedMessage = message.map { char in
if let replacement = vowelsReplacementMap[char] {
return replacement
} else {
return char
}
}
return String(encodedMessage).uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefgCDEFG"
let vowelsReplacementMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let encodedMessage = message.map { char in
if let replacement = vowelsReplacementMap[char] {
return replacement
} else {
return char
}
}
return String(encodedMessage).uppercased()
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefghijklmnopqrstuvwxyzCDEFGHIJKLMNOPQRSTUVWXYZ"
let vowelsReplacementMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let encodedMessage = message.map { char in
if let replacement = vowelsReplacementMap[char] {
return replacement
} else {
return char
}
}
return encodedMessage.map { char in
if char.isUppercase {
return char.lowercased()
} else {
return char.uppercased()
}
}.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefghijklmnopqrstuvwxyzCDEFGHIJKLMNOPQRSTUVWXYZ"
let vowelsReplacementMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let encodedMessage = message.map { char in
if let replacement = vowelsReplacementMap[char] {
return replacement
} else {
return char
}
}
return encodedMessage.map { char in
if char.isUppercase {
return char.lowercased()
} else {
return char.uppercased()
}
}.joined()
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = "AEIOUaeiou"
let vowelsReplacement = "CDEFGcdefg"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
return message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}.map { char in
if char.isUppercase {
return char.lowercased()
} else {
return char.uppercased()
}
}.reduce("", +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "AEIOUaeiou"
let vowelsReplacement = "CDEFGcdefg"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
return message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}.map { char in
if char.isUppercase {
return char.lowercased()
} else {
return char.uppercased()
}
}.reduce("", +)
}
```
// XCTAssertTrue failed
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefgCDEFG"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let encodedMessage = message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}
return String(encodedMessage).uppercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
encode(message: "test") == "TGST"
encode(message: "This is a message") == "tHKS KS C MGSSCGG"
### Response:
```swift
func encode(message: String) -> String {
let vowels = "aeiouAEIOU"
let vowelsReplacement = "cdefgCDEFG"
let vowelsMap = Dictionary(uniqueKeysWithValues: zip(vowels, vowelsReplacement))
let encodedMessage = message.map { char in
if let replacement = vowelsMap[char] {
return replacement
} else {
return char
}
}
return String(encodedMessage).uppercased()
}
```
// XCTAssertTrue failed
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for number in lst {
if number > largestPrime && isPrime(number) {
largestPrime = number
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
for i in stride(from: 5, through: Int(sqrt(Double(number))), by: 6) {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
}
return true
}
func sumOfDigits(_ number: Int) -> Int {
var sum = 0
var number = number
while number > 0 {
sum += number % 10
number /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for number in lst {
if number > largestPrime && isPrime(number) {
largestPrime = number
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
for i in stride(from: 5, through: Int(sqrt(Double(number))), by: 6) {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
}
return true
}
func sumOfDigits(_ number: Int) -> Int {
var sum = 0
var number = number
while number > 0 {
sum += number % 10
number /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for number in lst {
if number > largestPrime && isPrime(number) {
largestPrime = number
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
for i in stride(from: 5, through: Int(sqrt(Double(number))), by: 6) {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
}
return true
}
func sumOfDigits(_ number: Int) -> Int {
var sum = 0
var number = number
while number > 0 {
sum += number % 10
number /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for number in lst {
if number > largestPrime && isPrime(number) {
largestPrime = number
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
for i in stride(from: 5, through: Int(sqrt(Double(number))), by: 6) {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
}
return true
}
func sumOfDigits(_ number: Int) -> Int {
var sum = 0
var number = number
while number > 0 {
sum += number % 10
number /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2...Int(sqrt(Double(num))) {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num < 2 {
return false
}
for i in 2...Int(sqrt(Double(num))) {
if num % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
```
// Fatal error: Range requires lowerBound <= upperBound
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
for i in 5...Int(sqrt(Double(num))) {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if num > largestPrime && isPrime(num) {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
for i in 5...Int(sqrt(Double(num))) {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp > 0 {
sum += temp % 10
temp /= 10
}
return sum
}
```
// Fatal error: Range requires lowerBound <= upperBound
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp != 0 {
sum += temp % 10
temp /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for num in lst {
if isPrime(num) && num > largestPrime {
largestPrime = num
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ num: Int) -> Bool {
if num <= 1 {
return false
}
if num <= 3 {
return true
}
if num % 2 == 0 || num % 3 == 0 {
return false
}
var i = 5
while i * i <= num {
if num % i == 0 || num % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var temp = num
while temp != 0 {
sum += temp % 10
temp /= 10
}
return sum
}
```
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for number in lst {
if number > largestPrime && isPrime(number) {
largestPrime = number
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ number: Int) -> Int {
var sum = 0
var number = number
while number != 0 {
sum += number % 10
number /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
skjkasdkd(lst: [0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10
skjkasdkd(lst: [1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25
skjkasdkd(lst: [1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13
skjkasdkd(lst: [0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11
skjkasdkd(lst: [0, 81, 12, 3, 1, 21]) == 3
skjkasdkd(lst: [0, 8, 1, 2, 1, 7]) == 7
### Response:
```swift
func skjkasdkd(lst: [Int]) -> Int {
var largestPrime = 0
for number in lst {
if number > largestPrime && isPrime(number) {
largestPrime = number
}
}
return sumOfDigits(largestPrime)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
for i in 2...Int(sqrt(Double(number))) {
if number % i == 0 {
return false
}
}
return true
}
func sumOfDigits(_ number: Int) -> Int {
var sum = 0
var number = number
while number != 0 {
sum += number % 10
number /= 10
}
return sum
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
guard n > 1 else { return false }
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
guard n > 1 else { return false }
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 {
return false
}
}
return true
}
```
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
var isPrime = [Bool](repeating: true, count: n)
for i in 2..<n {
if isPrime[i] {
primes.append(i)
for j in stride(from: i * i, to: n, by: i) {
isPrime[j] = false
}
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
var isPrime = [Bool](repeating: true, count: n)
for i in 2..<n {
if isPrime[i] {
primes.append(i)
for j in stride(from: i * i, to: n, by: i) {
isPrime[j] = false
}
}
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if primes.allSatisfy({ i % $0 != 0 }) {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if primes.allSatisfy({ i % $0 != 0 }) {
primes.append(i)
}
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes: [Int] = []
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
guard n > 1 else { return false }
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes: [Int] = []
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
guard n > 1 else { return false }
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 {
return false
}
}
return true
}
```
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if primes.allSatisfy({ i % $0 != 0 }) {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
guard n > 1 else { return [] }
var primes = [Int]()
for i in 2..<n {
if primes.allSatisfy({ i % $0 != 0 }) {
primes.append(i)
}
}
return primes
}
```
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
if isPrime(i) {
primes.append(i)
}
}
return primes
}
func isPrime(_ n: Int) -> Bool {
if n < 2 {
return false
}
for i in 2..<Int(sqrt(Double(n))) + 1 {
if n % i == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
countUpTo(n: 5) == [2, 3]
countUpTo(n: 11) == [2, 3, 5, 7]
countUpTo(n: 0) == [] as [Int]
countUpTo(n: 20) == [2, 3, 5, 7, 11, 13, 17, 19]
countUpTo(n: 1) == [] as [Int]
countUpTo(n: 18) == [2, 3, 5, 7, 11, 13, 17]
### Response:
```swift
func countUpTo(n: Int) -> [Int] {
var primes: [Int] = []
for i in 2..<n {
var isPrime = true
for j in 2..<i {
if i % j == 0 {
isPrime = false
break
}
}
if isPrime {
primes.append(i)
}
}
return primes
}
```
// Fatal error: Range requires lowerBound <= upperBound
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aDigit = abs(a) % 10
let bDigit = abs(b) % 10
return aDigit * bDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aDigit = abs(a) % 10
let bDigit = abs(b) % 10
return aDigit * bDigit
}
```
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = abs(a) % 10
let bUnitDigit = abs(b) % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = abs(a) % 10
let bUnitDigit = abs(b) % 10
return aUnitDigit * bUnitDigit
}
```
func multiply(a: Int, b: Int) -> Int {
let aDigit = a % 10
let bDigit = b % 10
return aDigit * bDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aDigit = a % 10
let bDigit = b % 10
return aDigit * bDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aDigit = a % 10
let bDigit = b % 10
return aDigit * bDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aDigit = a % 10
let bDigit = b % 10
return aDigit * bDigit
}
```
// XCTAssertTrue failed
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(a: 148, b: 412) == 16
multiply(a: 19, b: 28) == 72
multiply(a: 2020, b: 1851) == 0
multiply(a: 14, b: -15) == 20
### Response:
```swift
func multiply(a: Int, b: Int) -> Int {
let aUnitDigit = a % 10
let bUnitDigit = b % 10
return aUnitDigit * bUnitDigit
}
```
// XCTAssertTrue failed
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && char.isUppercase && char.isVowel {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && char.isUppercase && char.isVowel {
count += 1
}
}
return count
}
```
if index % 2 == 0 && char.isUppercase && char.isVowel { // value of type 'String.Element' (aka 'Character') has no member 'isVowel'
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && char.isUppercase && "AEIOU".contains(char) {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s, count the number of uppercase vowels in even indices.
For example:
countUpper(s: "aBCdEf") == 1
countUpper(s: "abcdefg") == 0
countUpper(s: "dBBE") == 0
### Response:
```swift
func countUpper(s: String) -> Int {
var count = 0
for (index, char) in s.enumerated() {
if index % 2 == 0 && char.isUppercase && "AEIOU".contains(char) {
count += 1
}
}
return count
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let roundedNumber = number.rounded()
return Int(roundedNumber)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
let roundedNumber = number.rounded()
return Int(roundedNumber)
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0
return Int(number.rounded())
}
```
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
return Int(number.rounded())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
closestInteger(value: "10") == 10
closestInteger(value: "15.3") == 15
### Response:
```swift
func closestInteger(value: String) -> Int {
let number = Double(value) ?? 0.0
return Int(number.rounded())
}
```
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
for i in 1...n {
pile.append(n + (i * 2) - 1)
}
return pile
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
for i in 1...n {
pile.append(n + (i * 2) - 1)
}
return pile
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
for i in 1...n {
pile.append(i * 2 + (n % 2))
}
return pile
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
for i in 1...n {
pile.append(i * 2 + (n % 2))
}
return pile
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
result.append(i * 2 - 1)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
result.append(i * 2 - 1)
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
for i in 1...n {
pile.append(i * 2 + n - 2)
}
return pile
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var pile = [Int]()
for i in 1...n {
pile.append(i * 2 + n - 2)
}
return pile
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
result.append(i * 2 - 1)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
result.append(i * 2 - 1)
}
return result
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var pile: [Int] = []
for i in 1...n {
pile.append(i * 2 - 1)
}
return pile
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var pile: [Int] = []
for i in 1...n {
pile.append(i * 2 - 1)
}
return pile
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var pile: [Int] = []
var currentLevel = n
for _ in 1...n {
pile.append(currentLevel)
currentLevel += 2 - (currentLevel % 2)
}
return pile
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var pile: [Int] = []
var currentLevel = n
for _ in 1...n {
pile.append(currentLevel)
currentLevel += 2 - (currentLevel % 2)
}
return pile
}
```
// XCTAssertTrue failed
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current += 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current += 2
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current += 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
var current = n
for _ in 0..<n {
result.append(current)
current += 2
}
return result
}
```
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
result.append(i * 2 - 1)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in an array, where element at index
i represents the number of stones in the level (i+1).
Examples:
makeAPile(n: 3) == [3, 5, 7]
### Response:
```swift
func makeAPile(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
result.append(i * 2 - 1)
}
return result
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.alphanumerics.inverted).filter { !$0.isEmpty }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet.alphanumerics.inverted).filter { !$0.isEmpty }
}
```
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
wordsString(s: "Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
wordsString(s: "One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
### Response:
```swift
func wordsString(s: String) -> [String] {
return s.components(separatedBy: CharacterSet(charactersIn: ", "))
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
return range.reversed().first(where: { $0 % 2 == 0 }) ?? -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
return range.reversed().first(where: { $0 % 2 == 0 }) ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
if x % 2 == 0 {
return x
}
if y % 2 == 0 {
return y
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
for i in x...y {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
for i in x...y {
if i % 2 == 0 {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
let evenX = x % 2 == 0 ? x : x + 1
let evenY = y % 2 == 0 ? y : y - 1
return evenX > evenY ? -1 : evenX
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
let evenX = x % 2 == 0 ? x : x + 1
let evenY = y % 2 == 0 ? y : y - 1
return evenX > evenY ? -1 : evenX
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else {
return -1
}
let lowerBound = min(x, y)
let upperBound = max(x, y)
for i in stride(from: lowerBound, through: upperBound, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else {
return -1
}
let lowerBound = min(x, y)
let upperBound = max(x, y)
for i in stride(from: lowerBound, through: upperBound, by: 2) {
if i % 2 == 0 {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
for i in x...y {
if i % 2 == 0 {
return i
}
}
return -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
if x > y {
return -1
}
for i in x...y {
if i % 2 == 0 {
return i
}
}
return -1
}
```
// XCTAssertTrue failed
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
chooseNum(x: 12, y: 15) == 14
chooseNum(x: 13, y: 12) == -1
### Response:
```swift
func chooseNum(x: Int, y: Int) -> Int {
guard x > 0 && y > 0 else { return -1 }
let range = x...y
let evenNumbers = range.filter { $0 % 2 == 0 }
return evenNumbers.max() ?? -1
}
```
// Fatal error: Range requires lowerBound <= upperBound
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2, uppercase: false)
return .success("0b\(binary)")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2, uppercase: false)
return .success("0b\(binary)")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = avg.rounded()
return .success(String(rounded, radix: 2, uppercase: false))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = avg.rounded()
return .success(String(rounded, radix: 2, uppercase: false))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2)
return .success("0b\(binary)")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2)
return .success("0b\(binary)")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2, uppercase: false)
return .success("0b\(binary)")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2, uppercase: false)
return .success("0b\(binary)")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = avg.rounded()
return .success(String(rounded, radix: 2, uppercase: false))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = avg.rounded()
return .success(String(rounded, radix: 2, uppercase: false))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let rounded = Int(round(avg))
return .success(String(rounded, radix: 2, uppercase: false))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = Double(sum) / Double(m - n + 1)
let rounded = Int(round(avg))
return .success(String(rounded, radix: 2, uppercase: false))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2)
return .success("0b\(binary)")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2)
return .success("0b\(binary)")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2)
return .success("0b\(binary)")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2)
return .success("0b\(binary)")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2)
return .success("0b\(binary)")
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let avg = (n + m) / 2
let rounded = avg.rounded()
let binary = String(rounded, radix: 2)
return .success("0b\(binary)")
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
extension Int: Error {
}
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = avg.rounded()
return .success(String(rounded, radix: 2, uppercase: false))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
roundedAvg(n: 1, m: 5) == .success("0b11")
roundedAvg(n: 7, m: 5) == .failure(-1)
roundedAvg(n: 10, m: 20) == .success("0b1111")
roundedAvg(n: 20, m: 33) == .success("0b11010")
### Response:
```swift
extension Int: Error {}
func roundedAvg(n: Int, m: Int) -> Result<String, Int> {
guard n <= m else { return .failure(-1) }
let sum = (n...m).reduce(0, +)
let avg = sum / (m - n + 1)
let rounded = avg.rounded()
return .success(String(rounded, radix: 2, uppercase: false))
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
let rounded = avg.rounded() // value of type 'Int' has no member 'rounded'
func uniqueDigits(x: [Int]) -> [Int] {
let sorted = x.sorted()
var result = [Int]()
for num in sorted {
let str = String(num)
var isUnique = true
for char in str {
if char.isNumber, let digit = Int(String(char)), digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
let sorted = x.sorted()
var result = [Int]()
for num in sorted {
let str = String(num)
var isUnique = true
for char in str {
if char.isNumber, let digit = Int(String(char)), digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for number in x {
var isUnique = true
var numberToCheck = number
while numberToCheck > 0 {
let digit = numberToCheck % 10
if digit % 2 == 0 {
isUnique = false
break
}
numberToCheck /= 10
}
if isUnique {
result.append(number)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for number in x {
var isUnique = true
var numberToCheck = number
while numberToCheck > 0 {
let digit = numberToCheck % 10
if digit % 2 == 0 {
isUnique = false
break
}
numberToCheck /= 10
}
if isUnique {
result.append(number)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(["0", "2", "4", "6", "8"])
let filtered = x.filter { (number) -> Bool in
let digits = String(number)
for char in digits {
if evenDigits.contains(String(char)) {
return false
}
}
return true
}
return filtered.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(["0", "2", "4", "6", "8"])
let filtered = x.filter { (number) -> Bool in
let digits = String(number)
for char in digits {
if evenDigits.contains(String(char)) {
return false
}
}
return true
}
return filtered.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var isUnique = true
for char in String(num) {
if char.isNumber, let digit = Int(String(char)) {
if digit % 2 == 0 {
isUnique = false
break
}
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var isUnique = true
for char in String(num) {
if char.isNumber, let digit = Int(String(char)) {
if digit % 2 == 0 {
isUnique = false
break
}
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter {
$0.description.contains("0") == false &&
$0.description.contains("2") == false &&
$0.description.contains("4") == false &&
$0.description.contains("6") == false &&
$0.description.contains("8") == false
}.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter {
$0.description.contains("0") == false &&
$0.description.contains("2") == false &&
$0.description.contains("4") == false &&
$0.description.contains("6") == false &&
$0.description.contains("8") == false
}.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var isUnique = true
let str = String(num)
for char in str {
if char.isNumber, let digit = Int(String(char)), digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result = [Int]()
for num in x {
var isUnique = true
let str = String(num)
for char in str {
if char.isNumber, let digit = Int(String(char)), digit % 2 == 0 {
isUnique = false
break
}
}
if isUnique {
result.append(num)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
let sorted = x.sorted()
return sorted.filter {
String($0).contains("0") == false &&
String($0).contains("2") == false &&
String($0).contains("4") == false &&
String($0).contains("6") == false &&
String($0).contains("8") == false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
let sorted = x.sorted()
return sorted.filter {
String($0).contains("0") == false &&
String($0).contains("2") == false &&
String($0).contains("4") == false &&
String($0).contains("6") == false &&
String($0).contains("8") == false
}
}
```
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter {
$0.description.contains("0") == false &&
$0.description.contains("2") == false &&
$0.description.contains("4") == false &&
$0.description.contains("6") == false &&
$0.description.contains("8") == false
}.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
return x.filter {
$0.description.contains("0") == false &&
$0.description.contains("2") == false &&
$0.description.contains("4") == false &&
$0.description.contains("6") == false &&
$0.description.contains("8") == false
}.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for number in x {
var hasEvenDigit = false
var tempNumber = number
while tempNumber > 0 {
let lastDigit = tempNumber % 10
if lastDigit % 2 == 0 {
hasEvenDigit = true
break
}
tempNumber /= 10
}
if !hasEvenDigit {
result.append(number)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
var result: [Int] = []
for number in x {
var hasEvenDigit = false
var tempNumber = number
while tempNumber > 0 {
let lastDigit = tempNumber % 10
if lastDigit % 2 == 0 {
hasEvenDigit = true
break
}
tempNumber /= 10
}
if !hasEvenDigit {
result.append(number)
}
}
return result.sorted()
}
```
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(0...9).filter { $0 % 2 == 0 }
return x.filter { number in
!String(number).contains { evenDigits.contains(Int(String($0))!) }
}.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of positive integers x. return a sorted array of all
elements that hasn't any even digit.
Note: Returned array should be sorted in increasing order.
For example:
uniqueDigits(x: [15, 33, 1422, 1]) == [1, 15, 33]
uniqueDigits(x: [152, 323, 1422, 10]) == [] as [Int]
### Response:
```swift
func uniqueDigits(x: [Int]) -> [Int] {
let evenDigits = Set(0...9).filter { $0 % 2 == 0 }
return x.filter { number in
!String(number).contains { evenDigits.contains(Int(String($0))!) }
}.sorted()
}
```
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }.sorted().reversed().map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }.sorted().reversed().map { names[$0 - 1] }
}
```
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }
.sorted { $0 > $1 }
.map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }
.sorted { $0 > $1 }
.map { names[$0 - 1] }
}
```
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }.reversed().map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }.reversed().map { names[$0 - 1] }
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let sorted = filtered.sorted { $0 > $1 }
let mapped = sorted.map { names[$0 - 1] }
return mapped
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let sorted = filtered.sorted { $0 > $1 }
let mapped = sorted.map { names[$0 - 1] }
return mapped
}
```
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }
.sorted(by: >)
.map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }
.sorted(by: >)
.map { names[$0 - 1] }
}
```
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 >= 1 && $0 <= 9 }
.sorted { $0 > $1 }
.map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 >= 1 && $0 <= 9 }
.sorted { $0 > $1 }
.map { names[$0 - 1] }
}
```
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }.reversed().map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }.reversed().map { names[$0 - 1] }
}
```
// XCTAssertTrue failed
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }
.sorted(by: >)
.map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }
.sorted(by: >)
.map { names[$0 - 1] }
}
```
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }
.sorted()
.reversed()
.map { names[$0 - 1] }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
return arr.filter { $0 > 0 && $0 < 10 }
.sorted()
.reversed()
.map { names[$0 - 1] }
}
```
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let sorted = filtered.sorted { $0 > $1 }
let mapped = sorted.map { names[$0 - 1] }
return mapped
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
If the array is empty, return an empty array:
If the array has any strange number ignore it:
byLength(arr: [2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
byLength(arr: [] as [Int]) == [] as [String]
byLength(arr: [1, -1, 55]) == ["One"]
### Response:
```swift
func byLength(arr: [Int]) -> [String] {
let names = ["One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine"]
let filtered = arr.filter { $0 >= 1 && $0 <= 9 }
let sorted = filtered.sorted { $0 > $1 }
let mapped = sorted.map { names[$0 - 1] }
return mapped
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(of: i))
} else {
result.append(sum(of: i))
}
}
return result
}
func factorial(of number: Int) -> Int {
if number == 0 {
return 1
}
return number * factorial(of: number - 1)
}
func sum(of number: Int) -> Int {
if number == 0 {
return 0
}
return number + sum(of: number - 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(of: i))
} else {
result.append(sum(of: i))
}
}
return result
}
func factorial(of number: Int) -> Int {
if number == 0 {
return 1
}
return number * factorial(of: number - 1)
}
func sum(of number: Int) -> Int {
if number == 0 {
return 0
}
return number + sum(of: number - 1)
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result: [Int] = []
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Implement the function f that takes n as a parameter,
and returns an array of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(n: 5) == [1, 2, 6, 24, 15]
### Response:
```swift
func f(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i % 2 == 0 {
result.append(factorial(i))
} else {
result.append(sum(i))
}
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
func sum(_ n: Int) -> Int {
var result = 0
for i in 1...n {
result += i
}
return result
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var even = 0
var odd = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
even += 1
} else {
odd += 1
}
}
}
return (even, odd)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
evenOddPalindrome(n: 3) == (1, 2)
evenOddPalindrome(n: 12) == (4, 6)
### Response:
```swift
func evenOddPalindrome(n: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for i in 1...n {
let str = String(i)
if str == String(str.reversed()) {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
sum += Int(String(char))!
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
sum += Int(String(char))!
}
if sum > 0 {
count += 1
}
}
return count
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
if let digit = Int(String(char)) {
sum += digit
}
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
if let digit = Int(String(char)) {
sum += digit
}
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
if let digit = Int(String(char)) {
sum += digit
}
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
if let digit = Int(String(char)) {
sum += digit
}
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
if let digit = Int(String(char)) {
sum += digit
}
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
if let digit = Int(String(char)) {
sum += digit
}
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sumOfDigits = 0
for char in String(num) {
if let digit = Int(String(char)) {
sumOfDigits += digit
}
}
if sumOfDigits > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
if let digit = Int(String(char)) {
sum += digit
}
}
if sum > 0 {
count += 1
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
countNums(arr: [] as [Int]) == 0
countNums(arr: [-1, 11, -11]) == 1
countNums(arr: [1, 1, 2]) == 3
### Response:
```swift
func countNums(arr: [Int]) -> Int {
var count = 0
for num in arr {
var sum = 0
for char in String(num) {
if let digit = Int(String(char)) {
sum += digit
}
}
if sum > 0 {
count += 1
}
}
return count
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard arr.count > 1 else { return true }
var sorted = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] == sorted[i] {
count += 1
}
}
return count == arr.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard arr.count > 1 else { return true }
var sorted = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] == sorted[i] {
count += 1
}
}
return count == arr.count
}
```
var sorted = arr.sorted() // variable 'sorted' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.count == 0 {
return true
}
var sortedArray = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArray[i] {
count += 1
}
}
return count <= 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.count == 0 {
return true
}
var sortedArray = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArray[i] {
count += 1
}
}
return count <= 2
}
```
var sortedArray = arr.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArray = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArray[i] {
count += 1
}
}
return count <= 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArray = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArray[i] {
count += 1
}
}
return count <= 2
}
```
var sortedArray = arr.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard arr.count > 1 else { return true }
var sortedArr = arr.sorted()
var count = 0
var index = 0
while index < arr.count {
if sortedArr[index] == arr[index] {
index += 1
} else {
count += 1
sortedArr.append(sortedArr.removeFirst())
}
}
return count <= 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard arr.count > 1 else { return true }
var sortedArr = arr.sorted()
var count = 0
var index = 0
while index < arr.count {
if sortedArr[index] == arr[index] {
index += 1
} else {
count += 1
sortedArr.append(sortedArr.removeFirst())
}
}
return count <= 1
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArray = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] == sortedArray[i] {
count += 1
}
}
return count == arr.count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArray = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] == sortedArray[i] {
count += 1
}
}
return count == arr.count
}
```
var sortedArray = arr.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
guard arr.count > 1 else { return true }
var sorted = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sorted[i] {
count += 1
}
}
return count <= 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
guard arr.count > 1 else { return true }
var sorted = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sorted[i] {
count += 1
}
}
return count <= 2
}
```
var sorted = arr.sorted() // variable 'sorted' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArr[i] {
count += 1
}
}
return count <= 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArr = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArr[i] {
count += 1
}
}
return count <= 2
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArray = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArray[i] {
count += 1
}
}
return count <= 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sortedArray = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArray[i] {
count += 1
}
}
return count <= 2
}
```
var sortedArray = arr.sorted() // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sorted = arr.sorted()
var count = 0
var index = 0
while index < arr.count {
if arr[index] == sorted[index] {
index += 1
} else {
count += 1
sorted.append(sorted.removeFirst())
}
}
return count <= 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.isEmpty {
return true
}
var sorted = arr.sorted()
var count = 0
var index = 0
while index < arr.count {
if arr[index] == sorted[index] {
index += 1
} else {
count += 1
sorted.append(sorted.removeFirst())
}
}
return count <= 1
}
```
// XCTAssertTrue failed
func moveOneBall(arr: [Int]) -> Bool {
if arr.count == 0 {
return true
}
var sortedArr = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArr[i] {
count += 1
}
}
return count <= 2
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return true else return false.
If the given array is empty then return true.
Note: The given array is guaranteed to have unique elements.
For Example:
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
moveOneBall(arr: [3, 4, 5, 1, 2]) == true
moveOneBall(arr: [3, 5, 4, 1, 2]) == false
### Response:
```swift
func moveOneBall(arr: [Int]) -> Bool {
if arr.count == 0 {
return true
}
var sortedArr = arr.sorted()
var count = 0
for i in 0..<arr.count {
if arr[i] != sortedArr[i] {
count += 1
}
}
return count <= 2
}
```
var sortedArr = arr.sorted() // variable 'sortedArr' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var oddCount1 = 0
var oddCount2 = 0
for num in lst1 {
if num % 2 == 1 {
oddCount1 += 1
}
}
for num in lst2 {
if num % 2 == 1 {
oddCount2 += 1
}
}
if oddCount1 == oddCount2 {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var oddCount1 = 0
var oddCount2 = 0
for num in lst1 {
if num % 2 == 1 {
oddCount1 += 1
}
}
for num in lst2 {
if num % 2 == 1 {
oddCount2 += 1
}
}
if oddCount1 == oddCount2 {
return "YES"
} else {
return "NO"
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
if oddCount == lst1.count {
return "NO"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
if oddCount == lst1.count {
return "NO"
}
return "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
if oddCount == lst1.count {
return "NO"
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
}
if oddCount == lst1.count {
return "NO"
}
return "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
var oddCount = 0
for i in lst1 {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for i in lst2 {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= lst1.count {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
var oddCount = 0
for i in lst1 {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for i in lst2 {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= lst1.count {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else if oddCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else if oddCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var oddCount1 = 0
var oddCount2 = 0
for num in lst1 {
if num % 2 != 0 {
oddCount1 += 1
}
}
for num in lst2 {
if num % 2 != 0 {
oddCount2 += 1
}
}
if oddCount1 == oddCount2 {
return "YES"
}
return "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var oddCount1 = 0
var oddCount2 = 0
for num in lst1 {
if num % 2 != 0 {
oddCount1 += 1
}
}
for num in lst2 {
if num % 2 != 0 {
oddCount2 += 1
}
}
if oddCount1 == oddCount2 {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2[j] = 0
count += 1
break
}
}
}
}
return count == lst1.count ? "YES" : "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var count = 0
for i in 0..<lst1.count {
if lst1[i] % 2 != 0 {
for j in 0..<lst2.count {
if lst2[j] % 2 == 0 {
lst1[i] = lst2[j]
lst2[j] = 0
count += 1
break
}
}
}
}
return count == lst1.count ? "YES" : "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var oddCount1 = 0
var oddCount2 = 0
for i in lst1 {
if i % 2 != 0 {
oddCount1 += 1
}
}
for i in lst2 {
if i % 2 != 0 {
oddCount2 += 1
}
}
if oddCount1 == oddCount2 {
return "YES"
}
return "NO"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var oddCount1 = 0
var oddCount2 = 0
for i in lst1 {
if i % 2 != 0 {
oddCount1 += 1
}
}
for i in lst2 {
if i % 2 != 0 {
oddCount2 += 1
}
}
if oddCount1 == oddCount2 {
return "YES"
}
return "NO"
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
var oddCount = 0
for i in lst1 {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for i in lst2 {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else if oddCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
var oddCount = 0
for i in lst1 {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for i in lst2 {
if i % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else if oddCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else if oddCount == lst1.count {
return "NO"
} else {
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else if oddCount == lst1.count {
return "NO"
} else {
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount == lst1.count {
return "YES"
} else {
return "NO"
}
}
}
```
// XCTAssertTrue failed
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= lst1.count {
return "YES"
} else {
return "NO"
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this problem, you will implement a function that takes two arrays of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 an array of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
It is assumed that the input arrays will be non-empty.
exchange(lst1: [1, 2, 3, 4], lst2: [1, 2, 3, 4]) == "YES"
exchange(lst1: [1, 2, 3, 4], lst2: [1, 5, 3, 4]) == "NO"
### Response:
```swift
func exchange(lst1: [Int], lst2: [Int]) -> String {
var lst1 = lst1
var lst2 = lst2
var evenCount = 0
var oddCount = 0
for num in lst1 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
for num in lst2 {
if num % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
if evenCount >= lst1.count {
return "YES"
} else {
return "NO"
}
}
```
var lst1 = lst1 // variable 'lst1' was never mutated; consider changing to 'let' constant
var lst2 = lst2 // variable 'lst2' was never mutated; consider changing to 'let' constant
func histogram(test: String) -> [String : Int] {
var result: [String : Int] = [:]
let words = test.split(separator: " ")
for word in words {
if let count = result[String(word)] {
result[String(word)] = count + 1
} else {
result[String(word)] = 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var result: [String : Int] = [:]
let words = test.split(separator: " ")
for word in words {
if let count = result[String(word)] {
result[String(word)] = count + 1
} else {
result[String(word)] = 1
}
}
return result
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var result = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = result[String(word)] {
result[String(word)] = count + 1
} else {
result[String(word)] = 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var result = [String : Int]()
let words = test.split(separator: " ")
for word in words {
if let count = result[String(word)] {
result[String(word)] = count + 1
} else {
result[String(word)] = 1
}
}
return result
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
```
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
```
func histogram(test: String) -> [String : Int] {
var result = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if let count = result[word] {
result[word] = count + 1
} else {
result[word] = 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var result = [String : Int]()
let words = test.components(separatedBy: " ")
for word in words {
if let count = result[word] {
result[word] = count + 1
} else {
result[word] = 1
}
}
return result
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
```
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let array = test.components(separatedBy: " ")
for letter in array {
if dict[letter] == nil {
dict[letter] = 1
} else {
dict[letter]! += 1
}
}
return dict
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var dict = [String : Int]()
let array = test.components(separatedBy: " ")
for letter in array {
if dict[letter] == nil {
dict[letter] = 1
} else {
dict[letter]! += 1
}
}
return dict
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
var result: [String : Int] = [:]
let words = test.split(separator: " ")
for word in words {
if let count = result[String(word)] {
result[String(word)] = count + 1
} else {
result[String(word)] = 1
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
var result: [String : Int] = [:]
let words = test.split(separator: " ")
for word in words {
if let count = result[String(word)] {
result[String(word)] = count + 1
} else {
result[String(word)] = 1
}
}
return result
}
```
// XCTAssertTrue failed
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
```
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram(test: "a b c") == ["a" : 1, "b" : 1, "c" : 1]
histogram(test: "a b b a") == ["a" : 2, "b" : 2]
histogram(test: "a b c a b") == ["a" : 2, "b" : 2]
histogram(test: "b b b b a") == ["b" : 4]
histogram(test: "") == [:] as [String : Int]
### Response:
```swift
func histogram(test: String) -> [String : Int] {
let words = test.split(separator: " ")
var dict = [String : Int]()
for word in words {
dict[String(word), default: 0] += 1
}
let max = dict.values.max()
return dict.filter { $0.value == max }
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
let isPalindrome = result == String(result.reversed())
return (result, isPalindrome)
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
var result = ""
for char in s {
if !c.contains(char) {
result.append(char)
}
}
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
return (result, result == String(result.reversed()))
}
```
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
let isPalindrome = String(result.reversed()) == result
return (result, isPalindrome)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
reverseDelete(s: "abcde", c: "ae") == ("bcd", false)
reverseDelete(s: "abcdef", c: "b") == ("acdef", false)
reverseDelete(s: "abcdedcba", c: "ab") == ("cdedc", true)
### Response:
```swift
func reverseDelete(s: String, c: String) -> (String, Bool) {
let result = s.filter { !c.contains($0) }
let isPalindrome = String(result.reversed()) == result
return (result, isPalindrome)
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map {
let count = $0.reduce(0) { $0 + $1.wholeNumberValue! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map {
let count = $0.reduce(0) { $0 + $1.wholeNumberValue! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map {
let count = $0.reduce(0) { $0 + $1.wholeNumberValue! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map {
let count = $0.reduce(0) { $0 + $1.wholeNumberValue! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map { (str) -> String in
let count = str.reduce(0) { (result, char) -> Int in
return result + (Int(String(char))! % 2)
}
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { (str) -> String in
let count = str.reduce(0) { (result, char) -> Int in
return result + (Int(String(char))! % 2)
}
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map { (str) -> String in
let count = str.reduce(0) { (result, char) -> Int in
return result + (Int(String(char))! % 2)
}
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { (str) -> String in
let count = str.reduce(0) { (result, char) -> Int in
return result + (Int(String(char))! % 2)
}
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
```
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for str in lst {
var count = 0
for char in str {
if Int(String(char))! % 2 != 0 {
count += 1
}
}
result.append("the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput.")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result = [String]()
for str in lst {
var count = 0
for char in str {
if Int(String(char))! % 2 != 0 {
count += 1
}
}
result.append("the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput.")
}
return result
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map { (str) -> String in
let count = str.reduce(0) { (result, char) -> Int in
let digit = Int(String(char))!
return result + (digit % 2 == 1 ? 1 : 0)
}
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { (str) -> String in
let count = str.reduce(0) { (result, char) -> Int in
let digit = Int(String(char))!
return result + (digit % 2 == 1 ? 1 : 0)
}
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
```
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if Int(String(char))! % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput.")
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
var result: [String] = []
for str in lst {
var count = 0
for char in str {
if Int(String(char))! % 2 == 1 {
count += 1
}
}
result.append("the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput.")
}
return result
}
```
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let count = str.reduce(0) { $0 + Int($1)! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let count = str.reduce(0) { $0 + Int($1)! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
```
let count = str.reduce(0) { $0 + Int($1)! % 2 } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let count = str.reduce(0) { $0 + Int($1)! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let count = str.reduce(0) { $0 + Int($1)! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
```
let count = str.reduce(0) { $0 + Int($1)! % 2 } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let count = str.reduce(0) { $0 + Int($1)! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of strings, where each string consists of only digits, return an array.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
oddCount(lst: ["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]
oddCount(lst: ["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]
### Response:
```swift
func oddCount(lst: [String]) -> [String] {
return lst.map { str in
let count = str.reduce(0) { $0 + Int($1)! % 2 }
return "the number of odd elements \(count)n the str\(count)ng \(count) of the \(count)nput."
}
}
```
let count = str.reduce(0) { $0 + Int($1)! % 2 } // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'String'
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
guard !nums.isEmpty else { return 0 }
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
guard !nums.isEmpty else { return 0 }
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum(nums: [2, 3, 4, 1, 2, 4]) == 1
minSubArraySum(nums: [-1, -2, -3]) == -6
### Response:
```swift
func minSubArraySum(nums: [Int]) -> Int {
var minSum = Int.max
var currentSum = 0
for num in nums {
currentSum += num
minSum = min(minSum, currentSum)
if currentSum > 0 {
currentSum = 0
}
}
return minSum
}
```
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var wells = grid
while !wells.isEmpty {
for (i, row) in wells.enumerated() {
if row.contains(1) {
count += 1
for (j, _) in row.enumerated() {
if wells[i][j] == 1 {
wells[i][j] = 0
capacity -= 1
}
if capacity == 0 {
break
}
}
}
}
wells = wells.filter { $0.contains(1) }
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var wells = grid
while !wells.isEmpty {
for (i, row) in wells.enumerated() {
if row.contains(1) {
count += 1
for (j, _) in row.enumerated() {
if wells[i][j] == 1 {
wells[i][j] = 0
capacity -= 1
}
if capacity == 0 {
break
}
}
}
}
wells = wells.filter { $0.contains(1) }
}
return count
}
```
capacity -= 1 // left side of mutating operator isn't mutable: 'capacity' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var count = 0
while wells.contains(where: { $0.contains(1) }) {
count += 1
for i in 0..<wells.count {
for j in 0..<wells[i].count {
if wells[i][j] == 1 {
wells[i][j] = 0
capacity -= 1
if capacity == 0 {
break
}
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var count = 0
while wells.contains(where: { $0.contains(1) }) {
count += 1
for i in 0..<wells.count {
for j in 0..<wells[i].count {
if wells[i][j] == 1 {
wells[i][j] = 0
capacity -= 1
if capacity == 0 {
break
}
}
}
}
}
return count
}
```
capacity -= 1 // left side of mutating operator isn't mutable: 'capacity' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var count = 0
while true {
var empty = true
for i in 0..<wells.count {
var well = wells[i]
for j in 0..<well.count {
if well[j] == 1 {
empty = false
if capacity > 0 {
well[j] = 0
capacity -= 1
}
}
}
wells[i] = well
}
if empty {
break
}
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var count = 0
while true {
var empty = true
for i in 0..<wells.count {
var well = wells[i]
for j in 0..<well.count {
if well[j] == 1 {
empty = false
if capacity > 0 {
well[j] = 0
capacity -= 1
}
}
}
wells[i] = well
}
if empty {
break
}
count += 1
}
return count
}
```
capacity -= 1 // left side of mutating operator isn't mutable: 'capacity' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var buckets = Array(repeating: capacity, count: grid.count)
var count = 0
while !buckets.allSatisfy({ $0 == 0 }) {
for (i, row) in grid.enumerated() {
for (j, cell) in row.enumerated() {
if cell == 1 {
buckets[i] -= 1
if buckets[i] == 0 {
grid[i][j] = 0
}
}
}
}
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var buckets = Array(repeating: capacity, count: grid.count)
var count = 0
while !buckets.allSatisfy({ $0 == 0 }) {
for (i, row) in grid.enumerated() {
for (j, cell) in row.enumerated() {
if cell == 1 {
buckets[i] -= 1
if buckets[i] == 0 {
grid[i][j] = 0
}
}
}
}
count += 1
}
return count
}
```
grid[i][j] = 0 // cannot assign through subscript: 'grid' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var buckets = Array(repeating: capacity, count: grid.count)
var count = 0
while true {
var empty = true
for i in 0..<grid.count {
if buckets[i] > 0 {
empty = false
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
buckets[i] -= 1
grid[i][j] = 0
}
}
}
}
if empty {
break
}
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var buckets = Array(repeating: capacity, count: grid.count)
var count = 0
while true {
var empty = true
for i in 0..<grid.count {
if buckets[i] > 0 {
empty = false
for j in 0..<grid[i].count {
if grid[i][j] == 1 {
buckets[i] -= 1
grid[i][j] = 0
}
}
}
}
if empty {
break
}
count += 1
}
return count
}
```
grid[i][j] = 0 // cannot assign through subscript: 'grid' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var wells = grid
while !wells.isEmpty {
count += 1
for i in 0..<wells.count {
for j in 0..<wells[i].count {
if wells[i][j] == 1 {
wells[i][j] = 0
capacity -= 1
}
}
if wells[i].allSatisfy({ $0 == 0 }) {
wells.remove(at: i)
}
}
if capacity == 0 {
count += 1
capacity = 5
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var wells = grid
while !wells.isEmpty {
count += 1
for i in 0..<wells.count {
for j in 0..<wells[i].count {
if wells[i][j] == 1 {
wells[i][j] = 0
capacity -= 1
}
}
if wells[i].allSatisfy({ $0 == 0 }) {
wells.remove(at: i)
}
}
if capacity == 0 {
count += 1
capacity = 5
}
}
return count
}
```
capacity -= 1 // left side of mutating operator isn't mutable: 'capacity' is a 'let' constant
capacity = 5 // cannot assign to value: 'capacity' is a 'let' constant
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var currentCapacity = capacity
var currentWell = 0
var currentRow = 0
while currentWell < grid.count {
if grid[currentWell][currentRow] == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
count += 1
currentCapacity = capacity
}
}
currentRow += 1
if currentRow == grid[currentWell].count {
currentWell += 1
currentRow = 0
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var count = 0
var currentCapacity = capacity
var currentWell = 0
var currentRow = 0
while currentWell < grid.count {
if grid[currentWell][currentRow] == 1 {
currentCapacity -= 1
if currentCapacity == 0 {
count += 1
currentCapacity = capacity
}
}
currentRow += 1
if currentRow == grid[currentWell].count {
currentWell += 1
currentRow = 0
}
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var count = 0
while !wells.isEmpty {
for (i, row) in wells.enumerated() {
var bucket = capacity
for (j, cell) in row.enumerated() {
if cell == 1 {
if bucket > 0 {
bucket -= 1
wells[i][j] = 0
} else {
break
}
}
}
}
count += 1
wells = wells.filter { $0.contains(1) }
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var count = 0
while !wells.isEmpty {
for (i, row) in wells.enumerated() {
var bucket = capacity
for (j, cell) in row.enumerated() {
if cell == 1 {
if bucket > 0 {
bucket -= 1
wells[i][j] = 0
} else {
break
}
}
}
}
count += 1
wells = wells.filter { $0.contains(1) }
}
return count
}
```
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var buckets = 0
var filled = 0
var max = 0
for i in 0..<wells.count {
for j in 0..<wells[i].count {
if wells[i][j] == 1 {
filled += 1
}
}
if filled > max {
max = filled
}
if filled == capacity {
buckets += 1
filled = 0
}
}
if filled != 0 {
buckets += 1
}
return buckets
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var buckets = 0
var filled = 0
var max = 0
for i in 0..<wells.count {
for j in 0..<wells[i].count {
if wells[i][j] == 1 {
filled += 1
}
}
if filled > max {
max = filled
}
if filled == capacity {
buckets += 1
filled = 0
}
}
if filled != 0 {
buckets += 1
}
return buckets
}
```
var wells = grid // variable 'wells' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var count = 0
while wells.contains(where: { $0.contains(1) }) {
for (index, row) in wells.enumerated() {
if row.contains(1) {
wells[index] = row.map { $0 - 1 }
}
}
count += 1
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Example 2:
Example 3:
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
maxFill(grid: [[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], capacity: 1) == 6
maxFill(grid: [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], capacity: 2) == 5
maxFill(grid: [[0, 0, 0], [0, 0, 0]], capacity: 5) == 0
### Response:
```swift
func maxFill(grid: [[Int]], capacity: Int) -> Int {
var wells = grid
var count = 0
while wells.contains(where: { $0.contains(1) }) {
for (index, row) in wells.enumerated() {
if row.contains(1) {
wells[index] = row.map { $0 - 1 }
}
}
count += 1
}
return count
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBits = String(a, radix: 2).count(of: "1")
let bBits = String(b, radix: 2).count(of: "1")
return aBits < bBits || (aBits == bBits && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBits = String(a, radix: 2).count(of: "1")
let bBits = String(b, radix: 2).count(of: "1")
return aBits < bBits || (aBits == bBits && a < b)
}
}
```
let aBits = String(a, radix: 2).count(of: "1") // cannot call value of non-function type 'Int'
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let (count1, count2) = ($0.binaryCount(), $1.binaryCount())
return count1 < count2 || (count1 == count2 && $0 < $1)
}
}
private extension Int {
func binaryCount() -> Int {
var count = 0
var value = self
while value > 0 {
count += value % 2
value /= 2
}
return count
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let (count1, count2) = ($0.binaryCount(), $1.binaryCount())
return count1 < count2 || (count1 == count2 && $0 < $1)
}
}
private extension Int {
func binaryCount() -> Int {
var count = 0
var value = self
while value > 0 {
count += value % 2
value /= 2
}
return count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBits = a.nonzeroBitCount
let bBits = b.nonzeroBitCount
return aBits < bBits || (aBits == bBits && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBits = a.nonzeroBitCount
let bBits = b.nonzeroBitCount
return aBits < bBits || (aBits == bBits && a < b)
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = String(a, radix: 2).filter { $0 == "1" }.count
let bOnes = String(b, radix: 2).filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = String(a, radix: 2).filter { $0 == "1" }.count
let bOnes = String(b, radix: 2).filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = a.nonzeroBitCount
let bOnes = b.nonzeroBitCount
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = a.nonzeroBitCount
let bOnes = b.nonzeroBitCount
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let (count1, count2) = ($0.binaryString.count, $1.binaryString.count)
return count1 < count2 || (count1 == count2 && $0 < $1)
}
}
extension Int {
var binaryString: String {
var result = ""
var number = self
while number > 0 {
result = String(number % 2) + result
number /= 2
}
return result
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let (count1, count2) = ($0.binaryString.count, $1.binaryString.count)
return count1 < count2 || (count1 == count2 && $0 < $1)
}
}
extension Int {
var binaryString: String {
var result = ""
var number = self
while number > 0 {
result = String(number % 2) + result
number /= 2
}
return result
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let (count1, count2) = ($0.countOne(), $1.countOne())
return count1 < count2 || (count1 == count2 && $0 < $1)
}
}
extension Int {
func countOne() -> Int {
var count = 0
var num = self
while num > 0 {
count += num % 2
num /= 2
}
return count
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted {
let (count1, count2) = ($0.countOne(), $1.countOne())
return count1 < count2 || (count1 == count2 && $0 < $1)
}
}
extension Int {
func countOne() -> Int {
var count = 0
var num = self
while num > 0 {
count += num % 2
num /= 2
}
return count
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
```
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = a.nonzeroBitCount
let bOnes = b.nonzeroBitCount
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aOnes = a.nonzeroBitCount
let bOnes = b.nonzeroBitCount
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
```
// XCTAssertTrue failed
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
sortArray(arr: [1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
sortArray(arr: [-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
sortArray(arr: [1, 0, 2, 3, 4]) == [0, 1, 2, 3, 4]
### Response:
```swift
func sortArray(arr: [Int]) -> [Int] {
return arr.sorted { (a, b) -> Bool in
let aBinary = String(a, radix: 2)
let bBinary = String(b, radix: 2)
let aOnes = aBinary.filter { $0 == "1" }.count
let bOnes = bBinary.filter { $0 == "1" }.count
return aOnes < bOnes || (aOnes == bOnes && a < b)
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
if consonants == n {
result.append(String(word))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
if consonants == n {
result.append(String(word))
}
}
return result
}
```
if char.isLetter && !char.isVowel { // value of type 'Substring.Element' (aka 'Character') has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
let consonants = "bcdfghjklmnpqrstvwxyz"
let vowels = "aeiou"
let string = s.lowercased()
let wordsArray = string.components(separatedBy: " ")
for word in wordsArray {
var consonantCount = 0
for char in word {
if consonants.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
words.append(word)
}
}
return words
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
var words = [String]()
let consonants = "bcdfghjklmnpqrstvwxyz"
let vowels = "aeiou"
let string = s.lowercased()
let wordsArray = string.components(separatedBy: " ")
for word in wordsArray {
var consonantCount = 0
for char in word {
if consonants.contains(char) {
consonantCount += 1
}
}
if consonantCount == n {
words.append(word)
}
}
return words
}
```
let vowels = "aeiou" // initialization of immutable value 'vowels' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
var result: [String] = []
let words = s.split(separator: " ")
for word in words {
var consonantCount = 0
for char in word {
if char.isLetter && !char.isVowel {
consonantCount += 1
}
}
if consonantCount == n {
result.append(String(word))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
var result: [String] = []
let words = s.split(separator: " ")
for word in words {
var consonantCount = 0
for char in word {
if char.isLetter && !char.isVowel {
consonantCount += 1
}
}
if consonantCount == n {
result.append(String(word))
}
}
return result
}
```
if char.isLetter && !char.isVowel { // value of type 'Substring.Element' (aka 'Character') has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
var consonants = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonants += 1
}
}
if consonants == n {
result.append(String(word))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
var consonants = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonants += 1
}
}
if consonants == n {
result.append(String(word))
}
}
return result
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word {
if char.isLetter && !char.isVowel {
consonantCount += 1
}
}
if consonantCount == n {
result.append(String(word))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word {
if char.isLetter && !char.isVowel {
consonantCount += 1
}
}
if consonantCount == n {
result.append(String(word))
}
}
return result
}
```
if char.isLetter && !char.isVowel { // value of type 'Substring.Element' (aka 'Character') has no member 'isVowel'
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
if consonants == n {
result.append(String(word))
}
}
return result
}
extension Character {
var isVowel: Bool {
switch self {
case "a", "e", "i", "o", "u", "A", "E", "I", "O", "U":
return true
default:
return false
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result = [String]()
for word in words {
var consonants = 0
for char in word {
if char.isLetter && !char.isVowel {
consonants += 1
}
}
if consonants == n {
result.append(String(word))
}
}
return result
}
extension Character {
var isVowel: Bool {
switch self {
case "a", "e", "i", "o", "u", "A", "E", "I", "O", "U":
return true
default:
return false
}
}
}
```
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
var consonantsCount = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonantsCount += 1
}
}
if consonantsCount == n {
result.append(String(word))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.split(separator: " ")
var result: [String] = []
for word in words {
var consonantsCount = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonantsCount += 1
}
}
if consonantsCount == n {
result.append(String(word))
}
}
return result
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result: [String] = []
for word in words {
var consonantCount = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
// XCTAssertTrue failed
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var consonantCount = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string s and a natural number n, you have been tasked to implement
a function that returns an array of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty array.
Note: you may assume the input string contains only letters and spaces.
Examples:
selectWords(s: "Mary had a little lamb", n: 4) == ["little"]
selectWords(s: "Mary had a little lamb", n: 3) == ["Mary", "lamb"]
selectWords(s: "simple white space", n: 2) == [] as [String]
selectWords(s: "Hello world", n: 4) == ["world"]
selectWords(s: "Uncle sam", n: 3) == ["Uncle"]
### Response:
```swift
func selectWords(s: String, n: Int) -> [String] {
let words = s.components(separatedBy: " ")
var result = [String]()
for word in words {
var consonantCount = 0
for char in word {
if char != "a" && char != "e" && char != "i" && char != "o" && char != "u" {
consonantCount += 1
}
}
if consonantCount == n {
result.append(word)
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let reversedWord = String(word.reversed())
var result = ""
var vowelIndex = 0
var consonantIndex = 0
for (index, char) in reversedWord.enumerated() {
if vowels.contains(char) {
vowelIndex = index
break
}
}
for (index, char) in reversedWord.enumerated() {
if consonants.contains(char) {
consonantIndex = index
break
}
}
if vowelIndex > consonantIndex {
result = String(reversedWord[reversedWord.index(reversedWord.startIndex, offsetBy: vowelIndex)])
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let reversedWord = String(word.reversed())
var result = ""
var vowelIndex = 0
var consonantIndex = 0
for (index, char) in reversedWord.enumerated() {
if vowels.contains(char) {
vowelIndex = index
break
}
}
for (index, char) in reversedWord.enumerated() {
if consonants.contains(char) {
consonantIndex = index
break
}
}
if vowelIndex > consonantIndex {
result = String(reversedWord[reversedWord.index(reversedWord.startIndex, offsetBy: vowelIndex)])
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var result = ""
var found = false
for i in (0..<wordArray.count).reversed() {
if vowels.contains(wordArray[i]) && found {
result = String(wordArray[i])
break
}
if consonants.contains(wordArray[i]) {
found = true
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var result = ""
var found = false
for i in (0..<wordArray.count).reversed() {
if vowels.contains(wordArray[i]) && found {
result = String(wordArray[i])
break
}
if consonants.contains(wordArray[i]) {
found = true
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var result = ""
for (index, char) in word.reversed().enumerated() {
if consonants.contains(char) {
for (index2, char2) in word.reversed().enumerated() {
if index2 == index + 1 && vowels.contains(char2) {
result = String(char2)
break
}
}
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var result = ""
for (index, char) in word.reversed().enumerated() {
if consonants.contains(char) {
for (index2, char2) in word.reversed().enumerated() {
if index2 == index + 1 && vowels.contains(char2) {
result = String(char2)
break
}
}
break
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var result = ""
for (index, char) in word.reversed().enumerated() {
if consonants.contains(char) {
for (index2, char2) in word.reversed().enumerated() {
if index2 > index && vowels.contains(char2) {
result = String(char2)
break
}
}
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var result = ""
for (index, char) in word.reversed().enumerated() {
if consonants.contains(char) {
for (index2, char2) in word.reversed().enumerated() {
if index2 > index && vowels.contains(char2) {
result = String(char2)
break
}
}
break
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var result = ""
for i in stride(from: word.count - 1, through: 0, by: -1) {
let char = word[word.index(word.startIndex, offsetBy: i)]
if consonants.contains(char) {
continue
}
if vowels.contains(char) {
result = String(char)
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
var result = ""
for i in stride(from: word.count - 1, through: 0, by: -1) {
let char = word[word.index(word.startIndex, offsetBy: i)]
if consonants.contains(char) {
continue
}
if vowels.contains(char) {
result = String(char)
break
}
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var result = ""
var index = wordArray.count - 1
while index >= 0 {
if vowels.contains(wordArray[index]) {
if index == wordArray.count - 1 {
index -= 1
continue
}
if consonants.contains(wordArray[index + 1]) {
result = String(wordArray[index])
break
}
}
index -= 1
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var result = ""
var index = wordArray.count - 1
while index >= 0 {
if vowels.contains(wordArray[index]) {
if index == wordArray.count - 1 {
index -= 1
continue
}
if consonants.contains(wordArray[index + 1]) {
result = String(wordArray[index])
break
}
}
index -= 1
}
return result
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var result = ""
for (index, char) in wordArray.enumerated().reversed() {
if vowels.contains(char) && index > 0 && index < wordArray.count - 1 {
if consonants.contains(wordArray[index - 1]) && consonants.contains(wordArray[index + 1]) {
result = String(char)
break
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var result = ""
for (index, char) in wordArray.enumerated().reversed() {
if vowels.contains(char) && index > 0 && index < wordArray.count - 1 {
if consonants.contains(wordArray[index - 1]) && consonants.contains(wordArray[index + 1]) {
result = String(char)
break
}
}
}
return result
}
```
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var result = ""
var found = false
for (index, char) in wordArray.reversed().enumerated() {
if consonants.contains(char) && found {
result = String(char)
break
}
if vowels.contains(char) {
found = true
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var result = ""
var found = false
for (index, char) in wordArray.reversed().enumerated() {
if consonants.contains(char) && found {
result = String(char)
break
}
if vowels.contains(char) {
found = true
}
}
return result
}
```
for (index, char) in wordArray.reversed().enumerated() { // immutable value 'index' was never used; consider replacing with '_' or removing it
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z", "B", "C", "D", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "V", "W", "X", "Y", "Z"]
var closestVowel = ""
var lastConsonant = ""
for char in word.reversed() {
if consonants.contains(String(char)) {
lastConsonant = String(char)
} else if vowels.contains(String(char)) && lastConsonant != "" {
closestVowel = String(char)
break
}
}
return closestVowel
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"]
let consonants = ["b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z", "B", "C", "D", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "V", "W", "X", "Y", "Z"]
var closestVowel = ""
var lastConsonant = ""
for char in word.reversed() {
if consonants.contains(String(char)) {
lastConsonant = String(char)
} else if vowels.contains(String(char)) && lastConsonant != "" {
closestVowel = String(char)
break
}
}
return closestVowel
}
```
// XCTAssertTrue failed
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var vowelIndex = -1
var consonantIndex = -1
for (index, char) in wordArray.enumerated().reversed() {
if vowels.contains(char) && vowelIndex == -1 {
vowelIndex = index
} else if consonants.contains(char) && consonantIndex == -1 {
consonantIndex = index
}
if vowelIndex != -1 && consonantIndex != -1 {
break
}
}
return vowelIndex != -1 ? String(wordArray[vowelIndex]) : ""
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
getClosestVowel(word: "yogurt") == "u"
getClosestVowel(word: "FULL") == "U"
getClosestVowel(word: "quick") == ""
getClosestVowel(word: "ab") == ""
### Response:
```swift
func getClosestVowel(word: String) -> String {
let vowels = "aeiouAEIOU"
let consonants = "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
let wordArray = Array(word)
var vowelIndex = -1
var consonantIndex = -1
for (index, char) in wordArray.enumerated().reversed() {
if vowels.contains(char) && vowelIndex == -1 {
vowelIndex = index
} else if consonants.contains(char) && consonantIndex == -1 {
consonantIndex = index
}
if vowelIndex != -1 && consonantIndex != -1 {
break
}
}
return vowelIndex != -1 ? String(wordArray[vowelIndex]) : ""
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for str in lst {
for char in str {
if char == "(" {
open += 1
} else {
close += 1
}
}
}
return open == close ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for str in lst {
for char in str {
if char == "(" {
open += 1
} else {
close += 1
}
}
}
return open == close ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
close += 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
close += 1
}
}
return open == close ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
close += 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
close += 1
}
}
return open == close ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
close += 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
close += 1
}
}
return open == close ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
close += 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
close += 1
}
}
return open == close ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
close += 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
close += 1
}
}
return open == close ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
var close = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
close += 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
close += 1
}
}
return open == close ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
matchParens(lst: ["()(", ")"]) == "Yes"
matchParens(lst: [")", ")"]) == "No"
### Response:
```swift
func matchParens(lst: [String]) -> String {
var open = 0
for char in lst[0] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
for char in lst[1] {
if char == "(" {
open += 1
} else {
open -= 1
}
}
return open == 0 ? "Yes" : "No"
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.endIndex)
result.sort()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.endIndex)
result.sort()
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted() }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.endIndex)
result.sort()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted() }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.endIndex)
result.sort()
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArray = arr.sorted(by: { $0 > $1 })
return Array(sortedArray.prefix(k))
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var sortedArray = arr.sorted(by: { $0 > $1 })
return Array(sortedArray.prefix(k))
}
```
var sortedArray = arr.sorted(by: { $0 > $1 }) // variable 'sortedArray' was never mutated; consider changing to 'let' constant
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted(by: >) }
var result = arr.prefix(k).sorted(by: >)
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.firstIndex(where: { $0 > arr[i] }) ?? 0)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted(by: >) }
var result = arr.prefix(k).sorted(by: >)
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.firstIndex(where: { $0 > arr[i] }) ?? 0)
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted(by: >) }
var max = arr.prefix(k).sorted(by: >)
for i in k..<arr.count {
if max.last! < arr[i] {
max.removeLast()
max.insert(arr[i], at: max.firstIndex(where: { $0 > arr[i] }) ?? max.endIndex)
}
}
return max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted(by: >) }
var max = arr.prefix(k).sorted(by: >)
for i in k..<arr.count {
if max.last! < arr[i] {
max.removeLast()
max.insert(arr[i], at: max.firstIndex(where: { $0 > arr[i] }) ?? max.endIndex)
}
}
return max
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.endIndex)
result.sort()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.endIndex)
result.sort()
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<k {
result.append(arr[i])
}
result.sort(by: >)
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.append(arr[i])
result.sort(by: >)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
var result = [Int]()
for i in 0..<k {
result.append(arr[i])
}
result.sort(by: >)
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.append(arr[i])
result.sort(by: >)
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.endIndex)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: result.endIndex)
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted() }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: 0)
result.sort()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted() }
var result = arr.prefix(k).sorted()
for i in k..<arr.count {
if arr[i] > result.last! {
result.removeLast()
result.insert(arr[i], at: 0)
result.sort()
}
}
return result
}
```
// XCTAssertTrue failed
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted() }
var result = Array(arr.prefix(k))
result.sort()
for i in k..<arr.count {
if result.last! < arr[i] {
result.removeLast()
result.insert(arr[i], at: 0)
result.sort()
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array arr of integers and a positive integer k, return a sorted array
of length k with the maximum k numbers in arr.
Example 1:
Example 2:
Example 3:
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
maximum(arr: [-3, -4, 5], k: 3) == [-4, -3, 5]
maximum(arr: [4, -4, 4], k: 2) == [4, 4]
maximum(arr: [-3, 2, 1, 2, -1, -2, 1], k: 1) == [2]
### Response:
```swift
func maximum(arr: [Int], k: Int) -> [Int] {
guard k > 0 else { return [] }
guard k < arr.count else { return arr.sorted() }
var result = Array(arr.prefix(k))
result.sort()
for i in k..<arr.count {
if result.last! < arr[i] {
result.removeLast()
result.insert(arr[i], at: 0)
result.sort()
}
}
return result
}
```
// XCTAssertTrue failed
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 != 0 && index % 2 == 0 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if element % 2 != 0 && index % 2 == 0 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, value) in lst.enumerated() {
if index % 2 == 0 && value % 2 == 1 {
sum += value
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution(lst: [5, 8, 7, 1]) == 12
solution(lst: [3, 3, 3, 3, 3]) == 9
solution(lst: [30, 13, 24, 321]) == 0
### Response:
```swift
func solution(lst: [Int]) -> Int {
var sum = 0
for (index, element) in lst.enumerated() {
if index % 2 == 0 && element % 2 == 1 {
sum += element
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
let num = arr[i]
if num < 100 {
sum += num
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
if arr[i] < 100 {
sum += arr[i]
}
}
return sum
}
```
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
addElements(arr: [111, 21, 3, 4000, 5, 6, 7, 8, 9], k: 4) == 24
### Response:
```swift
func addElements(arr: [Int], k: Int) -> Int {
var sum = 0
for i in 0..<k {
sum += arr[i]
}
return sum
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 0 {
current = current / 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
collatz.append(current)
}
}
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
collatz.append(current)
}
}
return collatz.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 == 0 {
num /= 2
} else {
num = 3 * num + 1
}
if num % 2 == 1 {
collatz.append(num)
}
}
return collatz.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var collatz = [Int]()
var num = n
while num != 1 {
if num % 2 == 0 {
num /= 2
} else {
num = 3 * num + 1
}
if num % 2 == 1 {
collatz.append(num)
}
}
return collatz.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result: [Int] = []
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return a sorted array that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned array sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
getOddCollatz(n: 5) == [1, 5]
### Response:
```swift
func getOddCollatz(n: Int) -> [Int] {
var result = [Int]()
var current = n
while current != 1 {
if current % 2 == 0 {
current /= 2
} else {
current = 3 * current + 1
}
if current % 2 == 1 {
result.append(current)
}
}
return result.sorted()
}
```
// XCTAssertTrue failed
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let _ = dateFormatter.date(from: date) {
return true
}
return false
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
return dateFormatter.date(from: date) != nil
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
return dateFormatter.date(from: date) != nil
}
```
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
} else {
return false
}
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
validDate(date: "03-11-2000") == true
validDate(date: "15-01-2012") == false
validDate(date: "04-0-2040") == false
validDate(date: "06-04-2020") == true
validDate(date: "06/04/2020") == false
### Response:
```swift
func validDate(date: String) -> Bool {
let dateFormatter = DateFormatter()
dateFormatter.dateFormat = "MM-dd-yyyy"
if let date = dateFormatter.date(from: date) {
return true
}
return false
}
```
if let date = dateFormatter.date(from: date) { // value 'date' was defined but never used; consider replacing with boolean test
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.split(separator: " ").map(String.init))
} else if txt.contains(",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.split(separator: " ").map(String.init))
} else if txt.contains(",") {
return .success(txt.split(separator: ",").map(String.init))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.unicodeScalars.first!.value % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.unicodeScalars.first!.value % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
extension Int: Error {
}
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string of words, return an array of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
splitWords(txt: "Hello world!") == .success(["Hello", "world!"])
splitWords(txt: "Hello,world!") == .success(["Hello", "world!"])
splitWords(txt: "abcdef") == .failure(3)
### Response:
```swift
extension Int: Error {}
func splitWords(txt: String) -> Result<[String], Int> {
if txt.contains(" ") {
return .success(txt.components(separatedBy: " "))
} else if txt.contains(",") {
return .success(txt.components(separatedBy: ","))
} else {
return .failure(txt.filter { $0.isLowercase && $0.asciiValue! % 2 == 1 }.count)
}
}
```
extension Int: Error {} // redundant conformance of 'Int' to protocol 'Error'
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var duplicates = 0
for i in 1..<lst.count {
if lst[i] == last {
duplicates += 1
if duplicates > 1 {
return false
}
} else {
duplicates = 0
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var duplicates = 0
for i in 1..<lst.count {
if lst[i] == last {
duplicates += 1
if duplicates > 1 {
return false
}
} else {
duplicates = 0
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var duplicates = 0
for i in 1..<lst.count {
if lst[i] == last {
duplicates += 1
if duplicates > 1 {
return false
}
} else {
duplicates = 0
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var duplicates = 0
for i in 1..<lst.count {
if lst[i] == last {
duplicates += 1
if duplicates > 1 {
return false
}
} else {
duplicates = 0
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last: Int?
var duplicates = Set<Int>()
for num in lst {
if let last = last {
if num < last {
return false
} else if num == last {
if duplicates.contains(num) {
return false
}
duplicates.insert(num)
}
}
last = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last: Int?
var duplicates = Set<Int>()
for num in lst {
if let last = last {
if num < last {
return false
} else if num == last {
if duplicates.contains(num) {
return false
}
duplicates.insert(num)
}
}
last = num
}
return true
}
```
func isSorted(lst: [Int]) -> Bool {
var last: Int?
var duplicates = Set<Int>()
for num in lst {
if let last = last {
if num < last {
return false
}
if num == last {
if duplicates.contains(num) {
return false
}
duplicates.insert(num)
}
}
last = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last: Int?
var duplicates = Set<Int>()
for num in lst {
if let last = last {
if num < last {
return false
}
if num == last {
if duplicates.contains(num) {
return false
}
duplicates.insert(num)
}
}
last = num
}
return true
}
```
func isSorted(lst: [Int]) -> Bool {
var last: Int?
var count = 0
for num in lst {
if let last = last {
if num == last {
count += 1
if count > 1 {
return false
}
} else {
count = 0
}
if num < last {
return false
}
}
last = num
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last: Int?
var count = 0
for num in lst {
if let last = last {
if num == last {
count += 1
if count > 1 {
return false
}
} else {
count = 0
}
if num < last {
return false
}
}
last = num
}
return true
}
```
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
if count > 2 {
return false
}
} else {
count = 1
if lst[i] < last {
return false
}
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
if count > 2 {
return false
}
} else {
count = 1
if lst[i] < last {
return false
}
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
if count > 2 {
return false
}
} else {
count = 1
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
if count > 2 {
return false
}
} else {
count = 1
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
} else {
count = 1
}
if count > 1 {
return false
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
} else {
count = 1
}
if count > 1 {
return false
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
} else {
count = 1
}
if count > 1 {
return false
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
} else {
count = 1
}
if count > 1 {
return false
}
if lst[i] < last {
return false
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
if count > 2 {
return false
}
} else {
count = 1
if lst[i] < last {
return false
}
}
last = lst[i]
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return whether or not they are sorted
in ascending order. If array has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
isSorted(lst: [5]) == true
isSorted(lst: [1, 2, 3, 4, 5]) == true
isSorted(lst: [1, 3, 2, 4, 5]) == false
isSorted(lst: [1, 2, 3, 4, 5, 6]) == true
isSorted(lst: [1, 2, 3, 4, 5, 6, 7]) == true
isSorted(lst: [1, 3, 2, 4, 5, 6, 7]) == false
isSorted(lst: [1, 2, 2, 3, 3, 4]) == true
isSorted(lst: [1, 2, 2, 2, 3, 4]) == false
### Response:
```swift
func isSorted(lst: [Int]) -> Bool {
var last = lst[0]
var count = 1
for i in 1..<lst.count {
if lst[i] == last {
count += 1
if count > 2 {
return false
}
} else {
count = 1
if lst[i] < last {
return false
}
}
last = lst[i]
}
return true
}
```
// Fatal error: Index out of range
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2...Int(sqrt(Double(length))) {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2...Int(sqrt(Double(length))) {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
let length = intersection.1 - intersection.0 + 1
return length.isPrime ? "YES" : "NO"
}
extension Int {
var isPrime: Bool {
guard self > 1 else { return false }
return !stride(from: 2, through: Int(sqrt(Double(self))), by: 1).contains { self % $0 == 0 }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let intersection = (max(interval1.0, interval2.0), min(interval1.1, interval2.1))
let length = intersection.1 - intersection.0 + 1
return length.isPrime ? "YES" : "NO"
}
extension Int {
var isPrime: Bool {
guard self > 1 else { return false }
return !stride(from: 2, through: Int(sqrt(Double(self))), by: 1).contains { self % $0 == 0 }
}
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length < 1 {
return "NO"
}
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length < 1 {
return "NO"
}
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
guard start <= end else { return "NO" }
let length = end - start + 1
return length.isPrime ? "YES" : "NO"
}
extension Int {
var isPrime: Bool {
guard self > 1 else { return false }
return !stride(from: 2, through: Int(sqrt(Double(self))), by: 1).contains { self % $0 == 0 }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
guard start <= end else { return "NO" }
let length = end - start + 1
return length.isPrime ? "YES" : "NO"
}
extension Int {
var isPrime: Bool {
guard self > 1 else { return false }
return !stride(from: 2, through: Int(sqrt(Double(self))), by: 1).contains { self % $0 == 0 }
}
}
```
// XCTAssertTrue failed
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length < 1 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "YES"
}
if length == 3 {
return "NO"
}
if length == 4 {
return "NO"
}
if length == 5 {
return "YES"
}
if length == 6 {
return "NO"
}
if length == 7 {
return "NO"
}
if length == 8 {
return "NO"
}
if length == 9 {
return "YES"
}
if length == 10 {
return "NO"
}
if length == 11 {
return "NO"
}
if length == 12 {
return "NO"
}
if length == 13 {
return "YES"
}
if length == 14 {
return "NO"
}
if length == 15 {
return "NO"
}
if length == 16 {
return "NO"
}
if length == 17 {
return "NO"
}
if length == 18 {
return "NO"
}
if length == 19 {
return "YES"
}
if length == 20 {
return "NO"
}
if length == 21 {
return "NO"
}
if length == 22 {
return "NO"
}
if length == 23 {
return "NO"
}
if length == 24 {
return "NO"
}
if length == 25 {
return "YES"
}
if length == 26 {
return "NO"
}
if length == 27 {
return "NO"
}
if length == 28 {
return "NO"
}
if length == 29 {
return "NO"
}
if length == 30 {
return "NO"
}
if length == 31 {
return "YES"
}
if length == 32 {
return "NO"
}
if length == 33 {
return "NO"
}
if length == 34 {
return "NO"
}
if length == 35 {
return "NO"
}
if length == 36 {
return "NO"
}
if length == 37 {
return "NO"
}
if length == 38 {
return "NO"
}
if length == 39 {
return "YES"
}
if length == 40 {
return "NO"
}
if length == 41 {
return "NO"
}
if length == 42 {
return "NO"
}
if length == 43 {
return "NO"
}
if length == 44 {
return "NO"
}
if length == 45 {
return "NO"
}
if length == 46 {
return "NO"
}
if length == 47 {
return "NO"
}
if length == 48 {
return "NO"
}
if length == 49 {
return "YES"
}
if length == 50 {
return "NO"
}
if length == 51 {
return "NO"
}
if length == 52 {
return "NO"
}
if length == 53 {
return "NO"
}
if length == 54 {
return "NO"
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (2, 3)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, 2), interval2: (-4, 0)) == "YES") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-11, 2), interval2: (-1, -1)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (3, 5)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (1, 2), interval2: (1, 2)) == "NO") // cannot find 'intersection' in scope
XCTAssertTrue(intersection(interval1: (-2, -2), interval2: (-3, -2)) == "NO") // cannot find 'intersection' in scope
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length < 1 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "YES"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length < 1 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "YES"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length <= 0 {
return "NO"
}
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length <= 0 {
return "NO"
}
if length == 1 {
return "NO"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2...Int(sqrt(Double(length))) {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
if start > end {
return "NO"
}
let length = end - start + 1
if length == 1 {
return "NO"
}
for i in 2...Int(sqrt(Double(length))) {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// Fatal error: Range requires lowerBound <= upperBound
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length <= 0 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "YES"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length <= 0 {
return "NO"
}
if length == 1 {
return "NO"
}
if length == 2 {
return "YES"
}
for i in 2..<length {
if length % i == 0 {
return "NO"
}
}
return "YES"
}
```
// XCTAssertTrue failed
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length < 1 {
return "NO"
}
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection(interval1: (1, 2), interval2: (2, 3)) == "NO"
intersection(interval1: (-1, 1), interval2: (0, 4)) == "NO"
intersection(interval1: (-3, -1), interval2: (-5, 5)) == "YES"
### Response:
```swift
func intersection(interval1: (Int, Int), interval2: (Int, Int)) -> String {
let start = max(interval1.0, interval2.0)
let end = min(interval1.1, interval2.1)
let length = end - start + 1
if length < 1 {
return "NO"
}
return isPrime(length) ? "YES" : "NO"
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
// XCTAssertTrue failed
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
break
} else if num < 0 {
product *= -1
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
break
} else if num < 0 {
product *= -1
}
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let sign = arr.reduce(1) { (result, number) -> Int in
if number == 0 {
return 0
} else if number < 0 {
return result * -1
} else {
return result
}
}
let sum = arr.reduce(0) { (result, number) -> Int in
if number == 0 {
return result
} else {
return result + abs(number)
}
}
return sign * sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
let sign = arr.reduce(1) { (result, number) -> Int in
if number == 0 {
return 0
} else if number < 0 {
return result * -1
} else {
return result
}
}
let sum = arr.reduce(0) { (result, number) -> Int in
if number == 0 {
return result
} else {
return result + abs(number)
}
}
return sign * sum
}
```
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
break
}
product *= num > 0 ? 1 : -1
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
break
}
product *= num > 0 ? 1 : -1
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
if num == 0 {
return 0
}
sum += abs(num)
if num < 0 {
product *= -1
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var product = 1
var sum = 0
for num in arr {
if num == 0 {
return 0
}
sum += abs(num)
if num < 0 {
product *= -1
}
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
let product = arr.reduce(1) { $0 * $1 }
return arr.reduce(0) { $0 + abs($1) } * product.signum()
}
extension BinaryInteger {
func signum() -> Int {
return self < 0 ? -1 : (self > 0 ? 1 : 0)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
let product = arr.reduce(1) { $0 * $1 }
return arr.reduce(0) { $0 + abs($1) } * product.signum()
}
extension BinaryInteger {
func signum() -> Int {
return self < 0 ? -1 : (self > 0 ? 1 : 0)
}
}
```
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num < 0 {
product *= -1
} else if num == 0 {
product = 0
break
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num < 0 {
product *= -1
} else if num == 0 {
product = 0
break
}
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num == 0 ? 0 : num > 0 ? 1 : -1
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard !arr.isEmpty else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
product *= num == 0 ? 0 : num > 0 ? 1 : -1
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
} else if num < 0 {
product *= -1
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
} else if num < 0 {
product *= -1
}
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
} else if num < 0 {
product *= -1
}
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
} else if num < 0 {
product *= -1
}
}
return sum * product
}
```
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
break
}
product *= num > 0 ? 1 : -1
}
return sum * product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return nil for empty arr.
Example:
prodSigns(arr: [1, 2, 2, -4]) == 9
prodSigns(arr: [0, 1]) == 0
prodSigns(arr: [] as [Int]) == nil
### Response:
```swift
func prodSigns(arr: [Int]) -> Int? {
guard arr.count > 0 else { return nil }
var sum = 0
var product = 1
for num in arr {
sum += abs(num)
if num == 0 {
product = 0
break
}
product *= num > 0 ? 1 : -1
}
return sum * product
}
```
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var current = 0
var currentRow = 0
var currentCol = 0
var visited = [[Bool]](repeating: [Bool](repeating: false, count: grid[0].count), count: grid.count)
visited[currentRow][currentCol] = true
result.append(grid[currentRow][currentCol])
while k > 0 {
if currentRow > 0 && !visited[currentRow - 1][currentCol] {
currentRow -= 1
current = grid[currentRow][currentCol]
visited[currentRow][currentCol] = true
result.append(current)
k -= 1
} else if currentRow < grid.count - 1 && !visited[currentRow + 1][currentCol] {
currentRow += 1
current = grid[currentRow][currentCol]
visited[currentRow][currentCol] = true
result.append(current)
k -= 1
} else if currentCol > 0 && !visited[currentRow][currentCol - 1] {
currentCol -= 1
current = grid[currentRow][currentCol]
visited[currentRow][currentCol] = true
result.append(current)
k -= 1
} else if currentCol < grid[0].count - 1 && !visited[currentRow][currentCol + 1] {
currentCol += 1
current = grid[currentRow][currentCol]
visited[currentRow][currentCol] = true
result.append(current)
k -= 1
} else {
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var current = 0
var currentRow = 0
var currentCol = 0
var visited = [[Bool]](repeating: [Bool](repeating: false, count: grid[0].count), count: grid.count)
visited[currentRow][currentCol] = true
result.append(grid[currentRow][currentCol])
while k > 0 {
if currentRow > 0 && !visited[currentRow - 1][currentCol] {
currentRow -= 1
current = grid[currentRow][currentCol]
visited[currentRow][currentCol] = true
result.append(current)
k -= 1
} else if currentRow < grid.count - 1 && !visited[currentRow + 1][currentCol] {
currentRow += 1
current = grid[currentRow][currentCol]
visited[currentRow][currentCol] = true
result.append(current)
k -= 1
} else if currentCol > 0 && !visited[currentRow][currentCol - 1] {
currentCol -= 1
current = grid[currentRow][currentCol]
visited[currentRow][currentCol] = true
result.append(current)
k -= 1
} else if currentCol < grid[0].count - 1 && !visited[currentRow][currentCol + 1] {
currentCol += 1
current = grid[currentRow][currentCol]
visited[currentRow][currentCol] = true
result.append(current)
k -= 1
} else {
break
}
}
return result
}
```
k -= 1 // left side of mutating operator isn't mutable: 'k' is a 'let' constant
k -= 1 // left side of mutating operator isn't mutable: 'k' is a 'let' constant
k -= 1 // left side of mutating operator isn't mutable: 'k' is a 'let' constant
k -= 1 // left side of mutating operator isn't mutable: 'k' is a 'let' constant
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int](repeating: 0, count: k)
var minPathSum = Int.max
var path = [Int](repeating: 0, count: k)
var pathSum = 0
func dfs(row: Int, col: Int, index: Int) {
if index == k {
if pathSum < minPathSum {
minPathSum = pathSum
minPath = path
}
return
}
for (dr, dc) in [(-1, 0), (0, -1), (0, 1), (1, 0)] {
let nr = row + dr
let nc = col + dc
if nr >= 0 && nr < n && nc >= 0 && nc < n {
path[index] = grid[nr][nc]
pathSum += grid[nr][nc]
dfs(row: nr, col: nc, index: index + 1)
pathSum -= grid[nr][nc]
}
}
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, index: 0)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int](repeating: 0, count: k)
var minPathSum = Int.max
var path = [Int](repeating: 0, count: k)
var pathSum = 0
func dfs(row: Int, col: Int, index: Int) {
if index == k {
if pathSum < minPathSum {
minPathSum = pathSum
minPath = path
}
return
}
for (dr, dc) in [(-1, 0), (0, -1), (0, 1), (1, 0)] {
let nr = row + dr
let nc = col + dc
if nr >= 0 && nr < n && nc >= 0 && nc < n {
path[index] = grid[nr][nc]
pathSum += grid[nr][nc]
dfs(row: nr, col: nc, index: index + 1)
pathSum -= grid[nr][nc]
}
}
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, index: 0)
}
}
return minPath
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var result = [Int](repeating: 0, count: k)
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
queue.append((0, 0, 0))
while !queue.isEmpty {
let (x, y, pathLength) = queue.removeFirst()
if pathLength == k {
result[0] = grid[x][y]
break
}
if visited.contains(grid[x][y]) {
continue
}
visited.insert(grid[x][y])
result[pathLength] = grid[x][y]
if x > 0 {
queue.append((x - 1, y, pathLength + 1))
}
if x < n - 1 {
queue.append((x + 1, y, pathLength + 1))
}
if y > 0 {
queue.append((x, y - 1, pathLength + 1))
}
if y < n - 1 {
queue.append((x, y + 1, pathLength + 1))
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var result = [Int](repeating: 0, count: k)
var visited = Set<Int>()
var queue = [(Int, Int, Int)]()
queue.append((0, 0, 0))
while !queue.isEmpty {
let (x, y, pathLength) = queue.removeFirst()
if pathLength == k {
result[0] = grid[x][y]
break
}
if visited.contains(grid[x][y]) {
continue
}
visited.insert(grid[x][y])
result[pathLength] = grid[x][y]
if x > 0 {
queue.append((x - 1, y, pathLength + 1))
}
if x < n - 1 {
queue.append((x + 1, y, pathLength + 1))
}
if y > 0 {
queue.append((x, y - 1, pathLength + 1))
}
if y < n - 1 {
queue.append((x, y + 1, pathLength + 1))
}
}
return result
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int](repeating: 0, count: k)
var minPathSum = Int.max
var path = [Int](repeating: 0, count: k)
var pathSum = 0
var visited = [[Bool]](repeating: [Bool](repeating: false, count: n), count: n)
func dfs(row: Int, col: Int, index: Int) {
if index == k {
if pathSum < minPathSum {
minPathSum = pathSum
minPath = path
}
return
}
for (dr, dc) in [(-1, 0), (0, -1), (1, 0), (0, 1)] {
let nr = row + dr
let nc = col + dc
if nr >= 0 && nr < n && nc >= 0 && nc < n && !visited[nr][nc] {
path[index] = grid[nr][nc]
pathSum += grid[nr][nc]
visited[nr][nc] = true
dfs(row: nr, col: nc, index: index + 1)
pathSum -= grid[nr][nc]
visited[nr][nc] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, index: 0)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int](repeating: 0, count: k)
var minPathSum = Int.max
var path = [Int](repeating: 0, count: k)
var pathSum = 0
var visited = [[Bool]](repeating: [Bool](repeating: false, count: n), count: n)
func dfs(row: Int, col: Int, index: Int) {
if index == k {
if pathSum < minPathSum {
minPathSum = pathSum
minPath = path
}
return
}
for (dr, dc) in [(-1, 0), (0, -1), (1, 0), (0, 1)] {
let nr = row + dr
let nc = col + dc
if nr >= 0 && nr < n && nc >= 0 && nc < n && !visited[nr][nc] {
path[index] = grid[nr][nc]
pathSum += grid[nr][nc]
visited[nr][nc] = true
dfs(row: nr, col: nc, index: index + 1)
pathSum -= grid[nr][nc]
visited[nr][nc] = false
}
}
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, index: 0)
}
}
return minPath
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var minPathSum = Int.max
var path = [Int]()
var pathSum = 0
var visited = Set<Int>()
let n = grid.count
let m = grid[0].count
func dfs(row: Int, col: Int, k: Int) {
if k == 0 {
if pathSum < minPathSum {
minPath = path
minPathSum = pathSum
}
return
}
for (dr, dc) in [(-1, 0), (0, -1), (1, 0), (0, 1)] {
let nr = row + dr
let nc = col + dc
if nr >= 0 && nr < n && nc >= 0 && nc < m {
let index = nr * m + nc
if !visited.contains(index) {
visited.insert(index)
path.append(grid[nr][nc])
pathSum += grid[nr][nc]
dfs(row: nr, col: nc, k: k - 1)
path.removeLast()
pathSum -= grid[nr][nc]
visited.remove(index)
}
}
}
}
for i in 0..<n {
for j in 0..<m {
dfs(row: i, col: j, k: k)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var minPathSum = Int.max
var path = [Int]()
var pathSum = 0
var visited = Set<Int>()
let n = grid.count
let m = grid[0].count
func dfs(row: Int, col: Int, k: Int) {
if k == 0 {
if pathSum < minPathSum {
minPath = path
minPathSum = pathSum
}
return
}
for (dr, dc) in [(-1, 0), (0, -1), (1, 0), (0, 1)] {
let nr = row + dr
let nc = col + dc
if nr >= 0 && nr < n && nc >= 0 && nc < m {
let index = nr * m + nc
if !visited.contains(index) {
visited.insert(index)
path.append(grid[nr][nc])
pathSum += grid[nr][nc]
dfs(row: nr, col: nc, k: k - 1)
path.removeLast()
pathSum -= grid[nr][nc]
visited.remove(index)
}
}
}
}
for i in 0..<n {
for j in 0..<m {
dfs(row: i, col: j, k: k)
}
}
return minPath
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int](repeating: 0, count: k)
var minPathSum = Int.max
var path = [Int](repeating: 0, count: k)
var pathSum = 0
var visited = [[Bool]](repeating: [Bool](repeating: false, count: n), count: n)
func dfs(row: Int, col: Int, index: Int) {
if index == k {
if pathSum < minPathSum {
minPathSum = pathSum
minPath = path
}
return
}
path[index] = grid[row][col]
pathSum += grid[row][col]
visited[row][col] = true
if row > 0 && !visited[row - 1][col] {
dfs(row: row - 1, col: col, index: index + 1)
}
if row < n - 1 && !visited[row + 1][col] {
dfs(row: row + 1, col: col, index: index + 1)
}
if col > 0 && !visited[row][col - 1] {
dfs(row: row, col: col - 1, index: index + 1)
}
if col < n - 1 && !visited[row][col + 1] {
dfs(row: row, col: col + 1, index: index + 1)
}
visited[row][col] = false
pathSum -= grid[row][col]
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, index: 0)
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
var minPath = [Int](repeating: 0, count: k)
var minPathSum = Int.max
var path = [Int](repeating: 0, count: k)
var pathSum = 0
var visited = [[Bool]](repeating: [Bool](repeating: false, count: n), count: n)
func dfs(row: Int, col: Int, index: Int) {
if index == k {
if pathSum < minPathSum {
minPathSum = pathSum
minPath = path
}
return
}
path[index] = grid[row][col]
pathSum += grid[row][col]
visited[row][col] = true
if row > 0 && !visited[row - 1][col] {
dfs(row: row - 1, col: col, index: index + 1)
}
if row < n - 1 && !visited[row + 1][col] {
dfs(row: row + 1, col: col, index: index + 1)
}
if col > 0 && !visited[row][col - 1] {
dfs(row: row, col: col - 1, index: index + 1)
}
if col < n - 1 && !visited[row][col + 1] {
dfs(row: row, col: col + 1, index: index + 1)
}
visited[row][col] = false
pathSum -= grid[row][col]
}
for i in 0..<n {
for j in 0..<n {
dfs(row: i, col: j, index: 0)
}
}
return minPath
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var currentPath = [Int]()
var currentCell = (row: 0, col: 0)
var currentLength = 0
var currentValue = grid[0][0]
var visited = Set<Int>()
visited.insert(currentValue)
currentPath.append(currentValue)
minPath.append(currentValue)
while currentLength < k {
let neighbors = getNeighbors(grid: grid, currentCell: currentCell)
let nextCell = neighbors.min(by: { (a, b) -> Bool in
let aValue = grid[a.row][a.col]
let bValue = grid[b.row][b.col]
if aValue == bValue {
return a.row < b.row || (a.row == b.row && a.col < b.col)
} else {
return aValue < bValue
}
})!
currentCell = nextCell
currentValue = grid[currentCell.row][currentCell.col]
currentLength += 1
visited.insert(currentValue)
currentPath.append(currentValue)
if currentLength == k {
if currentPath < minPath {
minPath = currentPath
}
currentPath.removeLast()
currentLength -= 1
visited.remove(currentValue)
}
}
return minPath
}
func getNeighbors(grid: [[Int]], currentCell: (row: Int, col: Int)) -> [(row: Int, col: Int)] {
var neighbors = [(row: Int, col: Int)]()
if currentCell.row > 0 {
neighbors.append((row: currentCell.row - 1, col: currentCell.col))
}
if currentCell.row < grid.count - 1 {
neighbors.append((row: currentCell.row + 1, col: currentCell.col))
}
if currentCell.col > 0 {
neighbors.append((row: currentCell.row, col: currentCell.col - 1))
}
if currentCell.col < grid.count - 1 {
neighbors.append((row: currentCell.row, col: currentCell.col + 1))
}
return neighbors
}
extension Array where Element == Int {
static func < (lhs: [Int], rhs: [Int]) -> Bool {
for i in 0..<min(lhs.count, rhs.count) {
if lhs[i] != rhs[i] {
return lhs[i] < rhs[i]
}
}
return lhs.count < rhs.count
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var minPath = [Int]()
var currentPath = [Int]()
var currentCell = (row: 0, col: 0)
var currentLength = 0
var currentValue = grid[0][0]
var visited = Set<Int>()
visited.insert(currentValue)
currentPath.append(currentValue)
minPath.append(currentValue)
while currentLength < k {
let neighbors = getNeighbors(grid: grid, currentCell: currentCell)
let nextCell = neighbors.min(by: { (a, b) -> Bool in
let aValue = grid[a.row][a.col]
let bValue = grid[b.row][b.col]
if aValue == bValue {
return a.row < b.row || (a.row == b.row && a.col < b.col)
} else {
return aValue < bValue
}
})!
currentCell = nextCell
currentValue = grid[currentCell.row][currentCell.col]
currentLength += 1
visited.insert(currentValue)
currentPath.append(currentValue)
if currentLength == k {
if currentPath < minPath {
minPath = currentPath
}
currentPath.removeLast()
currentLength -= 1
visited.remove(currentValue)
}
}
return minPath
}
func getNeighbors(grid: [[Int]], currentCell: (row: Int, col: Int)) -> [(row: Int, col: Int)] {
var neighbors = [(row: Int, col: Int)]()
if currentCell.row > 0 {
neighbors.append((row: currentCell.row - 1, col: currentCell.col))
}
if currentCell.row < grid.count - 1 {
neighbors.append((row: currentCell.row + 1, col: currentCell.col))
}
if currentCell.col > 0 {
neighbors.append((row: currentCell.row, col: currentCell.col - 1))
}
if currentCell.col < grid.count - 1 {
neighbors.append((row: currentCell.row, col: currentCell.col + 1))
}
return neighbors
}
extension Array where Element == Int {
static func < (lhs: [Int], rhs: [Int]) -> Bool {
for i in 0..<min(lhs.count, rhs.count) {
if lhs[i] != rhs[i] {
return lhs[i] < rhs[i]
}
}
return lhs.count < rhs.count
}
}
```
for i in 0..<min(lhs.count, rhs.count) { // use of 'min' refers to instance method rather than global function 'min' in module 'Swift'
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
let m = grid[0].count
var dp = Array(repeating: Array(repeating: Int.max, count: m), count: n)
var path = Array(repeating: Array(repeating: -1, count: m), count: n)
dp[0][0] = grid[0][0]
var queue = [(Int, Int)]()
queue.append((0, 0))
while !queue.isEmpty {
let (i, j) = queue.removeFirst()
for (di, dj) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
let ni = i + di
let nj = j + dj
if ni >= 0 && ni < n && nj >= 0 && nj < m && dp[ni][nj] > dp[i][j] + grid[ni][nj] {
dp[ni][nj] = dp[i][j] + grid[ni][nj]
path[ni][nj] = i * m + j
queue.append((ni, nj))
}
}
}
var result = [Int]()
var i = n - 1
var j = m - 1
for _ in 0..<k {
result.append(grid[i][j])
let p = path[i][j]
i = p / m
j = p % m
}
return result.reversed()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
let m = grid[0].count
var dp = Array(repeating: Array(repeating: Int.max, count: m), count: n)
var path = Array(repeating: Array(repeating: -1, count: m), count: n)
dp[0][0] = grid[0][0]
var queue = [(Int, Int)]()
queue.append((0, 0))
while !queue.isEmpty {
let (i, j) = queue.removeFirst()
for (di, dj) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
let ni = i + di
let nj = j + dj
if ni >= 0 && ni < n && nj >= 0 && nj < m && dp[ni][nj] > dp[i][j] + grid[ni][nj] {
dp[ni][nj] = dp[i][j] + grid[ni][nj]
path[ni][nj] = i * m + j
queue.append((ni, nj))
}
}
}
var result = [Int]()
var i = n - 1
var j = m - 1
for _ in 0..<k {
result.append(grid[i][j])
let p = path[i][j]
i = p / m
j = p % m
}
return result.reversed()
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
let m = grid[0].count
var dp = Array(repeating: Array(repeating: Int.max, count: m), count: n)
var path = Array(repeating: Array(repeating: -1, count: m), count: n)
var queue = [(Int, Int)]()
queue.append((0, 0))
dp[0][0] = 0
while !queue.isEmpty {
let (x, y) = queue.removeFirst()
for (dx, dy) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < m && dp[nx][ny] > dp[x][y] + 1 {
dp[nx][ny] = dp[x][y] + 1
path[nx][ny] = grid[x][y]
queue.append((nx, ny))
}
}
}
var result = [Int]()
var x = n - 1
var y = m - 1
for _ in 0..<k {
result.append(grid[x][y])
let next = path[x][y]
for (dx, dy) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < m && grid[nx][ny] == next {
x = nx
y = ny
break
}
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
let n = grid.count
let m = grid[0].count
var dp = Array(repeating: Array(repeating: Int.max, count: m), count: n)
var path = Array(repeating: Array(repeating: -1, count: m), count: n)
var queue = [(Int, Int)]()
queue.append((0, 0))
dp[0][0] = 0
while !queue.isEmpty {
let (x, y) = queue.removeFirst()
for (dx, dy) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < m && dp[nx][ny] > dp[x][y] + 1 {
dp[nx][ny] = dp[x][y] + 1
path[nx][ny] = grid[x][y]
queue.append((nx, ny))
}
}
}
var result = [Int]()
var x = n - 1
var y = m - 1
for _ in 0..<k {
result.append(grid[x][y])
let next = path[x][y]
for (dx, dy) in [(-1, 0), (1, 0), (0, -1), (0, 1)] {
let nx = x + dx
let ny = y + dy
if nx >= 0 && nx < n && ny >= 0 && ny < m && grid[nx][ny] == next {
x = nx
y = ny
break
}
}
}
return result
}
```
// XCTAssertTrue failed
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var current = 0
var currentRow = 0
var currentCol = 0
var currentPath = [Int]()
var currentPathLength = 0
var minPath = [Int]()
var minPathLength = Int.max
var visited = [[Bool]](repeating: [Bool](repeating: false, count: grid[0].count), count: grid.count)
visited[0][0] = true
currentPath.append(grid[0][0])
currentPathLength += 1
while currentPathLength < k {
if currentRow > 0 && !visited[currentRow - 1][currentCol] {
currentPath.append(grid[currentRow - 1][currentCol])
currentPathLength += 1
visited[currentRow - 1][currentCol] = true
currentRow -= 1
} else if currentRow < grid.count - 1 && !visited[currentRow + 1][currentCol] {
currentPath.append(grid[currentRow + 1][currentCol])
currentPathLength += 1
visited[currentRow + 1][currentCol] = true
currentRow += 1
} else if currentCol > 0 && !visited[currentRow][currentCol - 1] {
currentPath.append(grid[currentRow][currentCol - 1])
currentPathLength += 1
visited[currentRow][currentCol - 1] = true
currentCol -= 1
} else if currentCol < grid[0].count - 1 && !visited[currentRow][currentCol + 1] {
currentPath.append(grid[currentRow][currentCol + 1])
currentPathLength += 1
visited[currentRow][currentCol + 1] = true
currentCol += 1
} else {
currentPath.removeLast()
currentPathLength -= 1
if currentRow > 0 && visited[currentRow - 1][currentCol] {
currentRow -= 1
} else if currentRow < grid.count - 1 && visited[currentRow + 1][currentCol] {
currentRow += 1
} else if currentCol > 0 && visited[currentRow][currentCol - 1] {
currentCol -= 1
} else if currentCol < grid[0].count - 1 && visited[currentRow][currentCol + 1] {
currentCol += 1
}
}
}
currentPath.append(grid[currentRow][currentCol])
currentPathLength += 1
if currentPathLength == k {
if currentPath.lexicographicallyPrecedes(minPath) {
minPath = currentPath
}
}
return minPath
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered arrays of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered array of the values on the cells that the minimum path go through.
Examples:
minPath(grid: [[1, 2, 3], [4, 5, 6], [7, 8, 9]], k: 3) == [1, 2, 1]
minPath(grid: [[5, 9, 3], [4, 1, 6], [7, 8, 2]], k: 1) == [1]
### Response:
```swift
func minPath(grid: [[Int]], k: Int) -> [Int] {
var result = [Int]()
var current = 0
var currentRow = 0
var currentCol = 0
var currentPath = [Int]()
var currentPathLength = 0
var minPath = [Int]()
var minPathLength = Int.max
var visited = [[Bool]](repeating: [Bool](repeating: false, count: grid[0].count), count: grid.count)
visited[0][0] = true
currentPath.append(grid[0][0])
currentPathLength += 1
while currentPathLength < k {
if currentRow > 0 && !visited[currentRow - 1][currentCol] {
currentPath.append(grid[currentRow - 1][currentCol])
currentPathLength += 1
visited[currentRow - 1][currentCol] = true
currentRow -= 1
} else if currentRow < grid.count - 1 && !visited[currentRow + 1][currentCol] {
currentPath.append(grid[currentRow + 1][currentCol])
currentPathLength += 1
visited[currentRow + 1][currentCol] = true
currentRow += 1
} else if currentCol > 0 && !visited[currentRow][currentCol - 1] {
currentPath.append(grid[currentRow][currentCol - 1])
currentPathLength += 1
visited[currentRow][currentCol - 1] = true
currentCol -= 1
} else if currentCol < grid[0].count - 1 && !visited[currentRow][currentCol + 1] {
currentPath.append(grid[currentRow][currentCol + 1])
currentPathLength += 1
visited[currentRow][currentCol + 1] = true
currentCol += 1
} else {
currentPath.removeLast()
currentPathLength -= 1
if currentRow > 0 && visited[currentRow - 1][currentCol] {
currentRow -= 1
} else if currentRow < grid.count - 1 && visited[currentRow + 1][currentCol] {
currentRow += 1
} else if currentCol > 0 && visited[currentRow][currentCol - 1] {
currentCol -= 1
} else if currentCol < grid[0].count - 1 && visited[currentRow][currentCol + 1] {
currentCol += 1
}
}
}
currentPath.append(grid[currentRow][currentCol])
currentPathLength += 1
if currentPathLength == k {
if currentPath.lexicographicallyPrecedes(minPath) {
minPath = currentPath
}
}
return minPath
}
```
var result = [Int]() // initialization of variable 'result' was never used; consider replacing with assignment to '_' or removing it
var current = 0 // initialization of variable 'current' was never used; consider replacing with assignment to '_' or removing it
var minPathLength = Int.max // initialization of variable 'minPathLength' was never used; consider replacing with assignment to '_' or removing it
// XCTAssertTrue failed
func tri(n: Int) -> [Int] {
var tribonacci = [Int]()
for i in 1...n+1 {
if i == 1 {
tribonacci.append(3)
} else if i % 2 == 0 {
tribonacci.append(1 + i / 2)
} else {
tribonacci.append(tribonacci[i-2] + tribonacci[i-1] + tribonacci[i])
}
}
return tribonacci
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var tribonacci = [Int]()
for i in 1...n+1 {
if i == 1 {
tribonacci.append(3)
} else if i % 2 == 0 {
tribonacci.append(1 + i / 2)
} else {
tribonacci.append(tribonacci[i-2] + tribonacci[i-1] + tribonacci[i])
}
}
return tribonacci
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var result = [Int](repeating: 0, count: n + 1)
result[0] = 1
result[1] = 3
for i in 2...n {
if i % 2 == 0 {
result[i] = 1 + i / 2
} else {
result[i] = result[i - 1] + result[i - 2] + result[i + 1]
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
guard n >= 0 else { return [] }
var result = [Int](repeating: 0, count: n + 1)
result[0] = 1
result[1] = 3
for i in 2...n {
if i % 2 == 0 {
result[i] = 1 + i / 2
} else {
result[i] = result[i - 1] + result[i - 2] + result[i + 1]
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
result.append(1)
result.append(3)
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
result.append(1)
result.append(3)
for i in 2...n {
if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 1] + result[i - 2] + result[i + 1])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var tribonacci = [1, 3]
for i in 2...n {
if i % 2 == 0 {
tribonacci.append(1 + i / 2)
} else {
tribonacci.append(tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1])
}
}
return tribonacci
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var tribonacci = [1, 3]
for i in 2...n {
if i % 2 == 0 {
tribonacci.append(1 + i / 2)
} else {
tribonacci.append(tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1])
}
}
return tribonacci
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n+1 {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i-2] + result[i-1] + result[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n+1 {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i-2] + result[i-1] + result[i])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n+1 {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i-2] + result[i-1] + result[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n+1 {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i-2] + result[i-1] + result[i])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 2] + result[i - 1] + result[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 2] + result[i - 1] + result[i])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n+1 {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 2] + result[i - 1] + result[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n+1 {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 2] + result[i - 1] + result[i])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 2] + result[i - 1] + result[i])
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var result = [Int]()
for i in 1...n {
if i == 1 {
result.append(3)
} else if i % 2 == 0 {
result.append(1 + i / 2)
} else {
result.append(result[i - 2] + result[i - 1] + result[i])
}
}
return result
}
```
// Fatal error: Index out of range
func tri(n: Int) -> [Int] {
var tribonacci = [1, 3]
for i in 2...n {
if i % 2 == 0 {
tribonacci.append(1 + i / 2)
} else {
tribonacci.append(tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1])
}
}
return tribonacci
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return an array of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(n: 3) == [1, 3, 2, 8]
### Response:
```swift
func tri(n: Int) -> [Int] {
var tribonacci = [1, 3]
for i in 2...n {
if i % 2 == 0 {
tribonacci.append(1 + i / 2)
} else {
tribonacci.append(tribonacci[i - 1] + tribonacci[i - 2] + tribonacci[i + 1])
}
}
return tribonacci
}
```
// Fatal error: Index out of range
func digits(n: Int) -> Int {
var result = 1
for char in String(n) {
if let digit = Int(String(char)), digit % 2 == 1 {
result *= digit
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
for char in String(n) {
if let digit = Int(String(char)), digit % 2 == 1 {
result *= digit
}
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
result *= digit
}
number /= 10
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
result *= digit
}
number /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
for char in String(n) {
if let digit = Int(String(char)), digit % 2 != 0 {
result *= digit
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
for char in String(n) {
if let digit = Int(String(char)), digit % 2 != 0 {
result *= digit
}
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
for char in String(n) {
if let digit = Int(String(char)), digit % 2 != 0 {
result *= digit
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
for char in String(n) {
if let digit = Int(String(char)), digit % 2 != 0 {
result *= digit
}
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
product *= digit
}
number /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
product *= digit
}
number /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
result *= digit
}
number /= 10
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
result *= digit
}
number /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
product *= digit
}
number /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 != 0 {
product *= digit
}
number /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
result *= digit
}
number /= 10
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
result *= digit
}
number /= 10
}
return result
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
product *= digit
}
number /= 10
}
return product
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var product = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
product *= digit
}
number /= 10
}
return product
}
```
// XCTAssertTrue failed
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
result *= digit
}
number /= 10
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(n: 1) == 1
digits(n: 4) == 0
digits(n: 235) == 15
### Response:
```swift
func digits(n: Int) -> Int {
var result = 1
var number = n
while number > 0 {
let digit = number % 10
if digit % 2 == 1 {
result *= digit
}
number /= 10
}
return result
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack: [Character] = []
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack: [Character] = []
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var count = 0
for char in string {
if char == "[" {
count += 1
} else if char == "]" {
count -= 1
if count < 0 {
return false
}
}
}
return count > 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var count = 0
for char in string {
if char == "[" {
count += 1
} else if char == "]" {
count -= 1
if count < 0 {
return false
}
}
}
return count > 0
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack = [Character]()
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
} else {
stack.removeLast()
}
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func isNested(string: String) -> Bool {
var stack: [Character] = []
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
isNested(string: "[[]]") == true
isNested(string: "[]]]]]]][[[[[]") == false
isNested(string: "[][]") == false
isNested(string: "[]") == false
isNested(string: "[[][]]") == true
isNested(string: "[[]][[") == true
### Response:
```swift
func isNested(string: String) -> Bool {
var stack: [Character] = []
for char in string {
if char == "[" {
stack.append(char)
} else if char == "]" {
if stack.isEmpty {
return false
}
stack.removeLast()
}
}
return !stack.isEmpty
}
```
// XCTAssertTrue failed
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for num in lst {
sum += Int(ceil(num)) * Int(ceil(num))
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
var sum = 0
for num in lst {
sum += Int(ceil(num)) * Int(ceil(num))
}
return sum
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given an array of numbers.
You need to return the sum of squared numbers in the given array,
round each element in the array to the upper int(Ceiling) first.
Examples:
sumSquares(lst: [1.0, 2.0, 3.0]) == 14
sumSquares(lst: [1.0, 4.0, 9.0]) == 98
sumSquares(lst: [1.0, 3.0, 5.0, 7.0]) == 84
sumSquares(lst: [1.4, 4.2, 0.0]) == 29
sumSquares(lst: [-2.4, 1.0, 1.0]) == 6
### Response:
```swift
func sumSquares(lst: [Double]) -> Int {
return lst.map { Int(ceil($0)) }.map { $0 * $0 }.reduce(0, +)
}
```
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? true
}
```
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? true // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
let lastCharIsLetter = CharacterSet.letters.contains(lastChar!)
let lastCharIsSpace = lastChar == " "
return lastCharIsLetter && !lastCharIsSpace
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
let lastCharIsLetter = CharacterSet.letters.contains(lastChar!)
let lastCharIsSpace = lastChar == " "
return lastCharIsLetter && !lastCharIsSpace
}
```
let lastCharIsLetter = CharacterSet.letters.contains(lastChar!) // cannot convert value of type 'String.Element' (aka 'Character') to expected argument type 'Unicode.Scalar'
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? false
}
```
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? false // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar,
lastChar.isLetter,
!txt.hasSuffix(" ") {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar,
lastChar.isLetter,
!txt.hasSuffix(" ") {
return true
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? true
}
```
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? true // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar,
let lastCharAscii = lastChar.asciiValue,
lastCharAscii >= 65 && lastCharAscii <= 122 {
return !txt.hasSuffix(" ")
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar,
let lastCharAscii = lastChar.asciiValue,
lastCharAscii >= 65 && lastCharAscii <= 122 {
return !txt.hasSuffix(" ")
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar,
lastChar.isLetter,
!txt.hasSuffix(" ") {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar,
lastChar.isLetter,
!txt.hasSuffix(" ") {
return true
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
guard let lastChar = txt.last else { return false }
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? false
}
```
return lastChar.isLetter && !txt.dropLast().last?.isWhitespace ?? false // optional type 'Bool?' cannot be used as a boolean; test for '== nil' instead
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar,
lastChar.isLetter,
!txt.hasSuffix(" ") {
return true
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
let lastChar = txt.last
if let lastChar = lastChar,
lastChar.isLetter,
!txt.hasSuffix(" ") {
return true
}
return false
}
```
// XCTAssertTrue failed
func checkIfLastCharIsALetter(txt: String) -> Bool {
if txt.isEmpty {
return false
}
let lastChar = txt.last!
if lastChar.isLetter {
let lastWord = txt.components(separatedBy: " ").last!
return lastWord.count == 1
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
checkIfLastCharIsALetter(txt: "apple pie") == false
checkIfLastCharIsALetter(txt: "apple pi e") == true
checkIfLastCharIsALetter(txt: "apple pi e ") == false
checkIfLastCharIsALetter(txt: "") == false
### Response:
```swift
func checkIfLastCharIsALetter(txt: String) -> Bool {
if txt.isEmpty {
return false
}
let lastChar = txt.last!
if lastChar.isLetter {
let lastWord = txt.components(separatedBy: " ").last!
return lastWord.count == 1
}
return false
}
```
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
var maxValue = Int.min
for (index, value) in arr.enumerated() {
if value > maxValue {
maxValue = value
maxIndex = index
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
var maxValue = Int.min
for (index, value) in arr.enumerated() {
if value > maxValue {
maxValue = value
maxIndex = index
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 0..<arr.count {
if i > 0 && arr[i] >= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 0..<arr.count {
if i > 0 && arr[i] >= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
```
// Fatal error: Range requires lowerBound <= upperBound
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i - 1
break
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i - 1
break
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
```
// Fatal error: Range requires lowerBound <= upperBound
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
var maxValue = 0
for i in 0..<arr.count {
if arr[i] >= maxValue {
maxIndex = i
maxValue = arr[i]
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
var maxValue = 0
for i in 0..<arr.count {
if arr[i] >= maxValue {
maxIndex = i
maxValue = arr[i]
}
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
var maxValue = Int.min
for (index, value) in arr.enumerated() {
if value < maxValue {
maxIndex = index - 1
break
}
maxValue = value
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
var maxValue = Int.min
for (index, value) in arr.enumerated() {
if value < maxValue {
maxIndex = index - 1
break
}
maxValue = value
}
return maxIndex
}
```
// XCTAssertTrue failed
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
```
// Fatal error: Range requires lowerBound <= upperBound
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
```
// Fatal error: Range requires lowerBound <= upperBound
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
canArrange(arr: [1, 2, 4, 3, 5]) == 3
canArrange(arr: [1, 2, 3]) == -1
### Response:
```swift
func canArrange(arr: [Int]) -> Int {
var maxIndex = -1
for i in 1..<arr.count {
if arr[i] <= arr[i - 1] {
maxIndex = i
}
}
return maxIndex
}
```
// Fatal error: Range requires lowerBound <= upperBound
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largest: Int?
var smallest: Int?
for num in lst {
if num < 0 {
if largest == nil || num > largest! {
largest = num
}
} else if num > 0 {
if smallest == nil || num < smallest! {
smallest = num
}
}
}
return (largest, smallest)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largest: Int?
var smallest: Int?
for num in lst {
if num < 0 {
if largest == nil || num > largest! {
largest = num
}
} else if num > 0 {
if smallest == nil || num < smallest! {
smallest = num
}
}
}
return (largest, smallest)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for num in lst {
if num < 0 {
if largestNegative == nil || num > largestNegative! {
largestNegative = num
}
} else if num > 0 {
if smallestPositive == nil || num < smallestPositive! {
smallestPositive = num
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largest: Int? = nil
var smallest: Int? = nil
for num in lst {
if num < 0 {
if largest == nil || num > largest! {
largest = num
}
} else if num > 0 {
if smallest == nil || num < smallest! {
smallest = num
}
}
}
return (largest, smallest)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largest: Int? = nil
var smallest: Int? = nil
for num in lst {
if num < 0 {
if largest == nil || num > largest! {
largest = num
}
} else if num > 0 {
if smallest == nil || num < smallest! {
smallest = num
}
}
}
return (largest, smallest)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int? = nil
var smallestPositive: Int? = nil
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
```
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in an array.
If there is no negative or positive integers, return them as nil.
Examples:
largestSmallestIntegers(lst: [2, 4, 1, 3, 5, 7]) == (nil, 1)
largestSmallestIntegers(lst: [] as [Int]) == (nil, nil)
largestSmallestIntegers(lst: [0]) == (nil, nil)
### Response:
```swift
func largestSmallestIntegers(lst: [Int]) -> (Int?, Int?) {
var largestNegative: Int?
var smallestPositive: Int?
for number in lst {
if number < 0 {
if largestNegative == nil || number > largestNegative! {
largestNegative = number
}
} else if number > 0 {
if smallestPositive == nil || number < smallestPositive! {
smallestPositive = number
}
}
}
return (largestNegative, smallestPositive)
}
```
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return a > b ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return a > b ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return a > b ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? a : b
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? a : b
case (.stringValue(let a), .stringValue(let b)):
return a > b ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
return a > b ? a : b
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? a : b
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? a : b
case let (.stringValue(a), .stringValue(b)):
return a > b ? a : b
default:
return nil
}
}
```
return a > b ? a : b // cannot convert return expression of type 'Int' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'Double' to return type 'Value?'
return a > b ? a : b // cannot convert return expression of type 'String' to return type 'Value?'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : a.compare(b, options: .numeric) == .orderedAscending ? .stringValue(b) : nil
case let (.intValue(a), .doubleValue(b)):
return Double(a) > b ? .intValue(a) : Double(a) < b ? .doubleValue(b) : nil
case let (.doubleValue(a), .intValue(b)):
return a > Double(b) ? .doubleValue(a) : a < Double(b) ? .intValue(b) : nil
case let (.intValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .intValue(a) : Double(a) < Double(b) ? .stringValue(b) : nil
case let (.stringValue(a), .intValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : Double(a) < Double(b) ? .intValue(b) : nil
case let (.doubleValue(a), .stringValue(b)):
return a > Double(b) ? .doubleValue(a) : a < Double(b) ? .stringValue(b) : nil
case let (.stringValue(a), .doubleValue(b)):
return Double(a) > b ? .stringValue(a) : Double(a) < b ? .doubleValue(b) : nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case let (.stringValue(a), .stringValue(b)):
return a.compare(b, options: .numeric) == .orderedDescending ? .stringValue(a) : a.compare(b, options: .numeric) == .orderedAscending ? .stringValue(b) : nil
case let (.intValue(a), .doubleValue(b)):
return Double(a) > b ? .intValue(a) : Double(a) < b ? .doubleValue(b) : nil
case let (.doubleValue(a), .intValue(b)):
return a > Double(b) ? .doubleValue(a) : a < Double(b) ? .intValue(b) : nil
case let (.intValue(a), .stringValue(b)):
return Double(a) > Double(b) ? .intValue(a) : Double(a) < Double(b) ? .stringValue(b) : nil
case let (.stringValue(a), .intValue(b)):
return Double(a) > Double(b) ? .stringValue(a) : Double(a) < Double(b) ? .intValue(b) : nil
case let (.doubleValue(a), .stringValue(b)):
return a > Double(b) ? .doubleValue(a) : a < Double(b) ? .stringValue(b) : nil
case let (.stringValue(a), .doubleValue(b)):
return Double(a) > b ? .stringValue(a) : Double(a) < b ? .doubleValue(b) : nil
}
}
```
return Double(a) > Double(b) ? .intValue(a) : Double(a) < Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .intValue(a) : Double(a) < Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : Double(a) < Double(b) ? .intValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > Double(b) ? .stringValue(a) : Double(a) < Double(b) ? .intValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > Double(b) ? .doubleValue(a) : a < Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return a > Double(b) ? .doubleValue(a) : a < Double(b) ? .stringValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > b ? .stringValue(a) : Double(a) < b ? .doubleValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
return Double(a) > b ? .stringValue(a) : Double(a) < b ? .doubleValue(b) : nil // value of optional type 'Double?' must be unwrapped to a value of type 'Double'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case let (.stringValue(a), .stringValue(b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .stringValue(a.description) : a < b ? .stringValue(b.description) : nil
case let (.intValue(a), .doubleValue(b)):
return a > b ? .intValue(a) : .doubleValue(b)
case let (.doubleValue(a), .intValue(b)):
return a > b ? .doubleValue(a) : .intValue(b)
case let (.intValue(a), .stringValue(b)):
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .intValue(a) : .stringValue(b.description)
case let (.stringValue(a), .intValue(b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .stringValue(a.description) : .intValue(b)
case let (.doubleValue(a), .stringValue(b)):
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .doubleValue(a) : .stringValue(b.description)
case let (.stringValue(a), .doubleValue(b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .stringValue(a.description) : .doubleValue(b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case let (.stringValue(a), .stringValue(b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .stringValue(a.description) : a < b ? .stringValue(b.description) : nil
case let (.intValue(a), .doubleValue(b)):
return a > b ? .intValue(a) : .doubleValue(b)
case let (.doubleValue(a), .intValue(b)):
return a > b ? .doubleValue(a) : .intValue(b)
case let (.intValue(a), .stringValue(b)):
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .intValue(a) : .stringValue(b.description)
case let (.stringValue(a), .intValue(b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .stringValue(a.description) : .intValue(b)
case let (.doubleValue(a), .stringValue(b)):
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .doubleValue(a) : .stringValue(b.description)
case let (.stringValue(a), .doubleValue(b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .stringValue(a.description) : .doubleValue(b)
}
}
```
return a > b ? .intValue(a) : .doubleValue(b) // cannot convert value of type 'Double' to expected argument type 'Int'
return a > b ? .doubleValue(a) : .intValue(b) // cannot convert value of type 'Double' to expected argument type 'Int'
return a > b ? .intValue(a) : .stringValue(b.description) // cannot convert value of type 'Double' to expected argument type 'Int'
return a > b ? .stringValue(a.description) : .intValue(b) // cannot convert value of type 'Double' to expected argument type 'Int'
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case (.stringValue(let a), .stringValue(let b)):
let a = a.replacingOccurrences(of: ",", with: ".")
let b = b.replacingOccurrences(of: ",", with: ".")
guard let a = Double(a), let b = Double(b) else {
return nil
}
return a > b ? .stringValue(a.description) : a < b ? .stringValue(b.description) : nil
case (.intValue(let a), .doubleValue(let b)):
return Double(a) > b ? .intValue(a) : Double(a) < b ? .doubleValue(b) : nil
case (.doubleValue(let a), .intValue(let b)):
return a > Double(b) ? .doubleValue(a) : a < Double(b) ? .intValue(b) : nil
case (.intValue(let a), .stringValue(let b)):
let b = b.replacingOccurrences(of: ",", with: ".")
guard let b = Double(b) else {
return nil
}
return Double(a) > b ? .intValue(a) : Double(a) < b ? .stringValue(b.description) : nil
case (.stringValue(let a), .intValue(let b)):
let a = a.replacingOccurrences(of: ",", with: ".")
guard let a = Double(a) else {
return nil
}
return a > Double(b) ? .stringValue(a.description) : a < Double(b) ? .intValue(b) : nil
case (.doubleValue(let a), .stringValue(let b)):
let b = b.replacingOccurrences(of: ",", with: ".")
guard let b = Double(b) else {
return nil
}
return a > b ? .doubleValue(a) : a < b ? .stringValue(b.description) : nil
case (.stringValue(let a), .doubleValue(let b)):
let a = a.replacingOccurrences(of: ",", with: ".")
guard let a = Double(a) else {
return nil
}
return a > b ? .stringValue(a.description) : a < b ? .doubleValue(b) : nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case (.stringValue(let a), .stringValue(let b)):
let a = a.replacingOccurrences(of: ",", with: ".")
let b = b.replacingOccurrences(of: ",", with: ".")
guard let a = Double(a), let b = Double(b) else {
return nil
}
return a > b ? .stringValue(a.description) : a < b ? .stringValue(b.description) : nil
case (.intValue(let a), .doubleValue(let b)):
return Double(a) > b ? .intValue(a) : Double(a) < b ? .doubleValue(b) : nil
case (.doubleValue(let a), .intValue(let b)):
return a > Double(b) ? .doubleValue(a) : a < Double(b) ? .intValue(b) : nil
case (.intValue(let a), .stringValue(let b)):
let b = b.replacingOccurrences(of: ",", with: ".")
guard let b = Double(b) else {
return nil
}
return Double(a) > b ? .intValue(a) : Double(a) < b ? .stringValue(b.description) : nil
case (.stringValue(let a), .intValue(let b)):
let a = a.replacingOccurrences(of: ",", with: ".")
guard let a = Double(a) else {
return nil
}
return a > Double(b) ? .stringValue(a.description) : a < Double(b) ? .intValue(b) : nil
case (.doubleValue(let a), .stringValue(let b)):
let b = b.replacingOccurrences(of: ",", with: ".")
guard let b = Double(b) else {
return nil
}
return a > b ? .doubleValue(a) : a < b ? .stringValue(b.description) : nil
case (.stringValue(let a), .doubleValue(let b)):
let a = a.replacingOccurrences(of: ",", with: ".")
guard let a = Double(a) else {
return nil
}
return a > b ? .stringValue(a.description) : a < b ? .doubleValue(b) : nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : a < b ? .stringValue(b) : nil
case let (.intValue(a), .doubleValue(b)):
return Double(a) > b ? .intValue(a) : b > Double(a) ? .doubleValue(b) : nil
case let (.doubleValue(a), .intValue(b)):
return a > Double(b) ? .doubleValue(a) : Double(b) > a ? .intValue(b) : nil
case let (.intValue(a), .stringValue(b)):
return a > Int(b) ?? a ? .intValue(a) : .stringValue(b)
case let (.stringValue(a), .intValue(b)):
return Int(a) ?? b > b ? .stringValue(a) : .intValue(b)
case let (.doubleValue(a), .stringValue(b)):
return a > Double(b) ?? a ? .doubleValue(a) : .stringValue(b)
case let (.stringValue(a), .doubleValue(b)):
return Double(a) ?? b > b ? .stringValue(a) : .doubleValue(b)
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case let (.stringValue(a), .stringValue(b)):
return a > b ? .stringValue(a) : a < b ? .stringValue(b) : nil
case let (.intValue(a), .doubleValue(b)):
return Double(a) > b ? .intValue(a) : b > Double(a) ? .doubleValue(b) : nil
case let (.doubleValue(a), .intValue(b)):
return a > Double(b) ? .doubleValue(a) : Double(b) > a ? .intValue(b) : nil
case let (.intValue(a), .stringValue(b)):
return a > Int(b) ?? a ? .intValue(a) : .stringValue(b)
case let (.stringValue(a), .intValue(b)):
return Int(a) ?? b > b ? .stringValue(a) : .intValue(b)
case let (.doubleValue(a), .stringValue(b)):
return a > Double(b) ?? a ? .doubleValue(a) : .stringValue(b)
case let (.stringValue(a), .doubleValue(b)):
return Double(a) ?? b > b ? .stringValue(a) : .doubleValue(b)
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case let (.stringValue(a), .stringValue(b)):
return a.doubleValue > b.doubleValue ? .stringValue(a) : a.doubleValue < b.doubleValue ? .stringValue(b) : nil
default:
return nil
}
}
extension String {
var doubleValue: Double {
Double(replacingOccurrences(of: ",", with: ".")) ?? 0
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case let (.intValue(a), .intValue(b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case let (.doubleValue(a), .doubleValue(b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case let (.stringValue(a), .stringValue(b)):
return a.doubleValue > b.doubleValue ? .stringValue(a) : a.doubleValue < b.doubleValue ? .stringValue(b) : nil
default:
return nil
}
}
extension String {
var doubleValue: Double {
Double(replacingOccurrences(of: ",", with: ".")) ?? 0
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case (.stringValue(let a), .stringValue(let b)):
let a = a.replacingOccurrences(of: ",", with: ".")
let b = b.replacingOccurrences(of: ",", with: ".")
return compareOne(a: .doubleValue(Double(a) ?? 0), b: .doubleValue(Double(b) ?? 0))
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case (.stringValue(let a), .stringValue(let b)):
let a = a.replacingOccurrences(of: ",", with: ".")
let b = b.replacingOccurrences(of: ",", with: ".")
return compareOne(a: .doubleValue(Double(a) ?? 0), b: .doubleValue(Double(b) ?? 0))
default:
return nil
}
}
```
// XCTAssertTrue failed
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case (.stringValue(let a), .stringValue(let b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .stringValue(a.description) : a < b ? .stringValue(b.description) : nil
default:
return nil
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return nil if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compareOne(a: .intValue(1), b: .doubleValue(2.5)) == .doubleValue(2.5)
compareOne(a: .intValue(1), b: .stringValue("2,3")) == .stringValue("2,3")
compareOne(a: .stringValue("5,1"), b: .stringValue("6")) == .stringValue("6")
compareOne(a: .stringValue("1"), b: .intValue(1)) == nil
### Response:
```swift
enum Value: Equatable, Hashable {
case intValue(Int)
case doubleValue(Double)
case stringValue(String)
}
func compareOne(a: Value, b: Value) -> Value? {
switch (a, b) {
case (.intValue(let a), .intValue(let b)):
return a > b ? .intValue(a) : a < b ? .intValue(b) : nil
case (.doubleValue(let a), .doubleValue(let b)):
return a > b ? .doubleValue(a) : a < b ? .doubleValue(b) : nil
case (.stringValue(let a), .stringValue(let b)):
let a = Double(a.replacingOccurrences(of: ",", with: ".")) ?? 0
let b = Double(b.replacingOccurrences(of: ",", with: ".")) ?? 0
return a > b ? .stringValue(a.description) : a < b ? .stringValue(b.description) : nil
default:
return nil
}
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 4 != 0 {
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 4 != 0 {
return false
}
return true
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 4 != 0 {
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 4 != 0 {
return false
}
return true
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 4 != 0 {
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 4 != 0 {
return false
}
return true
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
if n % 4 != 0 {
return false
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
if n % 4 != 0 {
return false
}
return true
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(n: 4) == false
isEqualToSumEven(n: 6) == false
isEqualToSumEven(n: 8) == true
### Response:
```swift
func isEqualToSumEven(n: Int) -> Bool {
return n % 4 == 0
}
```
// XCTAssertTrue failed
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 0 }
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * factorial(n: n - 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 0 }
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * factorial(n: n - 1)
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(i)
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(i)
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 0 }
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * factorial(n: n - 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
guard n > 0 else { return 0 }
var result = 1
for i in 1...n {
result *= factorial(n: i)
}
return result
}
func factorial(n: Int) -> Int {
guard n > 0 else { return 1 }
return n * factorial(n: n - 1)
}
```
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(i)
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
The function will receive an integer as input and should return the special
factorial of this integer.
specialFactorial(n: 4) == 288
### Response:
```swift
func specialFactorial(n: Int) -> Int {
var result = 1
for i in 1...n {
result *= factorial(i)
}
return result
}
func factorial(_ n: Int) -> Int {
var result = 1
for i in 1...n {
result *= i
}
return result
}
```
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
} else {
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
consecutiveSpaces = 0
result += String(char)
}
}
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
} else {
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
consecutiveSpaces = 0
result += String(char)
}
}
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
return result
}
```
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
} else {
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
consecutiveSpaces = 0
result += String(char)
}
}
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
} else {
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
consecutiveSpaces = 0
result += String(char)
}
}
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
return result
}
```
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
result += String(char)
count = 0
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
result += String(char)
count = 0
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
} else {
if spaceCount > 0 {
if spaceCount == 1 {
result += "_"
} else if spaceCount == 2 {
result += "_"
} else {
result += "-"
}
spaceCount = 0
}
result += String(char)
}
}
if spaceCount > 0 {
if spaceCount == 1 {
result += "_"
} else if spaceCount == 2 {
result += "_"
} else {
result += "-"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var spaceCount = 0
for char in text {
if char == " " {
spaceCount += 1
} else {
if spaceCount > 0 {
if spaceCount == 1 {
result += "_"
} else if spaceCount == 2 {
result += "_"
} else {
result += "-"
}
spaceCount = 0
}
result += String(char)
}
}
if spaceCount > 0 {
if spaceCount == 1 {
result += "_"
} else if spaceCount == 2 {
result += "_"
} else {
result += "-"
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
count = 0
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
count = 0
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count > 0 {
if count == 1 {
result += "_"
} else if count == 2 {
result += "_"
} else {
result += "-"
}
count = 0
}
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count > 0 {
if count == 1 {
result += "_"
} else if count == 2 {
result += "_"
} else {
result += "-"
}
count = 0
}
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
count = 0
result += String(char)
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
count = 0
result += String(char)
}
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
count = 0
result += String(char)
}
}
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
count = 0
result += String(char)
}
}
if count == 1 {
result += "_"
} else if count > 1 {
result += "-"
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count > 2 {
result += "-"
} else if count > 0 {
result += "_"
}
count = 0
result += String(char)
}
}
if count > 2 {
result += "-"
} else if count > 0 {
result += "_"
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var count = 0
for char in text {
if char == " " {
count += 1
} else {
if count > 2 {
result += "-"
} else if count > 0 {
result += "_"
}
count = 0
result += String(char)
}
}
if count > 2 {
result += "-"
} else if count > 0 {
result += "_"
}
return result
}
```
// XCTAssertTrue failed
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
} else {
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
consecutiveSpaces = 0
result += String(char)
}
}
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fixSpaces(text: " Example") == "Example"
fixSpaces(text: " Example 1") == "Example_1"
fixSpaces(text: " Example 2") == "_Example_2"
fixSpaces(text: " Example 3") == "_Example-3"
### Response:
```swift
func fixSpaces(text: String) -> String {
var result = ""
var consecutiveSpaces = 0
for char in text {
if char == " " {
consecutiveSpaces += 1
} else {
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
consecutiveSpaces = 0
result += String(char)
}
}
if consecutiveSpaces > 2 {
result += "-"
} else {
for _ in 0..<consecutiveSpaces {
result += "_"
}
}
return result
}
```
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first!.isLetter else { return "No" }
guard name.filter(\.isNumber).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard ["txt", "exe", "dll"].contains(extension) else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first!.isLetter else { return "No" }
guard name.filter(\.isNumber).count <= 3 else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // missing argument for parameter 'where' in call
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected type name in extension declaration
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected '{' in extension
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // expected expression in list of expressions
guard ["txt", "exe", "dll"].contains(extension) else { return "No" } // declaration is only valid at file scope
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first!.isLetter else { return "No" }
guard name.filter(\.isNumber).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first!.isLetter else { return "No" }
guard name.filter(\.isNumber).count <= 3 else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected expression, var, let or case in 'guard' condition
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected expression, var, let or case in 'guard' condition
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected expression, var, let or case in 'guard' condition
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first!.isLetter else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first!.isLetter else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected expression, var, let or case in 'guard' condition
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected expression, var, let or case in 'guard' condition
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
let digits = name.filter { $0.isNumber }
guard digits.count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
let digits = name.filter { $0.isNumber }
guard digits.count <= 3 else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected expression, var, let or case in 'guard' condition
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let name = components[0]
let extension = components[1]
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" }
guard name.count > 0 else { return "No" }
guard name.first?.isLetter ?? false else { return "No" }
guard name.filter({ $0.isNumber }).count <= 3 else { return "No" }
return "Yes"
}
```
let extension = components[1] // keyword 'extension' cannot be used as an identifier here
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected '{' in extension
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected expression, var, let or case in 'guard' condition
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // declaration is only valid at file scope
guard extension == "txt" || extension == "exe" || extension == "dll" else { return "No" } // expected type name in extension declaration
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let prefix = components[0]
let suffix = components[1]
guard prefix.count > 0 else { return "No" }
guard prefix.first?.isLetter ?? false else { return "No" }
guard ["txt", "exe", "dll"].contains(suffix) else { return "No" }
guard prefix.filter(\.isNumber).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let prefix = components[0]
let suffix = components[1]
guard prefix.count > 0 else { return "No" }
guard prefix.first?.isLetter ?? false else { return "No" }
guard ["txt", "exe", "dll"].contains(suffix) else { return "No" }
guard prefix.filter(\.isNumber).count <= 3 else { return "No" }
return "Yes"
}
```
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let prefix = components[0]
let suffix = components[1]
guard prefix.count > 0 else { return "No" }
guard prefix.first!.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(suffix) else { return "No" }
guard prefix.filter(\.isNumber).count <= 3 else { return "No" }
return "Yes"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
fileNameCheck(fileName: "example.txt") == "Yes"
fileNameCheck(fileName: "1example.dll") == "No"
### Response:
```swift
func fileNameCheck(fileName: String) -> String {
let components = fileName.components(separatedBy: ".")
guard components.count == 2 else { return "No" }
let prefix = components[0]
let suffix = components[1]
guard prefix.count > 0 else { return "No" }
guard prefix.first!.isLetter else { return "No" }
guard ["txt", "exe", "dll"].contains(suffix) else { return "No" }
guard prefix.filter(\.isNumber).count <= 3 else { return "No" }
return "Yes"
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
let length = word.count
if length == 2 || length == 3 || length == 5 || length == 7 || length == 11 || length == 13 || length == 17 || length == 19 || length == 23 || length == 29 {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
let length = word.count
if length == 2 || length == 3 || length == 5 || length == 7 || length == 11 || length == 13 || length == 17 || length == 19 || length == 23 || length == 29 {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
let length = word.count
if length == 2 || length == 3 || length == 5 || length == 7 || length == 11 || length == 13 || length == 17 || length == 19 || length == 23 || length == 29 {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespaces)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
let length = word.count
if length == 2 || length == 3 || length == 5 || length == 7 || length == 11 || length == 13 || length == 17 || length == 19 || length == 23 || length == 29 {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespaces)
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.split(separator: " ")
for word in words {
if isPrime(number: word.count) {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.split(separator: " ")
for word in words {
if isPrime(number: word.count) {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(Int(word.count)) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(Int(word.count)) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(Int(word.count)) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
for i in 5...Int(sqrt(Double(number))) {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(Int(word.count)) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(_ number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
for i in 5...Int(sqrt(Double(number))) {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
}
return true
}
```
// Fatal error: Range requires lowerBound <= upperBound
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.components(separatedBy: " ")
for word in words {
if isPrime(number: word.count) {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.components(separatedBy: " ")
for word in words {
if isPrime(number: word.count) {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(number: Int) -> Bool {
if number <= 1 {
return false
}
if number <= 3 {
return true
}
if number % 2 == 0 || number % 3 == 0 {
return false
}
var i = 5
while i * i <= number {
if number % i == 0 || number % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.split(separator: " ")
for word in words {
if isPrime(word.count) {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespaces)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
var result = ""
let words = sentence.split(separator: " ")
for word in words {
if isPrime(word.count) {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespaces)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(Int(word.count)) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(Int(word.count)) {
result += word + " "
}
}
return result.trimmingCharacters(in: .whitespacesAndNewlines)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 {
return false
}
if n <= 3 {
return true
}
if n % 2 == 0 || n % 3 == 0 {
return false
}
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 {
return false
}
i += 6
}
return true
}
```
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespaces)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 { return false }
i += 6
}
return true
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Example 2:
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
wordsInSentence(sentence: "This is a test") == "is"
wordsInSentence(sentence: "lets go for swimming") == "go for"
### Response:
```swift
func wordsInSentence(sentence: String) -> String {
let words = sentence.split(separator: " ")
var result = ""
for word in words {
if isPrime(word.count) {
result += " " + word
}
}
return result.trimmingCharacters(in: .whitespaces)
}
func isPrime(_ n: Int) -> Bool {
if n <= 1 { return false }
if n <= 3 { return true }
if n % 2 == 0 || n % 3 == 0 { return false }
var i = 5
while i * i <= n {
if n % i == 0 || n % (i + 2) == 0 { return false }
i += 6
}
return true
}
```
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xParts = x.split(separator: "/")
let nParts = n.split(separator: "/")
let xNumerator = Int(xParts[0])!
let xDenominator = Int(xParts[1])!
let nNumerator = Int(nParts[0])!
let nDenominator = Int(nParts[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result % 1 == 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result % 1 == 0
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xArray = x.split(separator: "/")
let nArray = n.split(separator: "/")
let xNumerator = Int(xArray[0])!
let xDenominator = Int(xArray[1])!
let nNumerator = Int(nArray[0])!
let nDenominator = Int(nArray[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xArray = x.split(separator: "/")
let nArray = n.split(separator: "/")
let xNumerator = Int(xArray[0])!
let xDenominator = Int(xArray[1])!
let nNumerator = Int(nArray[0])!
let nDenominator = Int(nArray[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(x: "1/5", n: "5/1") == true
simplify(x: "1/6", n: "2/1") == false
simplify(x: "7/10", n: "10/2") == false
### Response:
```swift
func simplify(x: String, n: String) -> Bool {
let xSplit = x.split(separator: "/")
let nSplit = n.split(separator: "/")
let xNumerator = Int(xSplit[0])!
let xDenominator = Int(xSplit[1])!
let nNumerator = Int(nSplit[0])!
let nDenominator = Int(nSplit[1])!
let result = (xNumerator * nNumerator) / (xDenominator * nDenominator)
return result.isMultiple(of: 1)
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
var result = [Int]()
var dict = [Int: [Int]]()
for num in nums {
let sum = sumOfDigits(num)
if dict[sum] == nil {
dict[sum] = [num]
} else {
dict[sum]?.append(num)
}
}
for (_, value) in dict.sorted(by: { $0.key < $1.key }) {
result.append(contentsOf: value)
}
return result
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num != 0 {
sum += num % 10
num /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = [Int]()
var dict = [Int: [Int]]()
for num in nums {
let sum = sumOfDigits(num)
if dict[sum] == nil {
dict[sum] = [num]
} else {
dict[sum]?.append(num)
}
}
for (_, value) in dict.sorted(by: { $0.key < $1.key }) {
result.append(contentsOf: value)
}
return result
}
func sumOfDigits(_ num: Int) -> Int {
var sum = 0
var num = num
while num != 0 {
sum += num % 10
num /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumOfDigitsA = sumOfDigits(number: a)
let sumOfDigitsB = sumOfDigits(number: b)
if sumOfDigitsA == sumOfDigitsB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
} else {
return sumOfDigitsA < sumOfDigitsB
}
}
}
func sumOfDigits(number: Int) -> Int {
var sum = 0
var number = number
while number != 0 {
sum += number % 10
number /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumOfDigitsA = sumOfDigits(number: a)
let sumOfDigitsB = sumOfDigits(number: b)
if sumOfDigitsA == sumOfDigitsB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
} else {
return sumOfDigitsA < sumOfDigitsB
}
}
}
func sumOfDigits(number: Int) -> Int {
var sum = 0
var number = number
while number != 0 {
sum += number % 10
number /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumOfDigitsA = sumOfDigits(of: a)
let sumOfDigitsB = sumOfDigits(of: b)
return sumOfDigitsA < sumOfDigitsB || (sumOfDigitsA == sumOfDigitsB && a < b)
}
}
func sumOfDigits(of number: Int) -> Int {
var sum = 0
var number = number
while number != 0 {
sum += number % 10
number /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) in
let sumOfDigitsA = sumOfDigits(of: a)
let sumOfDigitsB = sumOfDigits(of: b)
return sumOfDigitsA < sumOfDigitsB || (sumOfDigitsA == sumOfDigitsB && a < b)
}
}
func sumOfDigits(of number: Int) -> Int {
var sum = 0
var number = number
while number != 0 {
sum += number % 10
number /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
var result = [Int]()
var dict = [Int: [Int]]()
for num in nums {
let sum = String(abs(num)).reduce(0) { $0 + Int(String($1))! }
dict[sum] = dict[sum] ?? []
dict[sum]!.append(num)
}
for (_, value) in dict.sorted(by: { $0.key < $1.key }) {
result.append(contentsOf: value)
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
var result = [Int]()
var dict = [Int: [Int]]()
for num in nums {
let sum = String(abs(num)).reduce(0) { $0 + Int(String($1))! }
dict[sum] = dict[sum] ?? []
dict[sum]!.append(num)
}
for (_, value) in dict.sorted(by: { $0.key < $1.key }) {
result.append(contentsOf: value)
}
return result
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let aSum = a.digits.reduce(0, +)
let bSum = b.digits.reduce(0, +)
return aSum < bSum || (aSum == bSum && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let aSum = a.digits.reduce(0, +)
let bSum = b.digits.reduce(0, +)
return aSum < bSum || (aSum == bSum && nums.firstIndex(of: a)! < nums.firstIndex(of: b)!)
}
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumOfDigitsA = String(a).map { Int(String($0))! }.reduce(0, +)
let sumOfDigitsB = String(b).map { Int(String($0))! }.reduce(0, +)
if sumOfDigitsA == sumOfDigitsB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
} else {
return sumOfDigitsA < sumOfDigitsB
}
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumOfDigitsA = String(a).map { Int(String($0))! }.reduce(0, +)
let sumOfDigitsB = String(b).map { Int(String($0))! }.reduce(0, +)
if sumOfDigitsA == sumOfDigitsB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
} else {
return sumOfDigitsA < sumOfDigitsB
}
}
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.enumerated().sorted { (a, b) in
let sumOfDigitsA = a.element.digits.reduce(0, +)
let sumOfDigitsB = b.element.digits.reduce(0, +)
if sumOfDigitsA == sumOfDigitsB {
return a.offset < b.offset
} else {
return sumOfDigitsA < sumOfDigitsB
}
}
return sorted.map { $0.element }
}
extension Int {
var digits: [Int] {
return String(abs(self)).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.enumerated().sorted { (a, b) in
let sumOfDigitsA = a.element.digits.reduce(0, +)
let sumOfDigitsB = b.element.digits.reduce(0, +)
if sumOfDigitsA == sumOfDigitsB {
return a.offset < b.offset
} else {
return sumOfDigitsA < sumOfDigitsB
}
}
return sorted.map { $0.element }
}
extension Int {
var digits: [Int] {
return String(abs(self)).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumOfDigitsA = sumOfDigits(number: a)
let sumOfDigitsB = sumOfDigits(number: b)
if sumOfDigitsA == sumOfDigitsB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
} else {
return sumOfDigitsA < sumOfDigitsB
}
}
}
func sumOfDigits(number: Int) -> Int {
var sum = 0
var number = number
while number != 0 {
sum += number % 10
number /= 10
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
return nums.sorted { (a, b) -> Bool in
let sumOfDigitsA = sumOfDigits(number: a)
let sumOfDigitsB = sumOfDigits(number: b)
if sumOfDigitsA == sumOfDigitsB {
return nums.firstIndex(of: a)! < nums.firstIndex(of: b)!
} else {
return sumOfDigitsA < sumOfDigitsB
}
}
}
func sumOfDigits(number: Int) -> Int {
var sum = 0
var number = number
while number != 0 {
sum += number % 10
number /= 10
}
return sum
}
```
// XCTAssertTrue failed
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.sorted { (a, b) -> Bool in
let sumA = String(a).map { Int(String($0))! }.reduce(0, +)
let sumB = String(b).map { Int(String($0))! }.reduce(0, +)
return sumA < sumB || (sumA == sumB && a < b)
}
return sorted
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.sorted { (a, b) -> Bool in
let sumA = String(a).map { Int(String($0))! }.reduce(0, +)
let sumB = String(b).map { Int(String($0))! }.reduce(0, +)
return sumA < sumB || (sumA == sumB && a < b)
}
return sorted
}
```
// Fatal error: Unexpectedly found nil while unwrapping an Optional value
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.enumerated().sorted { (a, b) in
let sumOfDigitsA = a.element.digits.reduce(0, +)
let sumOfDigitsB = b.element.digits.reduce(0, +)
return sumOfDigitsA < sumOfDigitsB || (sumOfDigitsA == sumOfDigitsB && a.offset < b.offset)
}
return sorted.map { $0.element }
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function which sorts the given array of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original array.
For example:
orderByPoints(nums: [1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
orderByPoints(nums: [] as [Int]) == [] as [Int]
### Response:
```swift
func orderByPoints(nums: [Int]) -> [Int] {
let sorted = nums.enumerated().sorted { (a, b) in
let sumOfDigitsA = a.element.digits.reduce(0, +)
let sumOfDigitsB = b.element.digits.reduce(0, +)
return sumOfDigitsA < sumOfDigitsB || (sumOfDigitsA == sumOfDigitsB && a.offset < b.offset)
}
return sorted.map { $0.element }
}
extension Int {
var digits: [Int] {
return String(self).compactMap { Int(String($0)) }
}
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if (firstDigit % 2 != 0) && (lastDigit % 2 != 0) {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if (firstDigit % 2 != 0) && (lastDigit % 2 != 0) {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if isOdd(firstDigit) && isOdd(lastDigit) {
count += 1
}
}
}
return count
}
func isOdd(_ num: Int) -> Bool {
return num % 2 != 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if isOdd(firstDigit) && isOdd(lastDigit) {
count += 1
}
}
}
return count
}
func isOdd(_ num: Int) -> Bool {
return num % 2 != 0
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if (firstDigit % 2 == 1) && (lastDigit % 2 == 1) {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if (firstDigit % 2 == 1) && (lastDigit % 2 == 1) {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if (firstDigit % 2 == 1) && (lastDigit % 2 == 1) {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if (firstDigit % 2 == 1) && (lastDigit % 2 == 1) {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if isOdd(firstDigit) && isOdd(lastDigit) {
count += 1
}
}
}
return count
}
func isOdd(_ num: Int) -> Bool {
return num % 2 != 0
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if isOdd(firstDigit) && isOdd(lastDigit) {
count += 1
}
}
}
return count
}
func isOdd(_ num: Int) -> Bool {
return num % 2 != 0
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let lastDigit = num % 10
let firstDigit = num / 10
if lastDigit % 2 == 1 && firstDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let lastDigit = num % 10
let firstDigit = num / 10
if lastDigit % 2 == 1 && firstDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && isOdd(num: num) {
count += 1
}
}
return count
}
func isOdd(num: Int) -> Bool {
let lastDigit = num % 10
let firstDigit = num % (Int(pow(10, Double(countDigits(num: num))))) / Int(pow(10, Double(countDigits(num: num) - 1)))
return lastDigit % 2 == 1 && firstDigit % 2 == 1
}
func countDigits(num: Int) -> Int {
return Int(log10(Double(abs(num)))) + 1
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 && isOdd(num: num) {
count += 1
}
}
return count
}
func isOdd(num: Int) -> Bool {
let lastDigit = num % 10
let firstDigit = num % (Int(pow(10, Double(countDigits(num: num))))) / Int(pow(10, Double(countDigits(num: num) - 1)))
return lastDigit % 2 == 1 && firstDigit % 2 == 1
}
func countDigits(num: Int) -> Int {
return Int(log10(Double(abs(num)))) + 1
}
```
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if (firstDigit % 2 == 1) && (lastDigit % 2 == 1) {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if (firstDigit % 2 == 1) && (lastDigit % 2 == 1) {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter(nums: [15, -73, 14, -15]) == 1
specialFilter(nums: [33, -2, -3, 45, 21, 109]) == 2
### Response:
```swift
func specialFilter(nums: [Int]) -> Int {
var count = 0
for num in nums {
if num > 10 {
let firstDigit = num % 10
let lastDigit = num / 10 % 10
if firstDigit % 2 == 1 && lastDigit % 2 == 1 {
count += 1
}
}
}
return count
}
```
// XCTAssertTrue failed
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<a.count {
for j in i+1..<a.count {
for k in j+1..<a.count {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
getMaxTriples(n: 5) == 1
### Response:
```swift
func getMaxTriples(n: Int) -> Int {
var a = [Int]()
for i in 1...n {
a.append(i * i - i + 1)
}
var count = 0
for i in 0..<n {
for j in i+1..<n {
for k in j+1..<n {
if (a[i] + a[j] + a[k]) % 3 == 0 {
count += 1
}
}
}
}
return count
}
```
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.filter { $0.count % 2 == 0 }.sorted {
if $0.count == $1.count {
return $0 < $1
} else {
return $0.count < $1.count
}
}
return sortedList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.filter { $0.count % 2 == 0 }.sorted {
if $0.count == $1.count {
return $0 < $1
} else {
return $0.count < $1.count
}
}
return sortedList
}
```
func sortedListSum(lst: [String]) -> [String] {
let sorted = lst.sorted { $0.count < $1.count }
return sorted.filter { $0.count % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let sorted = lst.sorted { $0.count < $1.count }
return sorted.filter { $0.count % 2 == 0 }
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let filteredList = sortedList.filter { $0.count % 2 == 0 }
return filteredList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let filteredList = sortedList.filter { $0.count % 2 == 0 }
return filteredList
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for item in lst {
if item.count % 2 == 0 {
result.append(item)
}
}
result.sort { (a, b) -> Bool in
if a.count == b.count {
return a < b
} else {
return a.count < b.count
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for item in lst {
if item.count % 2 == 0 {
result.append(item)
}
}
result.sort { (a, b) -> Bool in
if a.count == b.count {
return a < b
} else {
return a.count < b.count
}
}
return result
}
```
func sortedListSum(lst: [String]) -> [String] {
let sorted = lst.sorted { (a, b) -> Bool in
if a.count == b.count {
return a < b
}
return a.count < b.count
}
return sorted.filter { $0.count % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let sorted = lst.sorted { (a, b) -> Bool in
if a.count == b.count {
return a < b
}
return a.count < b.count
}
return sorted.filter { $0.count % 2 == 0 }
}
```
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let filteredList = sortedList.filter { $0.count % 2 == 0 }
return filteredList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let filteredList = sortedList.filter { $0.count % 2 == 0 }
return filteredList
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let filteredList = sortedList.filter { $0.count % 2 == 0 }
return filteredList
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let sortedList = lst.sorted { $0.count < $1.count }
let filteredList = sortedList.filter { $0.count % 2 == 0 }
return filteredList
}
```
// XCTAssertTrue failed
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
result.sort { (a, b) -> Bool in
if a.count == b.count {
return a < b
}
return a.count < b.count
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
var result = [String]()
for word in lst {
if word.count % 2 == 0 {
result.append(word)
}
}
result.sort { (a, b) -> Bool in
if a.count == b.count {
return a < b
}
return a.count < b.count
}
return result
}
```
func sortedListSum(lst: [String]) -> [String] {
let sorted = lst.sorted { (a, b) -> Bool in
if a.count == b.count {
return a < b
} else {
return a.count < b.count
}
}
return sorted.filter { $0.count % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
let sorted = lst.sorted { (a, b) -> Bool in
if a.count == b.count {
return a < b
} else {
return a.count < b.count
}
}
return sorted.filter { $0.count % 2 == 0 }
}
```
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted array with a sorted order,
The array is always an array of strings and never an array of numbers,
and it may contain duplicates.
The order of the array should be ascending by length of each word, and you
should return the array sorted by that rule.
If two words have the same length, sort the array alphabetically.
The function should return an array of strings in sorted order.
You may assume that all words will have the same length.
For example:
sortedListSum(lst: ["aa", "a", "aaa"]) == ["aa"]
sortedListSum(lst: ["ab", "a", "aaa", "cd"]) == ["ab", "cd"]
### Response:
```swift
func sortedListSum(lst: [String]) -> [String] {
return lst.filter { $0.count % 2 == 0 }.sorted { $0.count < $1.count || ($0.count == $1.count && $0 < $1) }
}
```
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2..<n {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
xOrY(n: 7, x: 34, y: 12) == 34
xOrY(n: 15, x: 8, y: 5) == 5
### Response:
```swift
func xOrY(n: Int, x: Int, y: Int) -> Int {
var isPrime = true
for i in 2...Int(sqrt(Double(n))) {
if n % i == 0 {
isPrime = false
break
}
}
return isPrime ? x : y
}
```
// Fatal error: Range requires lowerBound <= upperBound
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isMultiple(of: 2) {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isMultiple(of: 2) {
sum += Int(num * num)
}
}
return sum
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isMultiple(of: 2) {
continue
}
if num < 0 {
continue
}
sum += Int(num * num)
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isMultiple(of: 2) {
continue
}
if num < 0 {
continue
}
sum += Int(num * num)
}
return sum
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num > 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isInteger && num > 0 && num.truncatingRemainder(dividingBy: 2) != 0 {
sum += Int(num * num)
}
}
return sum
}
```
if num.isInteger && num > 0 && num.truncatingRemainder(dividingBy: 2) != 0 { // value of type 'Double' has no member 'isInteger'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isMultiple(of: 2) {
continue
}
if num < 0 {
continue
}
sum += Int(num * num)
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num.isMultiple(of: 2) {
continue
}
if num < 0 {
continue
}
sum += Int(num * num)
}
return sum
}
```
if num.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for number in lst {
if number.isMultiple(of: 2) {
continue
}
if number < 0 {
continue
}
if number.truncatingRemainder(dividingBy: 1) != 0 {
continue
}
sum += Int(number * number)
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for number in lst {
if number.isMultiple(of: 2) {
continue
}
if number < 0 {
continue
}
if number.truncatingRemainder(dividingBy: 1) != 0 {
continue
}
sum += Int(number * number)
}
return sum
}
```
if number.isMultiple(of: 2) { // value of type 'Double' has no member 'isMultiple'
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num >= 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num >= 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(num * num)
}
}
return sum
}
```
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(pow(num, 2))
}
}
return sum
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an array of numbers, return the sum of squares of the numbers
in the array that are odd. Ignore numbers that are negative or not integers.
If the input array is empty, return 0.
doubleTheDifference(lst: [1, 3, 2, 0]) == 10
doubleTheDifference(lst: [-1, -2, 0]) == 0
doubleTheDifference(lst: [9, -2]) == 81
doubleTheDifference(lst: [0]) == 0
### Response:
```swift
func doubleTheDifference(lst: [Double]) -> Int {
var sum = 0
for num in lst {
if num > 0 && num.truncatingRemainder(dividingBy: 2) == 1 {
sum += Int(pow(num, 2))
}
}
return sum
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result: [Int] = []
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare(game: [1, 2, 3, 4, 5, 1], guess: [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]
compare(game: [0, 5, 0, 0, 0, 4], guess: [4, 1, 1, 0, 0, -2]) == [4, 4, 1, 0, 0, 6]
### Response:
```swift
func compare(game: [Int], guess: [Int]) -> [Int] {
var result = [Int]()
for i in 0..<game.count {
result.append(abs(game[i] - guess[i]))
}
return result
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestExtensionStrength: Int?
for extensionName in extensions {
let extensionStrength = extensionName.uppercased().count - extensionName.lowercased().count
if strongestExtensionStrength == nil || extensionStrength > strongestExtensionStrength! {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension!)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestExtensionStrength: Int?
for extensionName in extensions {
let extensionStrength = extensionName.uppercased().count - extensionName.lowercased().count
if strongestExtensionStrength == nil || extensionStrength > strongestExtensionStrength! {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else if char.isLowercase {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else if char.isLowercase {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return className + "." + strongestExtension
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return className + "." + strongestExtension
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return className + "." + strongestExtension
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return className + "." + strongestExtension
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = extensions[0]
var strongestStrength = 0
for ext in extensions {
var strength = 0
for char in ext {
if char.isUppercase {
strength += 1
} else if char.isLowercase {
strength -= 1
}
}
if strength > strongestStrength {
strongestExtension = ext
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension = extensions[0]
var strongestStrength = 0
for ext in extensions {
var strength = 0
for char in ext {
if char.isUppercase {
strength += 1
} else if char.isLowercase {
strength -= 1
}
}
if strength > strongestStrength {
strongestExtension = ext
strongestStrength = strength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else if char.isLowercase {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else if char.isLowercase {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestExtensionStrength: Int?
for extension in extensions {
var extensionStrength: Int = 0
for char in extension {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if strongestExtensionStrength == nil || extensionStrength > strongestExtensionStrength! {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension!)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestExtensionStrength: Int?
for extension in extensions {
var extensionStrength: Int = 0
for char in extension {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if strongestExtensionStrength == nil || extensionStrength > strongestExtensionStrength! {
strongestExtension = extension
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension!)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
for extension in extensions { // expected Sequence expression for for-each loop
for extension in extensions { // expected '{' to start the body of for-each loop
for extension in extensions { // expected pattern
for char in extension { // expected Sequence expression for for-each loop
for char in extension { // expected '{' to start the body of for-each loop
strongestExtension = extension // declaration is only valid at file scope
strongestExtension = extension // expected expression in assignment
strongestExtensionStrength = extensionStrength // cannot find type 'strongestExtensionStrength' in scope
strongestExtensionStrength = extensionStrength // expected '{' in extension
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestExtensionStrength: Int?
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else if char.isLowercase {
extensionStrength -= 1
}
}
if strongestExtensionStrength == nil || extensionStrength > strongestExtensionStrength! {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return className + "." + strongestExtension!
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String?
var strongestExtensionStrength: Int?
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else if char.isLowercase {
extensionStrength -= 1
}
}
if strongestExtensionStrength == nil || extensionStrength > strongestExtensionStrength! {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return className + "." + strongestExtension!
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return "\(className).\(strongestExtension)"
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return className + "." + strongestExtension
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You will be given the name of a class (a string) and an array of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the array.
For example, if you are given "Slices" as the class and an array of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
Strongest_Extension(className: "myClass", extensions: ["AA", "Be", "CC"]) == "my_class.AA"
### Response:
```swift
func Strongest_Extension(className: String, extensions: [String]) -> String {
var strongestExtension: String = ""
var strongestExtensionStrength: Int = 0
for extensionName in extensions {
var extensionStrength: Int = 0
for char in extensionName {
if char.isUppercase {
extensionStrength += 1
} else {
extensionStrength -= 1
}
}
if extensionStrength > strongestExtensionStrength {
strongestExtension = extensionName
strongestExtensionStrength = extensionStrength
}
}
return className + "." + strongestExtension
}
```
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // single-quoted string literal found, use '"'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // expected expression
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // consecutive statements on a line must be separated by ';'
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should // cannot find 'extensions' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'since' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find type 'the' in scope
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // consecutive statements on a line must be separated by ';'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // return invalid outside of a func
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // single-quoted string literal found, use '"'
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension // cannot find 'strongest' in scope
(its strength is -1). // expected ',' separator
(its strength is -1). // expected '{' in extension
(its strength is -1). // expected member name following '.'
(its strength is -1). // expected type
(its strength is -1). // expected ':' following argument label and parameter name
(its strength is -1). // expected type
func cycpatternCheck(a: String, b: String) -> Bool {
let rotations = Array(b.indices).map { String(b[$0...].dropLast()) + String(b[..<$0]) }
return rotations.contains(where: a.contains)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let rotations = Array(b.indices).map { String(b[$0...].dropLast()) + String(b[..<$0]) }
return rotations.contains(where: a.contains)
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.suffix(b.count - i)) + String(b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.suffix(b.count - i)) + String(b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
let bRotated = Array(b)
for _ in 0..<b.count {
bRotated.append(bRotated.removeFirst())
if a.contains(String(bRotated)) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
let bRotated = Array(b)
for _ in 0..<b.count {
bRotated.append(bRotated.removeFirst())
if a.contains(String(bRotated)) {
return true
}
}
return false
}
```
bRotated.append(bRotated.removeFirst()) // cannot use mutating member on immutable value: 'bRotated' is a 'let' constant
bRotated.append(bRotated.removeFirst()) // cannot use mutating member on immutable value: 'bRotated' is a 'let' constant
func cycpatternCheck(a: String, b: String) -> Bool {
let a = Array(a)
let b = Array(b)
let bLength = b.count
let aLength = a.count
if bLength > aLength {
return false
}
for i in 0..<bLength {
var j = 0
while j < bLength {
if a[i + j] != b[j] {
break
}
j += 1
}
if j == bLength {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let a = Array(a)
let b = Array(b)
let bLength = b.count
let aLength = a.count
if bLength > aLength {
return false
}
for i in 0..<bLength {
var j = 0
while j < bLength {
if a[i + j] != b[j] {
break
}
j += 1
}
if j == bLength {
return true
}
}
return false
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.suffix(i)) + String(b.prefix(b.count - i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.suffix(i)) + String(b.prefix(b.count - i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.suffix(b.count - i)) + String(b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b.suffix(b.count - i)) + String(b.prefix(i)))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
var rotations = ""
for i in 0..<b.count {
rotations += String(b.dropFirst(i)) + String(b.prefix(i))
}
return a.contains(rotations)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
var rotations = ""
for i in 0..<b.count {
rotations += String(b.dropFirst(i)) + String(b.prefix(i))
}
return a.contains(rotations)
}
```
// XCTAssertTrue failed
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b[b.index(b.startIndex, offsetBy: i)...]) + String(b[..<b.index(b.startIndex, offsetBy: i)]))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count {
return false
}
var rotations = [String]()
for i in 0..<b.count {
rotations.append(String(b[b.index(b.startIndex, offsetBy: i)...]) + String(b[..<b.index(b.startIndex, offsetBy: i)]))
}
for rotation in rotations {
if a.contains(rotation) {
return true
}
}
return false
}
```
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = Array(b.indices).map { String(b.dropFirst($0) + b.prefix($0)) }
return a.contains(where: { bRotations.contains($0) })
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
let bRotations = Array(b.indices).map { String(b.dropFirst($0) + b.prefix($0)) }
return a.contains(where: { bRotations.contains($0) })
}
```
let bRotations = Array(b.indices).map { String(b.dropFirst($0) + b.prefix($0)) } // missing argument label '_immutableCocoaArray:' in call
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count { return false }
let bRotations = Array(b.indices).map { String(b.dropFirst($0).dropLast(b.count - $0)) }
return bRotations.contains { a.contains($0) }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpatternCheck(a: "abcd", b: "abd") == false
cycpatternCheck(a: "hello", b: "ell") == true
cycpatternCheck(a: "whassup", b: "psus") == false
cycpatternCheck(a: "abab", b: "baa") == true
cycpatternCheck(a: "efef", b: "eeff") == false
cycpatternCheck(a: "himenss", b: "simen") == true
### Response:
```swift
func cycpatternCheck(a: String, b: String) -> Bool {
if a.count < b.count { return false }
let bRotations = Array(b.indices).map { String(b.dropFirst($0).dropLast(b.count - $0)) }
return bRotations.contains { a.contains($0) }
}
```
let bRotations = Array(b.indices).map { String(b.dropFirst($0).dropLast(b.count - $0)) } // missing argument label '_immutableCocoaArray:' in call
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(abs(num))
for char in numString {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(abs(num))
for char in numString {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var num = num
var evenCount = 0
var oddCount = 0
while num != 0 {
let lastDigit = abs(num % 10)
if lastDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var num = num
var evenCount = 0
var oddCount = 0
while num != 0 {
let lastDigit = abs(num % 10)
if lastDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(abs(num))
for char in numString {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(abs(num))
for char in numString {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(abs(num))
for char in numString {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
let numString = String(abs(num))
for char in numString {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = num
if num < 0 {
num = -num
}
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = num
if num < 0 {
num = -num
}
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = num
if num < 0 {
num = -num
}
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = num
if num < 0 {
num = -num
}
while num > 0 {
let digit = num % 10
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = num
if num < 0 {
num = -num
}
while num > 0 {
let lastDigit = num % 10
if lastDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = num
if num < 0 {
num = -num
}
while num > 0 {
let lastDigit = num % 10
if lastDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = num
while num != 0 {
let lastDigit = abs(num % 10)
if lastDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var num = num
while num != 0 {
let lastDigit = abs(num % 10)
if lastDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
num /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = num
while number != 0 {
let lastDigit = number % 10
if lastDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
var number = num
while number != 0 {
let lastDigit = number % 10
if lastDigit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
number /= 10
}
return (evenCount, oddCount)
}
```
// XCTAssertTrue failed
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for char in String(abs(num)) {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(num: -12) == (1, 1)
evenOddCount(num: 123) == (1, 2)
### Response:
```swift
func evenOddCount(num: Int) -> (Int, Int) {
var evenCount = 0
var oddCount = 0
for char in String(abs(num)) {
if let digit = Int(String(char)) {
if digit % 2 == 0 {
evenCount += 1
} else {
oddCount += 1
}
}
}
return (evenCount, oddCount)
}
```
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
let romanNumerals = ["M": 1000, "CM": 900, "D": 500, "CD": 400, "C": 100, "XC": 90, "L": 50, "XL": 40, "X": 10, "IX": 9, "V": 5, "IV": 4, "I": 1]
for (key, value) in romanNumerals {
while num >= value {
roman += key
num -= value
}
}
return roman.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
let romanNumerals = ["M": 1000, "CM": 900, "D": 500, "CD": 400, "C": 100, "XC": 90, "L": 50, "XL": 40, "X": 10, "IX": 9, "V": 5, "IV": 4, "I": 1]
for (key, value) in romanNumerals {
while num >= value {
roman += key
num -= value
}
}
return roman.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
if num >= 1000 {
roman += "m"
num -= 1000
} else if num >= 900 {
roman += "cm"
num -= 900
} else if num >= 500 {
roman += "d"
num -= 500
} else if num >= 400 {
roman += "cd"
num -= 400
} else if num >= 100 {
roman += "c"
num -= 100
} else if num >= 90 {
roman += "xc"
num -= 90
} else if num >= 50 {
roman += "l"
num -= 50
} else if num >= 40 {
roman += "xl"
num -= 40
} else if num >= 10 {
roman += "x"
num -= 10
} else if num >= 9 {
roman += "ix"
num -= 9
} else if num >= 5 {
roman += "v"
num -= 5
} else if num >= 4 {
roman += "iv"
num -= 4
} else {
roman += "i"
num -= 1
}
}
return roman
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
if num >= 1000 {
roman += "m"
num -= 1000
} else if num >= 900 {
roman += "cm"
num -= 900
} else if num >= 500 {
roman += "d"
num -= 500
} else if num >= 400 {
roman += "cd"
num -= 400
} else if num >= 100 {
roman += "c"
num -= 100
} else if num >= 90 {
roman += "xc"
num -= 90
} else if num >= 50 {
roman += "l"
num -= 50
} else if num >= 40 {
roman += "xl"
num -= 40
} else if num >= 10 {
roman += "x"
num -= 10
} else if num >= 9 {
roman += "ix"
num -= 9
} else if num >= 5 {
roman += "v"
num -= 5
} else if num >= 4 {
roman += "iv"
num -= 4
} else {
roman += "i"
num -= 1
}
}
return roman
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["I", "V", "X", "L", "C", "D", "M"]
var result = ""
var num = number
var index = 0
while num > 0 {
let digit = num % 10
switch digit {
case 1, 2, 3:
result = String(repeating: romanNumerals[index], count: digit) + result
case 4:
result = romanNumerals[index] + romanNumerals[index + 1] + result
case 5, 6, 7, 8:
result = romanNumerals[index + 1] + String(repeating: romanNumerals[index], count: digit - 5) + result
case 9:
result = romanNumerals[index] + romanNumerals[index + 2] + result
default:
break
}
num /= 10
index += 2
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["I", "V", "X", "L", "C", "D", "M"]
var result = ""
var num = number
var index = 0
while num > 0 {
let digit = num % 10
switch digit {
case 1, 2, 3:
result = String(repeating: romanNumerals[index], count: digit) + result
case 4:
result = romanNumerals[index] + romanNumerals[index + 1] + result
case 5, 6, 7, 8:
result = romanNumerals[index + 1] + String(repeating: romanNumerals[index], count: digit - 5) + result
case 9:
result = romanNumerals[index] + romanNumerals[index + 2] + result
default:
break
}
num /= 10
index += 2
}
return result
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
if num >= 1000 {
roman += "m"
num -= 1000
} else if num >= 900 {
roman += "cm"
num -= 900
} else if num >= 500 {
roman += "d"
num -= 500
} else if num >= 400 {
roman += "cd"
num -= 400
} else if num >= 100 {
roman += "c"
num -= 100
} else if num >= 90 {
roman += "xc"
num -= 90
} else if num >= 50 {
roman += "l"
num -= 50
} else if num >= 40 {
roman += "xl"
num -= 40
} else if num >= 10 {
roman += "x"
num -= 10
} else if num >= 9 {
roman += "ix"
num -= 9
} else if num >= 5 {
roman += "v"
num -= 5
} else if num >= 4 {
roman += "iv"
num -= 4
} else {
roman += "i"
num -= 1
}
}
return roman
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
if num >= 1000 {
roman += "m"
num -= 1000
} else if num >= 900 {
roman += "cm"
num -= 900
} else if num >= 500 {
roman += "d"
num -= 500
} else if num >= 400 {
roman += "cd"
num -= 400
} else if num >= 100 {
roman += "c"
num -= 100
} else if num >= 90 {
roman += "xc"
num -= 90
} else if num >= 50 {
roman += "l"
num -= 50
} else if num >= 40 {
roman += "xl"
num -= 40
} else if num >= 10 {
roman += "x"
num -= 10
} else if num >= 9 {
roman += "ix"
num -= 9
} else if num >= 5 {
roman += "v"
num -= 5
} else if num >= 4 {
roman += "iv"
num -= 4
} else {
roman += "i"
num -= 1
}
}
return roman
}
```
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
let romanNumerals = ["M": 1000, "CM": 900, "D": 500, "CD": 400, "C": 100, "XC": 90, "L": 50, "XL": 40, "X": 10, "IX": 9, "V": 5, "IV": 4, "I": 1]
for (key, value) in romanNumerals {
while num >= value {
roman += key
num -= value
}
}
return roman.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
let romanNumerals = ["M": 1000, "CM": 900, "D": 500, "CD": 400, "C": 100, "XC": 90, "L": 50, "XL": 40, "X": 10, "IX": 9, "V": 5, "IV": 4, "I": 1]
for (key, value) in romanNumerals {
while num >= value {
roman += key
num -= value
}
}
return roman.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
(1000, "m"),
(900, "cm"),
(500, "d"),
(400, "cd"),
(100, "c"),
(90, "xc"),
(50, "l"),
(40, "xl"),
(10, "x"),
(9, "ix"),
(5, "v"),
(4, "iv"),
(1, "i")
]
var result = ""
var num = number
for (value, numeral) in romanNumerals {
while num >= value {
result += numeral
num -= value
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
(1000, "m"),
(900, "cm"),
(500, "d"),
(400, "cd"),
(100, "c"),
(90, "xc"),
(50, "l"),
(40, "xl"),
(10, "x"),
(9, "ix"),
(5, "v"),
(4, "iv"),
(1, "i")
]
var result = ""
var num = number
for (value, numeral) in romanNumerals {
while num >= value {
result += numeral
num -= value
}
}
return result
}
```
func intToMiniRoman(number: Int) -> String {
var number = number
var roman = ""
let romanValues = ["M": 1000, "CM": 900, "D": 500, "CD": 400, "C": 100, "XC": 90, "L": 50, "XL": 40, "X": 10, "IX": 9, "V": 5, "IV": 4, "I": 1]
for (key, value) in romanValues {
while number >= value {
roman += key
number -= value
}
}
return roman.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var number = number
var roman = ""
let romanValues = ["M": 1000, "CM": 900, "D": 500, "CD": 400, "C": 100, "XC": 90, "L": 50, "XL": 40, "X": 10, "IX": 9, "V": 5, "IV": 4, "I": 1]
for (key, value) in romanValues {
while number >= value {
roman += key
number -= value
}
}
return roman.lowercased()
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
if num >= 1000 {
roman += "m"
num -= 1000
} else if num >= 900 {
roman += "cm"
num -= 900
} else if num >= 500 {
roman += "d"
num -= 500
} else if num >= 400 {
roman += "cd"
num -= 400
} else if num >= 100 {
roman += "c"
num -= 100
} else if num >= 90 {
roman += "xc"
num -= 90
} else if num >= 50 {
roman += "l"
num -= 50
} else if num >= 40 {
roman += "xl"
num -= 40
} else if num >= 10 {
roman += "x"
num -= 10
} else if num >= 9 {
roman += "ix"
num -= 9
} else if num >= 5 {
roman += "v"
num -= 5
} else if num >= 4 {
roman += "iv"
num -= 4
} else {
roman += "i"
num -= 1
}
}
return roman
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
var roman = ""
var num = number
while num > 0 {
if num >= 1000 {
roman += "m"
num -= 1000
} else if num >= 900 {
roman += "cm"
num -= 900
} else if num >= 500 {
roman += "d"
num -= 500
} else if num >= 400 {
roman += "cd"
num -= 400
} else if num >= 100 {
roman += "c"
num -= 100
} else if num >= 90 {
roman += "xc"
num -= 90
} else if num >= 50 {
roman += "l"
num -= 50
} else if num >= 40 {
roman += "xl"
num -= 40
} else if num >= 10 {
roman += "x"
num -= 10
} else if num >= 9 {
roman += "ix"
num -= 9
} else if num >= 5 {
roman += "v"
num -= 5
} else if num >= 4 {
roman += "iv"
num -= 4
} else {
roman += "i"
num -= 1
}
}
return roman
}
```
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
1000: "m",
900: "cm",
500: "d",
400: "cd",
100: "c",
90: "xc",
50: "l",
40: "xl",
10: "x",
9: "ix",
5: "v",
4: "iv",
1: "i"
]
var roman = ""
var num = number
for (value, numeral) in romanNumerals {
while num >= value {
roman += numeral
num -= value
}
}
return roman
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = [
1000: "m",
900: "cm",
500: "d",
400: "cd",
100: "c",
90: "xc",
50: "l",
40: "xl",
10: "x",
9: "ix",
5: "v",
4: "iv",
1: "i"
]
var roman = ""
var num = number
for (value, numeral) in romanNumerals {
while num >= value {
roman += numeral
num -= value
}
}
return roman
}
```
// XCTAssertTrue failed
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["I", "V", "X", "L", "C", "D", "M"]
var romanNumber = ""
var currentNumber = number
var romanIndex = 0
while currentNumber > 0 {
let remainder = currentNumber % 10
if remainder < 4 {
for _ in 0..<remainder {
romanNumber = romanNumerals[romanIndex] + romanNumber
}
} else if remainder == 4 {
romanNumber = romanNumerals[romanIndex] + romanNumerals[romanIndex + 1] + romanNumber
} else if remainder < 9 {
romanNumber = romanNumerals[romanIndex + 1]
for _ in 0..<(remainder - 5) {
romanNumber = romanNumerals[romanIndex] + romanNumber
}
} else {
romanNumber = romanNumerals[romanIndex] + romanNumerals[romanIndex + 2] + romanNumber
}
currentNumber /= 10
romanIndex += 2
}
return romanNumber.lowercased()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
intToMiniRoman(number: 19) == "xix"
intToMiniRoman(number: 152) == "clii"
intToMiniRoman(number: 426) == "cdxxvi"
### Response:
```swift
func intToMiniRoman(number: Int) -> String {
let romanNumerals = ["I", "V", "X", "L", "C", "D", "M"]
var romanNumber = ""
var currentNumber = number
var romanIndex = 0
while currentNumber > 0 {
let remainder = currentNumber % 10
if remainder < 4 {
for _ in 0..<remainder {
romanNumber = romanNumerals[romanIndex] + romanNumber
}
} else if remainder == 4 {
romanNumber = romanNumerals[romanIndex] + romanNumerals[romanIndex + 1] + romanNumber
} else if remainder < 9 {
romanNumber = romanNumerals[romanIndex + 1]
for _ in 0..<(remainder - 5) {
romanNumber = romanNumerals[romanIndex] + romanNumber
}
} else {
romanNumber = romanNumerals[romanIndex] + romanNumerals[romanIndex + 2] + romanNumber
}
currentNumber /= 10
romanIndex += 2
}
return romanNumber.lowercased()
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
let legsSquaredSum = legs[0] * legs[0] + legs[1] * legs[1]
return legsSquaredSum == hypotenuse * hypotenuse
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
let legsSquaredSum = legs[0] * legs[0] + legs[1] * legs[1]
return legsSquaredSum == hypotenuse * hypotenuse
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
return hypotenuse * hypotenuse == legs[0] * legs[0] + legs[1] * legs[1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
return hypotenuse * hypotenuse == legs[0] * legs[0] + legs[1] * legs[1]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
return hypotenuse * hypotenuse == legs[0] * legs[0] + legs[1] * legs[1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
return hypotenuse * hypotenuse == legs[0] * legs[0] + legs[1] * legs[1]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
return hypotenuse * hypotenuse == legs[0] * legs[0] + legs[1] * legs[1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
return hypotenuse * hypotenuse == legs[0] * legs[0] + legs[1] * legs[1]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0] + sortedSides[1]
return hypotenuse == legs
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0] + sortedSides[1]
return hypotenuse == legs
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c].sorted()
return sides[0] * sides[0] + sides[1] * sides[1] == sides[2] * sides[2]
}
```
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let otherSides = sortedSides[0...1]
let sumOfOtherSides = otherSides.reduce(0, +)
return hypotenuse * hypotenuse == sumOfOtherSides * sumOfOtherSides
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let otherSides = sortedSides[0...1]
let sumOfOtherSides = otherSides.reduce(0, +)
return hypotenuse * hypotenuse == sumOfOtherSides * sumOfOtherSides
}
```
// XCTAssertTrue failed
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
return hypotenuse * hypotenuse == legs[0] * legs[0] + legs[1] * legs[1]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
rightAngleTriangle(a: 3, b: 4, c: 5) == true
rightAngleTriangle(a: 1, b: 2, c: 3) == false
### Response:
```swift
func rightAngleTriangle(a: Int, b: Int, c: Int) -> Bool {
let sides = [a, b, c]
let sortedSides = sides.sorted()
let hypotenuse = sortedSides[2]
let legs = sortedSides[0...1]
return hypotenuse * hypotenuse == legs[0] * legs[0] + legs[1] * legs[1]
}
```
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word.characters)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word.characters)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
```
let uniqueCharacters = Set(word.characters) // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueCharsWord = ""
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueCharsWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueCharsWord {
maxUniqueCharsWord = word
}
}
return maxUniqueCharsWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueCharsWord = ""
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueCharsWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueCharsWord {
maxUniqueCharsWord = word
}
}
return maxUniqueCharsWord
}
```
let uniqueChars = Set(word.characters) // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord = ""
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueChars = 0
var maxUniqueWord = ""
for word in words {
let uniqueChars = Set(word.characters)
if uniqueChars.count > maxUniqueChars {
maxUniqueChars = uniqueChars.count
maxUniqueWord = word
} else if uniqueChars.count == maxUniqueChars && word < maxUniqueWord {
maxUniqueWord = word
}
}
return maxUniqueWord
}
```
let uniqueChars = Set(word.characters) // 'characters' is unavailable: Please use String directly
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
```
func findMax(words: [String]) -> String {
var max = ""
for word in words {
if word.count > max.count {
max = word
} else if word.count == max.count {
if word < max {
max = word
}
}
}
return max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var max = ""
for word in words {
if word.count > max.count {
max = word
} else if word.count == max.count {
if word < max {
max = word
}
}
}
return max
}
```
// XCTAssertTrue failed
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters && word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
return maxUniqueCharactersWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters && word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
return maxUniqueCharactersWord
}
```
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var maxUniqueCharacters = 0
var maxUniqueCharactersWord = ""
for word in words {
let uniqueCharacters = Set(word)
if uniqueCharacters.count > maxUniqueCharacters {
maxUniqueCharacters = uniqueCharacters.count
maxUniqueCharactersWord = word
} else if uniqueCharacters.count == maxUniqueCharacters {
if word < maxUniqueCharactersWord {
maxUniqueCharactersWord = word
}
}
}
return maxUniqueCharactersWord
}
```
func findMax(words: [String]) -> String {
var max = ""
for word in words {
if word.count > max.count {
max = word
} else if word.count == max.count && word < max {
max = word
}
}
return max
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Write a function that accepts an array of strings.
The array contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
findMax(words: ["name", "of", "string"]) == "string"
findMax(words: ["name", "enam", "game"]) == "enam"
findMax(words: ["aaaaaaa", "bb", "cc"]) == "aaaaaaa"
### Response:
```swift
func findMax(words: [String]) -> String {
var max = ""
for word in words {
if word.count > max.count {
max = word
} else if word.count == max.count && word < max {
max = word
}
}
return max
}
```
// XCTAssertTrue failed
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left < 0 ? 0 : left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left < 0 ? 0 : left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left < 0 ? 0 : left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left < 0 ? 0 : left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number + need
var left = remaining
if total > remaining {
total = remaining
left = 0
} else {
left = remaining - total
}
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number + need
var left = remaining
if total > remaining {
total = remaining
left = 0
} else {
left = remaining - total
}
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number + need
var left = remaining
if total > remaining {
total = remaining
left = 0
} else {
left -= total
}
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
var total = number + need
var left = remaining
if total > remaining {
total = remaining
left = 0
} else {
left -= total
}
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
eat(number: 5, need: 6, remaining: 10) == [11, 4]
eat(number: 4, need: 8, remaining: 9) == [12, 1]
eat(number: 1, need: 10, remaining: 10) == [11, 0]
eat(number: 2, need: 11, remaining: 5) == [7, 0]
### Response:
```swift
func eat(number: Int, need: Int, remaining: Int) -> [Int] {
let total = number + need
let left = remaining - need
return [total, left]
}
```
@number : integer // expected expression
the number of carrots that you have eaten. // expected member name following '.'
the number of carrots that you need to eat. // expected member name following '.'
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
let operator = operators[i - 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
let operator = operators[i - 1]
switch operator {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "//":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
let operator = operators[i - 1] // keyword 'operator' cannot be used as an identifier here
switch operator { // expected operator name in operator declaration
switch operator { // expected expression in 'switch' statement
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operand = operands[i + 1]
switch operators[i] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
let operand = operands[i + 1]
switch operators[i] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i-1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i-1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+": result += operand
case "-": result -= operand
case "*": result *= operand
case "/": result /= operand
case "**": result = Int(pow(Double(result), Double(operand)))
default: break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+": result += operand
case "-": result -= operand
case "*": result *= operand
case "/": result /= operand
case "**": result = Int(pow(Double(result), Double(operand)))
default: break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "/":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 0..<operators.count {
switch operators[i] {
case "+":
result += operands[i + 1]
case "-":
result -= operands[i + 1]
case "*":
result *= operands[i + 1]
case "/":
result /= operands[i + 1]
case "**":
result = Int(pow(Double(result), Double(operands[i + 1])))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "/":
result /= operands[i]
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
switch operators[i - 1] {
case "+":
result += operands[i]
case "-":
result -= operands[i]
case "*":
result *= operands[i]
case "/":
result /= operands[i]
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two arrays operators, and operands. The first array has basic algebra operations, and
the second array is an array of integers. Use the two given arrays to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator array is equal to the length of operand array minus one.
Operand is an array of of non-negative integers.
Operator array has at least one operator, and operand array has at least two operands.
### Response:
```swift
func doAlgebra(operators: [String], operands: [Int]) -> Int {
var result = operands[0]
for i in 1..<operands.count {
let operand = operands[i]
switch operators[i - 1] {
case "+":
result += operand
case "-":
result -= operand
case "*":
result *= operand
case "/":
result /= operand
case "**":
result = Int(pow(Double(result), Double(operand)))
default:
break
}
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return result.isEmpty ? s.reversed() : result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return result.isEmpty ? s.reversed() : result
}
```
return result.isEmpty ? s.reversed() : result // cannot convert return expression of type 'ReversedCollection<String>' to return type 'String'
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return result.isEmpty ? s.reversed() : result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return result.isEmpty ? s.reversed() : result
}
```
return result.isEmpty ? s.reversed() : result // cannot convert return expression of type 'ReversedCollection<String>' to return type 'String'
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return result.isEmpty ? s.reversed() : result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return result.isEmpty ? s.reversed() : result
}
```
return result.isEmpty ? s.reversed() : result // cannot convert return expression of type 'ReversedCollection<String>' to return type 'String'
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return hasLetter ? result : String(s.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return hasLetter ? result : String(s.reversed())
}
```
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return hasLetter ? result : String(s.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return hasLetter ? result : String(s.reversed())
}
```
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return hasLetter ? result : String(s.reversed())
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
return hasLetter ? result : String(s.reversed())
}
```
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
if !hasLetter {
result = String(result.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
if !hasLetter {
result = String(result.reversed())
}
return result
}
```
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
if result == s {
result = String(s.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
for char in s {
if char.isLetter {
result += char.isUppercase ? char.lowercased() : char.uppercased()
} else {
result += String(char)
}
}
if result == s {
result = String(s.reversed())
}
return result
}
```
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += String(char).uppercased()
} else {
result += String(char)
}
}
if !hasLetter {
result = String(s.reversed())
}
return result
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += String(char).uppercased()
} else {
result += String(char)
}
}
if !hasLetter {
result = String(s.reversed())
}
return result
}
```
// XCTAssertTrue failed
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += String(char).uppercased()
} else {
result += String(char)
}
}
if hasLetter {
return result
} else {
return String(s.reversed())
}
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(s: "1234") == "4321"
solve(s: "ab") == "AB"
solve(s: "#a@C") == "#A@c"
### Response:
```swift
func solve(s: String) -> String {
var result = ""
var hasLetter = false
for char in s {
if char.isLetter {
hasLetter = true
result += String(char).uppercased()
} else {
result += String(char)
}
}
if hasLetter {
return result
} else {
return String(s.reversed())
}
}
```
// XCTAssertTrue failed
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = digestData.withUnsafeMutableBytes {digestBytes in // 'withUnsafeMutableBytes' is deprecated: use `withUnsafeMutableBytes<R>(_: (UnsafeMutableRawBufferPointer) throws -> R) rethrows -> R` instead
messageData.withUnsafeBytes {messageBytes in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = digestData.withUnsafeMutableBytes {digestBytes in // 'withUnsafeMutableBytes' is deprecated: use `withUnsafeMutableBytes<R>(_: (UnsafeMutableRawBufferPointer) throws -> R) rethrows -> R` instead
messageData.withUnsafeBytes {messageBytes in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = digestData.withUnsafeMutableBytes {digestBytes in // 'withUnsafeMutableBytes' is deprecated: use `withUnsafeMutableBytes<R>(_: (UnsafeMutableRawBufferPointer) throws -> R) rethrows -> R` instead
messageData.withUnsafeBytes {messageBytes in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = digestData.withUnsafeMutableBytes {digestBytes in // 'withUnsafeMutableBytes' is deprecated: use `withUnsafeMutableBytes<R>(_: (UnsafeMutableRawBufferPointer) throws -> R) rethrows -> R` instead
messageData.withUnsafeBytes {messageBytes in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else { return nil }
let data = text.data(using: .utf8)!
let hash = data.withUnsafeBytes { (bytes: UnsafeRawBufferPointer) -> [UInt8] in
var hash = [UInt8](repeating: 0, count: Int(CC_MD5_DIGEST_LENGTH))
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash)
return hash
}
return hash.map { String(format: "%02x", $0) }.joined()
}
```
CC_MD5(bytes.baseAddress, CC_LONG(data.count), &hash) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
import CommonCrypto
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nil.
stringToMd5(text: "Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
### Response:
```swift
func stringToMd5(text: String) -> String? {
guard !text.isEmpty else {
return nil
}
let messageData = text.data(using:.utf8)!
var digestData = Data(count: Int(CC_MD5_DIGEST_LENGTH))
_ = digestData.withUnsafeMutableBytes {digestBytes in
messageData.withUnsafeBytes {messageBytes in
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes)
}
}
return digestData.map { String(format: "%02hhx", $0) }.joined()
}
```
_ = digestData.withUnsafeMutableBytes {digestBytes in // 'withUnsafeMutableBytes' is deprecated: use `withUnsafeMutableBytes<R>(_: (UnsafeMutableRawBufferPointer) throws -> R) rethrows -> R` instead
messageData.withUnsafeBytes {messageBytes in // 'withUnsafeBytes' is deprecated: use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead
CC_MD5(messageBytes, CC_LONG(messageData.count), digestBytes) // 'CC_MD5' was deprecated in macOS 10.15: This function is cryptographically broken and should not be used in security contexts. Clients should migrate to SHA256 (or stronger).
func generateIntegers(a: Int, b: Int) -> [Int] {
let start = min(a, b)
let end = max(a, b)
return (start...end).filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let start = min(a, b)
let end = max(a, b)
return (start...end).filter { $0 % 2 == 0 }
}
```
func generateIntegers(a: Int, b: Int) -> [Int] {
let lowerBound = min(a, b)
let upperBound = max(a, b)
return (lowerBound...upperBound).filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let lowerBound = min(a, b)
let upperBound = max(a, b)
return (lowerBound...upperBound).filter { $0 % 2 == 0 }
}
```
func generateIntegers(a: Int, b: Int) -> [Int] {
let lowerBound = min(a, b)
let upperBound = max(a, b)
return (lowerBound...upperBound).filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let lowerBound = min(a, b)
let upperBound = max(a, b)
return (lowerBound...upperBound).filter { $0 % 2 == 0 }
}
```
func generateIntegers(a: Int, b: Int) -> [Int] {
let range = a < b ? a...b : b...a
return range.filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let range = a < b ? a...b : b...a
return range.filter { $0 % 2 == 0 }
}
```
func generateIntegers(a: Int, b: Int) -> [Int] {
let start = min(a, b)
let end = max(a, b)
return (start...end).filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let start = min(a, b)
let end = max(a, b)
return (start...end).filter { $0 % 2 == 0 }
}
```
func generateIntegers(a: Int, b: Int) -> [Int] {
let lowerBound = min(a, b)
let upperBound = max(a, b)
return (lowerBound...upperBound).filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let lowerBound = min(a, b)
let upperBound = max(a, b)
return (lowerBound...upperBound).filter { $0 % 2 == 0 }
}
```
func generateIntegers(a: Int, b: Int) -> [Int] {
let lowerBound = min(a, b)
let upperBound = max(a, b)
return (lowerBound...upperBound).filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let lowerBound = min(a, b)
let upperBound = max(a, b)
return (lowerBound...upperBound).filter { $0 % 2 == 0 }
}
```
func generateIntegers(a: Int, b: Int) -> [Int] {
let range = a...b
return range.filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let range = a...b
return range.filter { $0 % 2 == 0 }
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
let range = a...b
return range.filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let range = a...b
return range.filter { $0 % 2 == 0 }
}
```
// Fatal error: Range requires lowerBound <= upperBound
func generateIntegers(a: Int, b: Int) -> [Int] {
let start = min(a, b)
let end = max(a, b)
return (start...end).filter { $0 % 2 == 0 }
}
### Instruction:
Write code in Swift programming language. Don't include usage examples or tests.
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(a: 2, b: 8) == [2, 4, 6, 8]
generateIntegers(a: 8, b: 2) == [2, 4, 6, 8]
generateIntegers(a: 10, b: 14) == [] as [Int]
### Response:
```swift
func generateIntegers(a: Int, b: Int) -> [Int] {
let start = min(a, b)
let end = max(a, b)
return (start...end).filter { $0 % 2 == 0 }
}
```